Academic literature on the topic 'Neural network RBF'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Neural network RBF.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Neural network RBF"

1

FERREIRA, Aida Araújo. "Comparação de arquiteturas de redes neurais para sistemas de reconheceimento de padrões em narizes artificiais." Universidade Federal de Pernambuco, 2004. https://repositorio.ufpe.br/handle/123456789/2465.

Full text
Abstract:
Made available in DSpace on 2014-06-12T15:58:28Z (GMT). No. of bitstreams: 2 arquivo4572_1.pdf: 1149011 bytes, checksum: 92aae8f6f9b5145bfcecb94d96dbbc0b (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2004<br>Instituto Federal de Educação, Ciência e Tecnologia de Pernambuco<br>Um nariz artificial é um sistema modular composto de duas partes principais: um sistema sensor, formado de elementos que detectam odores e um sistema de reconhecimento de padrões que classifica os odores detectados. Redes neurais artificiais têm sido utilizadas como sistema de reconhecimento de padrões para narizes artificiais e vêm apresentando resultados promissores. Desde os anos 80, pesquisas para criação de narizes artificiais, que permitam detectar e classificar odores, vapores e gases automaticamente, têm tido avanços significativos. Esses equipamentos podem ser utilizados no monitoramento ambiental para controlar a qualidade do ar, na área de saúde para realizar diagnóstico de doenças e nas indústrias de alimentos para o controle de qualidade e o monitoramento de processos de produção. Esta dissertação investiga a utilização de quatro técnicas diferentes de redes neurais para criação de sistemas de reconhecimento de padrões em narizes artificiais. O trabalho está dividido em quatro partes principais: (1) introdução aos narizes artificiais, (2) redes neurais artificiais para sistema de reconhecimento de padrões, (3) métodos para medir o desempenho de sistemas de reconhecimento de padrões e comparar os resultados e (4) estudo de caso. Os dados utilizados para o estudo de caso, foram obtidos por um protótipo de nariz artificial composto por um arranjo de oito sensores de polímeros condutores, expostos a nove tipos diferentes de aguarrás. Foram adotadas as técnicas Multi-Layer Perceptron (MLP), Radial Base Function (RBF), Probabilistic Neural Network (PNN) e Time Delay Neural Network (TDNN) para criar os sistemas de reconhecimento de padrões. A técnica PNN foi investigada em detalhes, por dois motivos principais: esta técnica é indicada para realização de tarefas de classificação e seu treinamento é feito em apenas um passo, o que torna a etapa de criação dessas redes muito rápida. Os resultados foram comparados através dos valores dos erros médios de classificação utilizando o método estatístico de Teste de Hipóteses. As redes PNN correspondem a uma nova abordagem para criação de sistemas de reconhecimento de padrões de odor. Estas redes tiveram um erro médio de classificação de 1.1574% no conjunto de teste. Este foi o menor erro obtido entre todos os sistemas criados, entretanto mesmo com o menor erro médio de classificação, os testes de hipóteses mostraram que os classificadores criados com PNN não eram melhores do que os classificadores criados com a arquitetura RBF, que obtiveram um erro médio de classificação de 1.3889%. A grande vantagem de criar classificadores com a arquitetura PNN foi o pequeno tempo de treinamento dos mesmos, chegando a ser quase imediato. Porém a quantidade de nodos na camada escondida foi muito grande, o que pode ser um problema, caso o sistema criado deva ser utilizado em equipamentos com poucos recursos computacionais. Outra vantagem de criar classificadores com redes PNN é relativa à quantidade reduzida de parâmetros que devem ser analisados, neste caso apenas o parâmetro relativo à largura da função Gaussiana precisou ser investigado
APA, Harvard, Vancouver, ISO, and other styles
2

Damasceno, Nielsen Castelo. "Separa??o cega de fontes lineares e n?o lineares usando algoritmo gen?tico, redes neurais artificiais RBF e negentropia de R?nyi como medida de independ?ncia." Universidade Federal do Rio Grande do Norte, 2010. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15358.

Full text
Abstract:
Made available in DSpace on 2014-12-17T14:55:50Z (GMT). No. of bitstreams: 1 NielsenCD_DISSERT.pdf: 3425927 bytes, checksum: 2a460ebc6b49fe832a4f35b40786bc47 (MD5) Previous issue date: 2010-12-20<br>Conventional methods to solve the problem of blind source separation nonlinear, in general, using series of restrictions to obtain the solution, often leading to an imperfect separation of the original sources and high computational cost. In this paper, we propose an alternative measure of independence based on information theory and uses the tools of artificial intelligence to solve problems of blind source separation linear and nonlinear later. In the linear model applies genetic algorithms and R?nyi of negentropy as a measure of independence to find a separation matrix from linear mixtures of signals using linear form of waves, audio and images. A comparison with two types of algorithms for Independent Component Analysis widespread in the literature. Subsequently, we use the same measure of independence, as the cost function in the genetic algorithm to recover source signals were mixed by nonlinear functions from an artificial neural network of radial base type. Genetic algorithms are powerful tools for global search, and therefore well suited for use in problems of blind source separation. Tests and analysis are through computer simulations<br>Os m?todos convencionais para resolver o problema de separa??o cega de fontes n?o lineares em geral utilizam uma s?rie de restri??es ? obten??o da solu??o, levando muitas vezes a uma n?o perfeita separa??o das fontes originais e alto custo computacional. Neste trabalho, prop?e-se uma alternativa de medida de independ?ncia com base na teoria da informa??o e utilizam-se ferramentas da intelig?ncia artificial para resolver problemas de separa??o cega de fontes lineares e posteriormente n?o lineares. No modelo linear aplica-se algoritmos gen?ticos e a Negentropia de R?nyi como medida de independ?ncia para encontrar uma matriz de separa??o linear a partir de misturas lineares usando sinais de forma de ondas, ?udios e imagens. Faz-se uma compara??o com dois tipos de algoritmos de An?lise de Componentes Independentes bastante difundidos na literatura. Posteriormente, utiliza-se a mesma medida de independ?ncia como fun??o custo no algoritmo gen?tico para recuperar sinais de fontes que foram misturadas por fun??es n?o lineares a partir de uma rede neural artificial do tipo base radial. Algoritmos gen?ticos s?o poderosas ferramentas de pesquisa global e, portanto, bem adaptados para utiliza??o em problemas de separa??o cega de fontes. Os testes e as an?lises se d?o atrav?s de simula??es computacionais
APA, Harvard, Vancouver, ISO, and other styles
3

Pham, Hoang Anh. "Coordination de systèmes sous-marins autonomes basée sur une méthodologie intégrée dans un environnement Open-source." Electronic Thesis or Diss., Toulon, 2021. http://www.theses.fr/2021TOUL0020.

Full text
Abstract:
Cette thèse étudie la coordination de robots sous-marins autonomes dans le contexte d’exploration de fonds marins côtiers ou d’inspections d’installations. En recherche d’une méthodologie intégrée, nous avons créé un framework qui permet de concevoir et simuler des commandes de robots sous-marins low-cost avec différentes hypothèses de modèle de complexité croissante (linéaire, non-linéaire, et enfin non-linéaire avec des incertitudes). Sur la base de ce framework articulant plusieurs outils, nous avons étudié des algorithmes pour résoudre le problème de la mise en formation d’un essaim, puis celui de l’évitement de collisions entre robots et celui du contournement d’obstacle d’un groupe de robots sous-marins. Plus précisément, nous considérons d'abord les modèles de robot sous-marin comme des systèmes linéaires de type simple intégrateur, à partir duquel nous pouvons construire un contrôleur de mise en formation en utilisant des algorithmes de consensus et d’évitement. Nous élargissons ensuite ces algorithmes pour le modèle dynamique non linéaire d’un robot Bluerov dans un processus de conception itératif. Nous intégrons ensuite un réseau de neurones de type RBF (Radial Basis Function), déjà éprouvé en convergence et stabilité, avec le contrôleur algébrique pour pouvoir estimer et compenser des incertitudes du modèle du robot. Enfin, nous décrivons les tests de ces algorithmes sur un essaim de robots sous-marins réels BlueROV en environement Opensource de type ROS et programmés en mode autonome. Ce travail permet également de convertir un ROV téléopéré en un hybride ROV-AUV autonome. Nous présentons des résultats de simulation et des essais réels en bassin validant les concepts proposés<br>This thesis studies the coordination of autonomous underwater robots in the context of coastal seabed exploration or facility inspections. Investigating an integrated methodology, we have created a framework to design and simulate low-cost underwater robot controls with different model assumptions of increasing complexity (linear, non-linear, and finally non-linear with uncertainties). By using this framework, we have studied algorithms to solve the problem of formation control, collision avoidance between robots and obstacle avoidance of a group of underwater robots. More precisely, we first consider underwater robot models as linear systems of simple integrator type, from which we can build a formation controller using consensus and avoidance algorithms. We then extend these algorithms for the nonlinear dynamic model of a Bluerov robot in an iterative design process. Then we have integrated a Radial Basis Function neural network, already proven in convergence and stability, with the algebraic controller to estimate and compensate for uncertainties in the robot model. Finally, we have presented simulation results and real basin tests to validate the proposed concepts. This work also aims to convert a remotely operated ROV into an autonomous ROV-AUV hybrid
APA, Harvard, Vancouver, ISO, and other styles
4

Soukup, Jiří. "Metody a algoritmy pro rozpoznávání obličejů." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2008. http://www.nusl.cz/ntk/nusl-374588.

Full text
Abstract:
This work is describing basic methods of face recognition. The methods PCA, LDA, ICA, trace tranfsorm, elastic bunch graph map, genetic algorithm and neural network are described. In practical part, the PCA, PCA + RBF neural network and genetic algorithms are implemented. The RBF neural network is used in the way of clasificator and genetic algorithm is used for RBF NN training in one case and for selecting eigenvectors from PCA method in the other case. This method, PCA + GA, called EPCA, outperform other methods tested in this work on the ORL testing database.
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Junxu. "A Dynamic Parameter Tuning Algorithm For Rbf Neural Networks." Fogler Library, University of Maine, 1999. http://www.library.umaine.edu/theses/pdf/LiJ1999.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guo, Zhihao. "Intelligent multiple objective proactive routing in MANET with predictions on delay, energy, and link lifetime." online version, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=case1195705509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Medagam, Peda Vasanta Reddy. "Online optimal control for a class of nonlinear system using RBF neural networks /." Available to subscribers only, 2008. http://proquest.umi.com/pqdweb?did=1650508351&sid=19&Fmt=2&clientId=1509&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Machado, Madson Cruz. "Sintonia RNA-RBF para o Projeto Online de Sistemas de Controle Adaptativo." Universidade Federal do Maranhão, 2017. http://tedebc.ufma.br:8080/jspui/handle/tede/1744.

Full text
Abstract:
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-07-18T19:31:22Z No. of bitstreams: 1 MadsonMachado.pdf: 3046442 bytes, checksum: 71cc6800f83fdbf38b97607067653f63 (MD5)<br>Made available in DSpace on 2017-07-18T19:31:22Z (GMT). No. of bitstreams: 1 MadsonMachado.pdf: 3046442 bytes, checksum: 71cc6800f83fdbf38b97607067653f63 (MD5) Previous issue date: 2017-05-26<br>The need to increase industrial productivity coupled with quality and low cost requirements has generated a demand for the development of high performance controllers. Motivated by this demand, we presented in this work models, algorithms and a methodology for the online project of high-performance control systems. The models have characteristics of adaptability through adaptive control system architectures. The models developed were based on artificial neural networks of radial basis function type, for the online project of model reference adaptive control systems associated with the of sliding modes control. The algorithms and the embedded system developed for the online project were evaluated for tracking mobile targets, in this case, the solar radiation. The control system has the objective of keeping the surface of the photovoltaic module perpendicular to the solar radiation, in this way the energy generated by the module will be as high as possible. The process consists of a photovoltaic panel coupled in a structure that rotates around an axis parallel to the earth’s surface, positioning the panel in order to capture the highest solar radiation as function of its displacement throughout the day.<br>A necessidade de aumentar a produtividade industrial, associada com os requisitos de qualidade e baixo custo, gerou uma demanda para o desenvolvimento de controladores de alto desempenho. Motivado por esta demanda, apresentou-se neste trabalho modelos, algoritmos e uma metodologia para o projeto online de sistemas de controle de alto desempenho. Os modelos apresentam características de adaptabilidade por meio de arquiteturas de sistemas de controle adaptativo. O desenvolvimento de modelos, baseia-se em redes neurais artificiais (RNA), do tipo função de base radial (RBF, radial basis function), para o projeto online de sistemas de controle adaptativo do tipo modelo de referência associado com o controle de modos deslizantes (SMC, sliding mode control). Os algoritmos e o sistema embarcado desenvolvidos para o projeto online são avaliados para o rastreamento de alvos móveis, neste caso, o rastreamento da radiação solar. O sistema de controle tem o objetivo de manter a superfície do módulo fotovoltaico perpendicular à radiação solar, pois dessa forma a energia gerada pelo módulo será a maior possível. O processo consiste de um painel fotovoltaico acoplado em uma estrutura que gira em torno de um eixo paralelo à superfície da terra, posicionando o painel de forma a capturar a maior radiação solar em função de seu deslocamento ao longo do dia.
APA, Harvard, Vancouver, ISO, and other styles
9

Turner, Joseph Vernon. "Application of Artificial Neural Networks in Pharmacokinetics." Thesis, The University of Sydney, 2003. http://hdl.handle.net/2123/488.

Full text
Abstract:
Drug development is a long and expensive process. It is often not until potential drug candidates are administered to humans that accurate quantification of their pharmacokinetic characteristics is achieved. The goal of developing quantitative structure-pharmacokinetic relationships (QSPkRs) is to relate the molecular structure of a chemical entity with its pharmacokinetic characteristics. In this thesis artificial neural networks (ANNs) were used to construct in silico predictive QSPkRs for various pharmacokinetic parameters using different drug data sets. Drug pharmacokinetic data for all studies were taken from the literature. Information for model construction was extracted from drug molecular structure. Numerous theoretical descriptors were generated from drug structure ranging from simple constitutional and functional group counts to complex 3D quantum chemical numbers. Subsets of descriptors were selected which best modeled the target pharmacokinetic parameter(s). Using manual selective pruning, QSPkRs for physiological clearances, volumes of distribution, and fraction bound to plasma proteins were developed for a series of beta-adrenoceptor antagonists. All optimum ANN models had training and cross-validation correlations close to unity, while testing was performed with an independent set of compounds. In most cases the ANN models developed performed better than other published ANN models for the same drug data set. The ability of ANNs to develop QSPkRs with multiple target outputs was investigated for a series of cephalosporins. Multilayer perceptron ANN models were constructed for prediction of half life, volume of distribution, clearances (whole body and renal), fraction excreted in the urine, and fraction bound to plasma proteins. The optimum model was well able to differentiate compounds in a qualitative manner while quantitative predictions were mostly in agreement with observed literature values. The ability to make simultaneous predictions of important pharmacokinetic properties of a compound made this a valuable model. A radial-basis function ANN was employed to construct a quantitative structure-bioavailability relationship for a large, structurally diverse series of compounds. The optimum model contained descriptors encoding constitutional through to conformation dependent solubility characteristics. Prediction of bioavailability for the independent testing set were generally close to observed values. Furthermore, the optimum model provided a good qualitative tool for differentiating between drugs with either low or high experimental bioavailability. QSPkR models constructed with ANNs were compared with multilinear regression models. ANN models were shown to be more effective at selecting a suitable subset of descriptors to model a given pharmacokinetic parameter. They also gave more accurate predictions than multilinear regression equations. This thesis presents work which supports the use of ANNs in pharmacokinetic modeling. Successful QSPkRs were constructed using different combinations of theoretically-derived descriptors and model optimisation techniques. The results demonstrate that ANNs provide a valuable modeling tool that may be useful in drug discovery and development.
APA, Harvard, Vancouver, ISO, and other styles
10

Turner, Joseph Vernon. "Application of Artificial Neural Networks in Pharmacokinetics." University of Sydney, 2003. http://hdl.handle.net/2123/488.

Full text
Abstract:
Drug development is a long and expensive process. It is often not until potential drug candidates are administered to humans that accurate quantification of their pharmacokinetic characteristics is achieved. The goal of developing quantitative structure-pharmacokinetic relationships (QSPkRs) is to relate the molecular structure of a chemical entity with its pharmacokinetic characteristics. In this thesis artificial neural networks (ANNs) were used to construct in silico predictive QSPkRs for various pharmacokinetic parameters using different drug data sets. Drug pharmacokinetic data for all studies were taken from the literature. Information for model construction was extracted from drug molecular structure. Numerous theoretical descriptors were generated from drug structure ranging from simple constitutional and functional group counts to complex 3D quantum chemical numbers. Subsets of descriptors were selected which best modeled the target pharmacokinetic parameter(s). Using manual selective pruning, QSPkRs for physiological clearances, volumes of distribution, and fraction bound to plasma proteins were developed for a series of beta-adrenoceptor antagonists. All optimum ANN models had training and cross-validation correlations close to unity, while testing was performed with an independent set of compounds. In most cases the ANN models developed performed better than other published ANN models for the same drug data set. The ability of ANNs to develop QSPkRs with multiple target outputs was investigated for a series of cephalosporins. Multilayer perceptron ANN models were constructed for prediction of half life, volume of distribution, clearances (whole body and renal), fraction excreted in the urine, and fraction bound to plasma proteins. The optimum model was well able to differentiate compounds in a qualitative manner while quantitative predictions were mostly in agreement with observed literature values. The ability to make simultaneous predictions of important pharmacokinetic properties of a compound made this a valuable model. A radial-basis function ANN was employed to construct a quantitative structure-bioavailability relationship for a large, structurally diverse series of compounds. The optimum model contained descriptors encoding constitutional through to conformation dependent solubility characteristics. Prediction of bioavailability for the independent testing set were generally close to observed values. Furthermore, the optimum model provided a good qualitative tool for differentiating between drugs with either low or high experimental bioavailability. QSPkR models constructed with ANNs were compared with multilinear regression models. ANN models were shown to be more effective at selecting a suitable subset of descriptors to model a given pharmacokinetic parameter. They also gave more accurate predictions than multilinear regression equations. This thesis presents work which supports the use of ANNs in pharmacokinetic modeling. Successful QSPkRs were constructed using different combinations of theoretically-derived descriptors and model optimisation techniques. The results demonstrate that ANNs provide a valuable modeling tool that may be useful in drug discovery and development.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography