Academic literature on the topic 'Neural networks; Visual information'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Neural networks; Visual information.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Neural networks; Visual information"
Hertz, J. A., T. W. Kjær, E. N. Eskandar, and B. J. Richmond. "MEASURING NATURAL NEURAL PROCESSING WITH ARTIFICIAL NEURAL NETWORKS." International Journal of Neural Systems 03, supp01 (January 1992): 91–103. http://dx.doi.org/10.1142/s0129065792000425.
Full textKawato, Mitsuo, Takatoshi Ikeda, and Sei Miyake. "Learning in neural networks for visual information processing." Journal of the Institute of Television Engineers of Japan 42, no. 9 (1988): 918–24. http://dx.doi.org/10.3169/itej1978.42.918.
Full textSeeland, Marco, and Patrick Mäder. "Multi-view classification with convolutional neural networks." PLOS ONE 16, no. 1 (January 12, 2021): e0245230. http://dx.doi.org/10.1371/journal.pone.0245230.
Full textMAINZER, KLAUS. "CELLULAR NEURAL NETWORKS AND VISUAL COMPUTING." International Journal of Bifurcation and Chaos 13, no. 01 (January 2003): 1–6. http://dx.doi.org/10.1142/s0218127403006534.
Full textHartono, Pitoyo. "A transparent cancer classifier." Health Informatics Journal 26, no. 1 (December 31, 2018): 190–204. http://dx.doi.org/10.1177/1460458218817800.
Full textEt. al., K. P. Moholkar,. "Visual Question Answering using Convolutional Neural Networks." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 1S (April 11, 2021): 170–75. http://dx.doi.org/10.17762/turcomat.v12i1s.1602.
Full textDeng, Yu Qiao, and Ge Song. "A Verifiable Visual Cryptography Scheme Using Neural Networks." Advanced Materials Research 756-759 (September 2013): 1361–65. http://dx.doi.org/10.4028/www.scientific.net/amr.756-759.1361.
Full textMerilaita, Sami. "Artificial neural networks and the study of evolution of prey coloration." Philosophical Transactions of the Royal Society B: Biological Sciences 362, no. 1479 (January 11, 2007): 421–30. http://dx.doi.org/10.1098/rstb.2006.1969.
Full textWolfrum, Philipp, and Christoph von der Malsburg. "What Is the Optimal Architecture for Visual Information Routing?" Neural Computation 19, no. 12 (December 2007): 3293–309. http://dx.doi.org/10.1162/neco.2007.19.12.3293.
Full textMedvedev, Viktor, Gintautas Dzemyda, Olga Kurasova, and Virginijus Marcinkevičius. "Efficient Data Projection for Visual Analysis of Large Data Sets Using Neural Networks." Informatica 22, no. 4 (January 1, 2011): 507–20. http://dx.doi.org/10.15388/informatica.2011.339.
Full textDissertations / Theses on the topic "Neural networks; Visual information"
Song, Yue. "Towards Multi-Scale Visual Explainability for Convolutional Neural Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281359.
Full textFörklarbarhetsmetoder försöker ta reda på visuella förklaringar till beslut om neurala nätverk. Befintliga tekniker faller huvudsakligen i två kategorier: backpropagationsbaserade metoder och okklusionsbaserade metoder. Den förra kategorin belyser selektivt de beräknade gradienterna, medan den senare slår in ingången för att maximera förvirra klassificera och visualisera de distinkta regionerna. Motiverade av ocklusionsmetoderna föreslår vi en förklarbarhetsmodell som enligt vår kunskap är det första försöket att extrahera flerskaliga förklaringar genom att störa de mellanliggande representationerna. Vidare presenterar vi två visualiseringstekniker som kan smälta multi -skala förklaringar till en enda bild och föreslå en utvärderingsmetrik för att bedöma förklaringens kvalitet. Både kvalitativa och kvantitativa experimentella resultat på flera typer av datasätt visar effektiviteten hos vår modell.
Newman, Rhys A. "Automatic learning in computer vision." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390526.
Full textMayer, Nikolaus [Verfasser], and Thomas [Akademischer Betreuer] Brox. "Synthetic training data for deep neural networks on visual correspondence tasks." Freiburg : Universität, 2020. http://d-nb.info/1216826692/34.
Full textYavari, Najib. "Few-Shot Learning with Deep Neural Networks for Visual Quality Control: Evaluations on a Production Line." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-283119.
Full textInom maskininlärning spelar tillgången till en bra och lämplig mängd data en viktig roll i framgången för djupa inlärningsalgoritmer som används för bildigenkänning. Insamling och manuell märkning av ett storskaligt dataset kräver däremot en hel del mänsklig interaktion som är mycket tidskrävande. I detta examensarbete undersöker vi möjligheterna med nya djupinlärningsmetoder som används för bildigenkänning som inte kräver ett storskaligt dataset. Eftersom Few-Shot Learning (FSL) modeller är kända för att vara den mest lovande metoden för att hantera problemet med att inte ha ett tillräckligt dataset, implementerar och analyserar vi några av de senaste modellerna baserad på FSL, såsom: Model-Agnostic Meta-Learning (MAML), PrototypicalNetworks (ProtoNet), Relation Networks (RelationNet), Baseline, och Baseline++. Dessa modeller används för att klassificera en rad olika defekta produkter för automatisering av den visuella kvalitetskontrollen i en produktionslinje. Vidare undersöks även de djupare nätverkens prestanda i jämförelse med de grundare nätverken. Experimentresultaten på det tillgängliga datasetet visar att Baseline++ modellen har bäst prestanda bland de olika modellerna. Dessutom är Baseline++ med ett sex-lagers faltningsnätverk, en relativt enkel modell att träna som inte kräver en hög beräkningskraft jämfört med de andra modellerna.
Aboudib, Ala. "Neuro-inspired Architectures for the Acquisition and Processing of Visual Information." Thesis, Télécom Bretagne, 2016. http://www.theses.fr/2016TELB0419/document.
Full textComputer vision and machine learning are two hot research topics that have witnessed major breakthroughs in recent years. Much of the advances in these domains have been the fruits of many years of research on the visual cortex and brain function. In this thesis, we focus on designing neuro-inspired architectures for processing information along three different stages of the visual cortex. At the lowest stage, we propose a neural model for the acquisition of visual signals. This model is adapted to emulating eye movements and is closely inspired by the function and the architecture of the retina and early layers of the ventral stream. On the highest stage, we address the memory problem. We focus on an existing neuro-inspired associative memory model called the Sparse Clustered Network. We propose a new information retrieval algorithm that offers more flexibility and a better performance over existing ones. Furthermore, we suggest a generic formulation within which all existing retrieval algorithms can fit. It can also be used to guide the design of new retrieval approaches in a modular fashion. On the intermediate stage, we propose a new way for dealing with the image feature correspondence problem using a neural network model. This model deploys the structure of Sparse Clustered Networks, and offers a gain in matching performance over state-of-the-art, and provides a useful insight on how neuro-inspired architectures can serve as a substrate for implementing various vision tasks
Ajamlou, Kevin, and Max Sonebäck. "Multimodal Convolutional Graph Neural Networks for Information Extraction from Visually Rich Documents." Thesis, Uppsala universitet, Avdelningen för visuell information och interaktion, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-445457.
Full textMichler, Frank [Verfasser], and Thomas [Akademischer Betreuer] Wachtler. "Self-Organization of Spiking Neural Networks for Visual Object Recognition / Frank Michler ; Betreuer: Thomas Wachtler." Marburg : Philipps-Universität Marburg, 2020. http://d-nb.info/1204199876/34.
Full textDercksen, Vincent Jasper [Verfasser]. "Visual computing techniques for the reconstruction and analysis of anatomically realistic neural networks / Vincent Jasper Dercksen." Berlin : Freie Universität Berlin, 2016. http://d-nb.info/1081935391/34.
Full textTong, Song. "Informatics Approaches for Understanding Human Facial Attractiveness Perception and Visual Attention." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/264679.
Full text新制・課程博士
博士(情報学)
甲第23398号
情博第767号
新制||情||131(附属図書館)
京都大学大学院情報学研究科知能情報学専攻
(主査)教授 熊田 孝恒, 教授 西田 眞也, 教授 齋木 潤, 准教授 延原 章平
学位規則第4条第1項該当
Doctor of Informatics
Kyoto University
DFAM
Salem, Tawfiq. "Learning to Map the Visual and Auditory World." UKnowledge, 2019. https://uknowledge.uky.edu/cs_etds/86.
Full textBooks on the topic "Neural networks; Visual information"
Information routing, correspondence finding, and object recognition in the brain. Berlin: Springer-Verlag, 2010.
Find full textVenkatesan, Ragav, and Baoxin Li. Convolutional Neural Networks in Visual Computing. Boca Raton ; London : Taylor & Francis, CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.4324/9781315154282.
Full textRosandich, Ryan G. Intelligent visual inspection: Using artificial neural networks. London: Chapman & Hall, 1997.
Find full textRosandich, Ryan G. Intelligent Visual Inspection: Using artificial neural networks. Boston, MA: Springer US, 1996.
Find full textZhang, Xiang-Sun. Neural Networks in Optimization. Boston, MA: Springer US, 2000.
Find full textInformation theoretic neural computation. New Jersey: World Scientific, 2002.
Find full textGovindaraju, R. S. Artificial Neural Networks in Hydrology. Dordrecht: Springer Netherlands, 2000.
Find full textKaynak, Okyay, Ethem Alpaydin, Erkki Oja, and Lei Xu, eds. Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44989-2.
Full textT, Roska, ed. Cellular neural networks and visual computing: Foundation and applications. Cambridge: Cambridge University Press, 2002.
Find full textT. V. S. M. olde Scheper. Chaos and information in dynamic neural networks. Oxford: Oxford Brookes University, 2002.
Find full textBook chapters on the topic "Neural networks; Visual information"
Yu, Ying, Bin Wang, and Liming Zhang. "Hebbian-Based Neural Networks for Bottom-Up Visual Attention Systems." In Neural Information Processing, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10677-4_1.
Full textTurcsany, Diana, and Andrzej Bargiela. "Learning Local Receptive Fields in Deep Belief Networks for Visual Feature Detection." In Neural Information Processing, 462–70. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12637-1_58.
Full textChen, Yanyin, Xing Chen, Huibin Tan, Xiang Zhang, Long Lan, Xuhui Huang, and Zhigang Luo. "Cross-Layer Convolutional Siamese Network for Visual Tracking." In Neural Information Processing, 146–56. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04179-3_13.
Full textLu, H. B., and Y. J. Zhang. "Detecting Abrupt Scene Change Using Neural Network." In Visual Information and Information Systems, 291–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48762-x_37.
Full textYuan, Zejian, Lei Yang, Yanyun Qu, Yuehu Liu, and Xinchun Jia. "A Boosting SVM Chain Learning for Visual Information Retrieval." In Advances in Neural Networks - ISNN 2006, 1063–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11759966_156.
Full textMallot, Hanspeter A., and Werner Von Seelen. "Why Cortices? Neural Networks for Visual Information Processing." In Visuomotor Coordination, 357–82. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-0897-1_11.
Full textNing, Xiaodong, and Lixiong Liu. "Level Set Based Online Visual Tracking via Convolutional Neural Network." In Neural Information Processing, 280–90. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70090-8_29.
Full textSjöberg, Mats, Jorma Laaksonen, Matti Pöllä, and Timo Honkela. "Retrieval of Multimedia Objects by Combining Semantic Information from Visual and Textual Descriptors." In Artificial Neural Networks – ICANN 2006, 75–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11840930_8.
Full textZhang, Jinjian, and Xiaodong Gu. "Desert Vehicle Detection Based on Adaptive Visual Attention and Neural Network." In Neural Information Processing, 376–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-42042-9_47.
Full textLi, Jie, and Yue Zhou. "Visual Saliency Based Blind Image Quality Assessment via Convolutional Neural Network." In Neural Information Processing, 550–57. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70136-3_58.
Full textConference papers on the topic "Neural networks; Visual information"
Canziani, Alfredo, and Eugenio Culurciello. "Visual attention with deep neural networks." In 2015 49th Annual Conference on Information Sciences and Systems (CISS). IEEE, 2015. http://dx.doi.org/10.1109/ciss.2015.7086900.
Full textXiao, Youping, Ravi Rao, Guilermo Cecchi, and Ehud Kaplan. "Cortical representation of information about visual attributes: one network or many?" In 2007 International Joint Conference on Neural Networks. IEEE, 2007. http://dx.doi.org/10.1109/ijcnn.2007.4371228.
Full textKoprinkova-Hristova, Petia, Simona Nedelcheva, Nadejda Bocheva, Radolsava Kraleva, Velin Kralev, Miroslava Stefanova, and Bilyana Genova. "STDP Training of Hierarchical Spike Timing Model of Visual Information Processing." In 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020. http://dx.doi.org/10.1109/ijcnn48605.2020.9207598.
Full textBelkaid, Marwen, Nicolas Cuperlier, and Philippe Gaussier. "Combining local and global visual information in context-based neurorobotic navigation." In 2016 International Joint Conference on Neural Networks (IJCNN). IEEE, 2016. http://dx.doi.org/10.1109/ijcnn.2016.7727851.
Full textRassadin, Alexandr G., and Andrey V. Savchenkov. "Compressing deep convolutional neural networks in visual emotion recognition." In Information Technology and Nanotechnology 2017. Samara University, 2017. http://dx.doi.org/10.18287/1613-0073-2017-1901-207-213.
Full textSong Ge, Peng Changgen, and Miao Xuelan. "Visual Cryptography Scheme Using Pi-sigma Neural Networks." In 2008 International Symposium on Information Science and Engineering (ISISE). IEEE, 2008. http://dx.doi.org/10.1109/isise.2008.208.
Full textDeng, Yuqiao, and Ge Song. "A Verifiable Visual Cryptography Scheme Using Neural Networks." In 2nd International Conference on Computer and Information Applications (ICCIA 2012). Paris, France: Atlantis Press, 2012. http://dx.doi.org/10.2991/iccia.2012.27.
Full textKounavis, Michael E., Joel Morrissette, Sadagopan Srinivasan, and Raj Yavatkar. "Detecting non-transient anomalies in visual information using neural networks." In 2011 IEEE Symposium on Computers and Communications (ISCC). IEEE, 2011. http://dx.doi.org/10.1109/iscc.2011.5983853.
Full textGuobao Xu, Yixin Yin, Lu Yin, Yanshuang Hao, and Zhenyu Wang. "Visual information processing using cellular neural networks for mobile robot." In 2007 IEEE International Conference on Grey Systems and Intelligent Services. IEEE, 2007. http://dx.doi.org/10.1109/gsis.2007.4443432.
Full textHou, Jen-Cheng, Syu-Siang Wang, Ying-Hui Lai, Jen-Chun Lin, Yu Tsao, Hsiu-Wen Chang, and Hsin-Min Wang. "Audio-visual speech enhancement using deep neural networks." In 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA). IEEE, 2016. http://dx.doi.org/10.1109/apsipa.2016.7820732.
Full textReports on the topic "Neural networks; Visual information"
Koch, Christof. Controlling the Flow of Visual Information through the Lateral Geniculate Nucleus: From Single Cells to Neural Networks. Fort Belvoir, VA: Defense Technical Information Center, October 1991. http://dx.doi.org/10.21236/ada250578.
Full textLevitan, Herbert. Microcomputer-Based Data Acquisition, Analysis and Control of Information Processing by Neural Networks. Fort Belvoir, VA: Defense Technical Information Center, November 1986. http://dx.doi.org/10.21236/ada177170.
Full textGrossberg, Stephen. Instrumentation for Scientific Computing in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics. Fort Belvoir, VA: Defense Technical Information Center, October 1987. http://dx.doi.org/10.21236/ada189981.
Full textLugo-Garcia, Nidza, Damien P. Kuffler, and Rosa E. Blanco. Neural Networks: Structure and Repair. Part 1. Ground Squirrel Visual System. Part 2. Formation, Maintenance and Plasticity of Synaptic Connections. Fort Belvoir, VA: Defense Technical Information Center, July 1994. http://dx.doi.org/10.21236/ada282420.
Full textArhin, Stephen, Babin Manandhar, Hamdiat Baba Adam, and Adam Gatiba. Predicting Bus Travel Times in Washington, DC Using Artificial Neural Networks (ANNs). Mineta Transportation Institute, April 2021. http://dx.doi.org/10.31979/mti.2021.1943.
Full text