Academic literature on the topic 'Neural networks; X-ray crystallography'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Neural networks; X-ray crystallography.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Neural networks; X-ray crystallography"
Sullivan, Brendan, Rick Archibald, Jahaun Azadmanesh, Venu Gopal Vandavasi, Patricia S. Langan, Leighton Coates, Vickie Lynch, and Paul Langan. "BraggNet: integrating Bragg peaks using neural networks." Journal of Applied Crystallography 52, no. 4 (July 26, 2019): 854–63. http://dx.doi.org/10.1107/s1600576719008665.
Full textKe, Tsung-Wei, Aaron S. Brewster, Stella X. Yu, Daniela Ushizima, Chao Yang, and Nicholas K. Sauter. "A convolutional neural network-based screening tool for X-ray serial crystallography." Journal of Synchrotron Radiation 25, no. 3 (April 24, 2018): 655–70. http://dx.doi.org/10.1107/s1600577518004873.
Full textIto, Sho, Go Ueno, and Masaki Yamamoto. "DeepCentering: fully automated crystal centering using deep learning for macromolecular crystallography." Journal of Synchrotron Radiation 26, no. 4 (June 3, 2019): 1361–66. http://dx.doi.org/10.1107/s160057751900434x.
Full textBaek, Minkyung, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie Lee, Jue Wang, et al. "Accurate prediction of protein structures and interactions using a three-track neural network." Science 373, no. 6557 (July 15, 2021): 871–76. http://dx.doi.org/10.1126/science.abj8754.
Full textXuan, Wenjing, Ning Liu, Neng Huang, Yaohang Li, and Jianxin Wang. "CLPred: a sequence-based protein crystallization predictor using BLSTM neural network." Bioinformatics 36, Supplement_2 (December 2020): i709—i717. http://dx.doi.org/10.1093/bioinformatics/btaa791.
Full textElbasir, Abdurrahman, Balasubramanian Moovarkumudalvan, Khalid Kunji, Prasanna R. Kolatkar, Raghvendra Mall, and Halima Bensmail. "DeepCrystal: a deep learning framework for sequence-based protein crystallization prediction." Bioinformatics 35, no. 13 (November 21, 2018): 2216–25. http://dx.doi.org/10.1093/bioinformatics/bty953.
Full textUddin, Mostofa Rafid, Sazan Mahbub, M. Saifur Rahman, and Md Shamsuzzoha Bayzid. "SAINT: self-attention augmented inception-inside-inception network improves protein secondary structure prediction." Bioinformatics 36, no. 17 (May 21, 2020): 4599–608. http://dx.doi.org/10.1093/bioinformatics/btaa531.
Full textvan den Bedem, Henry, Gira Bhabha, Kun Yang, Peter E. Wright, and James S. Fraser. "Automated identification of functional dynamic contact networks from X-ray crystallography." Nature Methods 10, no. 9 (August 4, 2013): 896–902. http://dx.doi.org/10.1038/nmeth.2592.
Full textInokuma, Yasuhide, and Makoto Fujita. "Visualization of Solution Chemistry by X-ray Crystallography Using Porous Coordination Networks." Bulletin of the Chemical Society of Japan 87, no. 11 (November 15, 2014): 1161–76. http://dx.doi.org/10.1246/bcsj.20140217.
Full textRomo, T., K. Gopal, E. McKee, L. Kanbi, Reetal Pai, J. Smith, J. Sacchettini, and T. Ioerger. "TEXTAL: AI-Based Structural Determination for X-ray Protein Crystallography." IEEE Intelligent Systems 20, no. 6 (November 2005): 59–63. http://dx.doi.org/10.1109/mis.2005.114.
Full textDissertations / Theses on the topic "Neural networks; X-ray crystallography"
Kinna, David John. "Pattern recognition in chemical crystallography." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318724.
Full textAbbott, Paul H. "Heuristically guided interpretation of X-ray fluorescence spectra." Thesis, University of Wolverhampton, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309784.
Full textPoláková, Veronika. "Využití konvolučních neuronových sítí pro segmentaci chrupavčitých tkání myších embryí v mikro-CT datech." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442503.
Full textChen, Hsin-Jui, and 陳新叡. "Lung X-Ray Segmentation using Deep Convolutional Neural Networks on Contrast-enhanced Binarized Images." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/r59pdv.
Full text國立臺灣科技大學
電子工程系
107
Automatically locating the lung regions effectively and efficiently in digital chest X-ray (CXR) images is crucial in computer-aided diagnosis. In this paper, we propose a method to segment lungs from CXR images, which comprises of three steps. First, a contrast enhancement method specifically designed for CXR images is adopted. Secondly, using adaptive binarization to preprocess CXR images to obtain foreground information and reduce storage space usage. Thirdly, the practicality of the proposed methodology is validated through various fully convolutional neural networks. The experimental results revealed that the proposed method can achieve comparable segmentation accuracy to those of state-of-the-art methods with inferring time and memory consumption for the model input cut by 19.10% and 94.6% on average.
Norval, Michael John. "Detection of pulmonary tuberculosis using deep learning convolutional neural networks." Diss., 2019. http://hdl.handle.net/10500/26890.
Full textElectrical and Mining Engineering
Book chapters on the topic "Neural networks; X-ray crystallography"
Kao, Hsien-Pei, Tzu-Chia Tung, Hong-Yi Chen, Cheng-Shih Wong, and Chiou-Shann Fuh. "Pin Defect Inspection with X-ray Images." In Advances in Neural Networks - ISNN 2017, 465–73. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59081-3_54.
Full textOliveira, Gabriel, Rafael Padilha, André Dorte, Luis Cereda, Luiz Miyazaki, Maurício Lopes, and Zanoni Dias. "COVID-19 X-ray Image Diagnostic with Deep Neural Networks." In Advances in Bioinformatics and Computational Biology, 57–68. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-65775-8_6.
Full textKim, Byungwhan, Sooyoun Kim, and Sang Jeen Hong. "Recognition of Plasma-Induced X-Ray Photoelectron Spectroscopy Fault Pattern Using Wavelet and Neural Network." In Advances in Neural Networks - ISNN 2006, 1036–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11760191_151.
Full textKunapinun, Alisa, and Matthew N. Dailey. "COVID-19 X-ray Image Diagnosis Using Deep Convolutional Neural Networks." In Proceedings of Sixth International Congress on Information and Communication Technology, 733–41. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2380-6_64.
Full textRustichelli, Franco. "Structural Properties of Monolayers and Langmuir-Blodgett Films by X-Ray Scattering Techniques." In From Neural Networks and Biomolecular Engineering to Bioelectronics, 189–215. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1088-2_16.
Full textKong, Quan, Naoto Akira, Bin Tong, Yuki Watanabe, Daisuke Matsubara, and Tomokazu Murakami. "Multimodal Deep Neural Networks Based Ensemble Learning for X-Ray Object Recognition." In Computer Vision – ACCV 2018 Workshops, 523–38. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21074-8_41.
Full textTsukada, Ryotaro, Lekang Zou, and Hitoshi Iba. "Evolving Deep Neural Networks for X-ray Based Detection of Dangerous Objects." In Natural Computing Series, 325–55. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3685-4_12.
Full textKondo, Tadashi, and Abhijit S. Pandya. "Recognition of X-ray Images by Using Revised GMDH-type Neural Networks." In Lecture Notes in Computer Science, 849–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45226-3_116.
Full textKarthik, K., and Sowmya Kamath S. "Automated View Orientation Classification for X-ray Images Using Deep Neural Networks." In Smart Computational Intelligence in Biomedical and Health Informatics, 61–72. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003109327-5.
Full textKönig, Andreas, Andreas Herenz, and Klaus Wolter. "Application of neural networks for automated X-ray image inspection in electronics manufacturing." In Lecture Notes in Computer Science, 588–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/bfb0100526.
Full textConference papers on the topic "Neural networks; X-ray crystallography"
Fan, Fenglei, Hongming Shan, Lars Gjesteby, and Ge Wang. "Quadratic neural networks for CT metal artifact reduction." In Developments in X-Ray Tomography XII, edited by Bert Müller and Ge Wang. SPIE, 2019. http://dx.doi.org/10.1117/12.2530363.
Full textAchkar, Roger, Johnny Narcis, Wael Abou Awad, and Karim Hitti. "Smart X-Ray Scanners Using Artificial Neural Networks." In 2018 UKSim-AMSS 20th International Conference on Computer Modelling and Simulation (UKSim). IEEE, 2018. http://dx.doi.org/10.1109/uksim.2018.00013.
Full textCooley, Victoria, Stuart R. Stock, William Guise, Adya Verma, Tomas Wald, Ophir Klein, and Derk Joester. "Semantic segmentation of mouse jaws using convolutional neural networks." In Developments in X-Ray Tomography XIII, edited by Bert Müller and Ge Wang. SPIE, 2021. http://dx.doi.org/10.1117/12.2594332.
Full textTekawade, Aniket, Brandon A. Sforzo, Katarzyna E. Matusik, Alan L. Kastengren, and Christopher F. Powell. "High-fidelity geometry generation from CT data using convolutional neural networks." In Developments in X-Ray Tomography XII, edited by Bert Müller and Ge Wang. SPIE, 2019. http://dx.doi.org/10.1117/12.2540442.
Full textSushmit, Asif Shahriyar, Shakib Uz Zaman, Ahmed Imtiaz Humayun, Taufiq Hasan, and Mohammed Imamul Hassan Bhuiyan. "X-Ray Image Compression Using Convolutional Recurrent Neural Networks." In 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). IEEE, 2019. http://dx.doi.org/10.1109/bhi.2019.8834656.
Full textAllred, Lloyd G., Martin H. Jones, Matthew J. Sheats, and Anthony W. Davis. "Computed tomography of x-ray images using neural networks." In AeroSense 2000, edited by Kevin L. Priddy, Paul E. Keller, and David B. Fogel. SPIE, 2000. http://dx.doi.org/10.1117/12.380600.
Full textYin, Wei, Baolian Qi, Ting Cai, and Jinpeng Li. "X-Ray Image Enhancement Using Blind Denoising Neural Networks." In 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). IEEE, 2021. http://dx.doi.org/10.1109/icaica52286.2021.9497945.
Full textLindgren, Erik, and Christopher Zach. "Analysis of industrial x-ray computed tomography data with deep neural networks." In Developments in X-Ray Tomography XIII, edited by Bert Müller and Ge Wang. SPIE, 2021. http://dx.doi.org/10.1117/12.2594714.
Full textDey, Sumi, and Olac Fuentes. "Predicting Solar X-ray Flux Using Deep Learning Techniques." In 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020. http://dx.doi.org/10.1109/ijcnn48605.2020.9207284.
Full textKhosa, Ikramullah, and Eros Pasero. "Feature extraction in X-ray images for hazelnuts classification." In 2014 International Joint Conference on Neural Networks (IJCNN). IEEE, 2014. http://dx.doi.org/10.1109/ijcnn.2014.6889661.
Full text