Dissertations / Theses on the topic 'Neural interfaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Neural interfaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Minev, Ivan Rusev. "Soft neural interfaces." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610257.
Full textPark, Seongjun. "Multifunctional fiber-based neural interfaces." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118086.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 161-174).
Neurological disorders affect up to a billion people worldwide, and their socioeconomic burden is projected to increase as the population ages. However, our ability to understand and to treat neural disorders is currently limited by the lack of tools capable of interfacing with the brain over extended periods of time. This is hypothesized to stem from the mismatch in mechanical and chemical properties between the neural probes and the neural tissues, which leads to foreign body response and functional device failure due to tissue scarring in the probe vicinity. To address the challenge, I developed fiber-based bioelectronic devices integrating diverse modalities within a single platform using thermal drawing process (TDP). All-polymer or hydrogel integrated probes with optical, electrical, and fluidic capabilities were developed all within the 100-200 [mu]m diameter, which allowed one-step surgery to the mouse brain and spinal cord for optogenetic experiments. This probe also addressed the challenge of biocompatibility and enabled the recording isolated action potentials for 3 months. In addition, I applied TPD to produce biocompatible polymer-based neural scaffold with various geometries (round, rectangular, micro-grooved) and dimensions between 50-200 [mu]m. This allowed for investigation of the enhancement of neurite growth as a function of fiber parameters. We found that the topographical features and the narrow channels generally led to enhanced growth. This thesis illustrated a variety of applications of multifunctional fiber-based devices in neuroscience and neural engineering, which anticipated to enable basic studies of the nervous system and future treatment of neurological disorders.
by Seongjun Park.
Ph. D.
Garcia, Cortadella Ramon. "High-Bandwidth Graphene Neural Interfaces." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/673787.
Full textEl funcionamiento del cerebro se basa en procesos complejos, que aún no se han descrito y comprendido detalladamente. En las últimas décadas, la neurociencia ha experimentado un desarrollo acelerado, impulsado por nuevas neurotecnologías que permiten monitorear la dinámica de la actividad eléctrica en el cerebro con una mayor resolución espacio-temporal y un área de cobertura más amplia. Sin embargo, debido a la alta complejidad de las redes neuronales en el cerebro, que están compuestas por poblaciones neuronales fuertemente interconectadas en amplias regiones cerebrales, estamos lejos de monitorear una fracción significativa de neuronas que dan lugar a funciones complejas. Con el fin de investigar las dinámica neuronales a gran escala con alta resolución espacial, se han utilizado diversas tecnologías, que incluyen la resonancia magnética funcional (fMRI), imágenes con marcadores sensibles al voltaje o registros electrofisiológicos de alto conteo de sensores. Sin embargo, la resolución temporal del fMRI y los métodos ópticos se limita típicamente a unos pocos hercios, casi tres órdenes de magnitud por debajo de la de los potenciales de acción, y se limitan a condiciones en los que el sujeto se encuentra inmóvil. Por otro lado, los registros electrofisiológicos basados en matrices de microelectrodos proporcionan una alta resolución espacio-temporal, lo que permite detectar con precisión dinámicas rápidas de cientos de neuronas individuales simultáneamente en animales que se mueven libremente. Sin embargo, las interfaces de detección neuroelectrónica presentan una limitación en el producto entre la resolución espacial y el área de cobertura. Además, presentan una baja sensibilidad en la banda de frecuencia infra-lenta (<0.5Hz), que está relacionada con la conectividad funcional de largo alcance. En esta tesis se presenta una nueva tecnología basada en sensores activos de grafeno, que permite incrementar el área de cobertura y la resolución espacial de los registros electrofisiológicos conservando una alta sensibilidad en una amplia banda de frecuencia, desde la actividad infra-lenta hasta la de una sola célula electrogénica. Este desarrollo tecnológico se divide en tres etapas principales; en primer lugar, se obtiene una comprensión más profunda de las características intrínsecas del ruido y la respuesta en frecuencia de estos sensores basándose en el estado del arte en tecnología de sensores de grafeno. En la segunda etapa, se muestra un sistema cuasi-comercial basado en matrices de sensores de grafeno epi-cortical y transmisión inalámbrica para implantación crónica en ratas. Con este sistema, se demuestra la reproducibilidad de las matrices de sensores de grafeno, su estabilidad a largo plazo y su biocompatibilidad crónica. Además, se proporciona evidencia preliminar para una amplia gama de nuevos patrones electrofisiológicos debido a su sensibilidad en la banda de frecuencia infra-lenta. Finalmente, en la última etapa de esta tesis, el enfoque se centra en el desarrollo de nuevas estrategias de multiplexación para aumentar el número de sensores en las sondas neuronales. Estas tres etapas principales de desarrollo han llevado a la demostración del potencial de las matrices de sensores de grafeno multiplexados para el mapeado de las dinámicas neuronales a gran escala en una amplia banda de frecuencia en animales que se mueven libremente durante largos períodos. La combinación de estas capacidades hace que las matrices de sensores activos de grafeno sean una tecnología prometedora para interfaces cerebro-ordenador de alto ancho de banda y una herramienta única para investigar el papel de la actividad infra-lenta en la coordinación de las dinámicas neuronales de alta frecuencia.
Brain function is based on highly complex processes, which remain yet to be described and understood in detail. In the last decades, neuroscience has experienced an accelerated development, prompted by novel neurotechnologies that allow monitoring the dynamics of electrical activity in the brain with a higher spatio-temporal resolution and wider coverage area. However, due to the high complexity of neural networks in the brain, which are composed of strongly interconnected neural populations across large brain regions, we are far from monitoring a significant fraction of neurons mediating complex functions. In order to investigate large-scale brain dynamics with high spatial resolution several technologies have been extensively used, including functional magnetic resonance imaging (fMRI), voltage-sensitive dye imaging or high sensor-count electrophysiological recordings. However, the temporal resolution of fMRI and optical methods is typically limited to few hertz, almost three orders of magnitude below that of action potentials, and are limited to head-fixed conditions. On the other hand, electrophysiological recordings based on micro-electrode arrays provide a high spatio-temporal resolution, allowing to accurately detect fast dynamics from hundreds of individual neurons simultaneously in freely moving animals. However, neuroelectronic sensing interfaces present a trade-off between spatial resolution and coverage area. Moreover, they present a poor sensitivity in the infra-slow frequency band ($<0.5$\,$Hz$), which is related to long-range functional connectivity. In this thesis, a novel technology based on graphene active sensors is presented, which allows to increase the coverage area and spatial resolution of electrophysiological recordings while preserving a high sensitivity in a wide frequency band, from infra-slow to single electrogenic cell activity. This technological development is divided into three main stages; first, a deeper understanding of the intrinsic noise characteristics and frequency response of these sensors is obtained by building on prior graphene sensor technology. In the second stage, a quasi-commercial system based on epi-cortical graphene sensor arrays and a wireless headstage for chronic implantation in rats is shown. Using this system, the reproducibility of the graphene sensor arrays, their long-term stability and their chronic biocompatibility are demonstrated. Furthermore, preliminary evidence is provided for a wide range of novel electrophysiological patterns owing to their sensitivity in the infra-slow frequency band. Finally, in the last stage of this thesis, the focus is centred on the development of new multiplexing strategies to upscale the number of sensors on the neural probes. These three main development stages have led to the demonstration of the potential of multiplexed graphene sensor arrays for mapping of large-scale brain dynamics in a wide frequency band in freely moving animals over long periods. The combination of these capabilities makes graphene active sensor arrays a promising technology for high bandwidth brain computer interfaces and a unique tool to investigate the role of infra-slow activity on the coordination of higher frequency brain dynamics.
Universitat Autònoma de Barcelona. Programa de Doctorat en Enginyeria Electrònica i de Telecomunicació
Barrett, Richard. "Novel processing routes for neural interfaces." Thesis, University of Birmingham, 2014. http://etheses.bham.ac.uk//id/eprint/5137/.
Full textWatterson, William James. "Fractal Interfaces for Stimulating and Recording Neural Implants." Thesis, University of Oregon, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10636408.
Full textFrom investigating movement in an insect to deciphering cognition in a human brain to treating Parkinson's disease, hearing loss, or even blindness, electronic implants are an essential tool for understanding the brain and treating neural diseases. Currently, the stimulating and recording resolution of these implants remains low. For instance, they can record all the neuron activity associated with movement in an insect, but are quite far from recording, at an individual neuron resolution, the large volumes of brain tissue associated with cognition. Likewise, there is remarkable success in the cochlear implant restoring hearing due to the relatively simple anatomy of the auditory nerves, but are failing to restore vision to the blind due to poor signal fidelity and transmission in stimulating the more complex anatomy of the visual nerves. The critically important research needed to improve the resolution of these implants is to optimize the neuron-electrode interface. This thesis explores geometrical and material modifications to both stimulating and recording electrodes which can improve the neuron-electrode interface. First, we introduce a fractal electrode geometry which radically improves the restored visual acuity achieved by retinal implants and leads to safe, long-term operation of the implant. Next, we demonstrate excellent neuron survival and neurite outgrowth on carbon nanotube electrodes, thus providing a safe biomaterial which forms a strong connection between the electrode and neurons. Additional preliminary evidence suggests carbon nanotubes patterned into a fractal geometry will provide further benefits in improving the electrode-neuron interface. Finally, we propose a novel implant based off field effect transistor technology which utilizes an interconnecting fractal network of semiconducting carbon nanotubes to record from thousands of neurons simutaneously at an individual neuron resolution. Taken together, these improvements have the potential to radically improve our understanding of the brain and our ability to restore function to patients of neural diseases.
Tringides, Christina M. (Christina Myra). "Materials selection and processing for reliable neural interfaces." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98667.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 48-50).
The understanding of the brain would be revolutionized by a tool that can measure intra- and extra-cellular electrical potentials on a parallelized scale, without disrupting the neural physiology. Existing technologies do not sufficiently carry out these functions. Using a thermal drawing process (TDP), multimaterial fibers comprised of polymer-metal composites can be fabricated to create flexible, microelectrode arrays. These fibers can be further processed after the TDP, using selective etching to reduce the diameter of the probe. These devices have been implanted and have been used to record neural activity in vivo while evoking minimal tissue response. Additionally, electrodeposition of biocompatible metals onto the fiber-electrode tips can be implemented to increase the signal-to-noise ratio (SNR). Here, I describe the electroplating of gold onto the fiber-tips of tin and tin-indium electrodes, which were drawn using TDP. By adjusting the electrodeposition conditions, the electrode tip geometries can be tuned to optimize the interface between the device tips and neuronal membranes.
by Christina M. Tringides.
S.B.
Watterson, William. "Fractal Interfaces for Stimulating and Recording Neural Implants." Thesis, University of Oregon, 2018. http://hdl.handle.net/1794/23169.
Full textBonaccini, Calia Andrea. "Graphene field-effect transistors as flexible neural interfaces for intracortical electrophysiology." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/671635.
Full textEn los últimos años se han producido nuevos desarrollos tecnológicos en el campo de los implantes neuronales para aplicaciones médicas. La comprensión del cerebro humano se considera uno de los mayores desafíos científicos de nuestro tiempo; como consecuencia, estamos siendo testigos de una intensificación de la investigación en el desarrollo de las interfaces cerebro-máquina (IMC) para leer y estimular la actividad cerebral. No obstante, los implantes neuronales actualmente disponibles ofrecen una eficacia clínica modesta, en parte debido a las limitaciones que plantea la invasividad de los materiales. Esos materiales comprometen la resolución de la interfaz, el rendimiento y la estabilidad a largo plazo de los implantes neurales. El desarrollo de una electrónica flexible que utilice materiales biocompatibles es clave para la realización de implantes neuronales mínimamente invasivos que puedan implantarse de forma crónica. Un campo de investigación muy prometedor es el uso de materiales bidimensionales, como el grafeno, para aplicaciones bioelectrónicas. El transistor de efecto de campo en solución de grafeno (gSGFET) es una de dichas nuevas tecnologías neurales emergentes. Estos dispositivos pueden superar las limitaciones mencionadas anteriormente gracias a las extraordinarias propiedades del grafeno, como su alta flexibilidad mecánica, estabilidad electroquímica, biocompatibilidad y sensibilidad. En esta tesis doctoral, se han fabricado matrices de gSGFET y se han optimizado iterativamente en términos de sensibilidad y relación señal/ruido, adoptando métodos de microfabricación a escala de oblea. Se ha caracterizado el ruido 1/f en los gSGFETs y optimizado haciendo un tratamiento UVO en la interfaz metal/grafeno y desacoplando el canal de grafeno del sustrato utilizando diferentes nanomateriales como la encapsulación con nitruro de boro hexagonal (hBN), monocapas autoensambladas y bicapas de grafeno. Además, se han fabricado con éxito sondas neurales epicorticales e intracorticales flexibles con matrices de gSGFET y se han utilizado durante las medidas de microelectrocorticografía in vivo en roedores. Se han insertado dispositivos intracorticales flexibles en el cerebro utilizando un protocolo de refuerzo de la capa posterior de los dispositivos con proteína de fibroína de seda biorresistente. Los resultados presentados en esta tesis demuestran la superior resolución espacio-temporal de los gSGFET en comparación con la tecnología estándar de microelectrodos; en particular, referente a la capacidad de mapear con alta fidelidad, la actividad de muy baja frecuencia (ISA, < 0,1 Hz) junto con las señales en el típico ancho de banda LFP. Hoy en día se sabe que la actividad cerebral de muy baja frecuencia, contribuye a la fisiopatología de varios trastornos neurológicos como el derrame cerebral, la lesión cerebral traumática, la migraña y la epilepsia. Sin embargo, esta actividad rara vez se registra debido a las limitaciones técnicas intrínsecas de los electrodos convencionales acoplados a la CA. Se han obtenido registros con sondas neuronales de profundidad de grafeno (gDNP) en modelos animales de epilepsia. Se detectó ISA a través de diferentes capas corticales y regiones subcorticales, registrando simultáneamente la actividad epiléptica en bandas de frecuencia más convencionales (1-600Hz). Además, se ha demostrado también la evaluación de la estabilidad y funcionalidad en registros crónicos, así como la biocompatibilidad del gDNP. La tecnología bioelectrónica basada en el grafeno aquí descrita tiene el potencial de convertirse en una herramienta de referencia para la electrofisiología de ancho de banda completo. Se prevé que esta tecnología tenga un gran impacto en una comunidad amplia y multidisciplinaria que incluya investigadores en neurotecnología, ingenieros biomédicos, neurocientíficos que estudien la dinámica cortical de banda ancha asociada con el comportamiento espontáneo y/o los estados cerebrales, así como investigadores clínicos interesados en la actividad de baja frecuencia en la epilepsia, los accidentes cerebrovasculares y la migraña.
Recent years have witnessed novel technology developments of neural implants for medical applications which are expected to pave the way to unveil functionalities of the central nervous system. Understanding the human brain is commonly considered one of the biggest scientific challenges of our time; as a consequence, we are witnessing an intensified research in the development of brain-machine-interfaces (BMIs), which would allow us to both read and stimulate brain activity. Nevertheless, currently available neural implants offer a modest clinical efficacy, partly due to the limitations posed by the invasiveness of the implants materials and technology and by the metals used at the electrical interface with the tissue. Such materials compromise the interfacing resolution, the performance and the long term stability of neural implants. Development of flexible electronics using biocompatible materials is key for the realisation of minimally invasive neural implants, which can be chronically implanted without causing rejection from the immune system. A relatively young yet very promising research field, that is increasingly drawing attention is the use of two dimensional materials, such as graphene, for bioelectronic applications. Graphene solution-gated field effect transistor (gSGFET) is one of several emerging new neural technologies. These devices can overcome the above-mentioned limitations thanks to the outstanding properties of graphene, such as mechanical flexibility, electrochemical inertness, biocompatibility and high sensitivity. In this PhD thesis, arrays of gSGFETs have been fabricated and iteratively optimized in terms of sensitivity and signal-to-noise ratio, adopting wafer-scale micro-fabrication methods. The 1/f noise in gSGFETs has been characterised and the optimisation of both, contact and channel noises was achieved by UVO-treatment at the metal/graphene interface, as well as by decoupling the graphene channel from the substrate, using different nanomaterials such as graphene encapsulation with hexagonal boron nitride (hBN), self assembled monolayers and double transferred graphene. Moreover, flexible and ultra-thin epicortical and intracortical neural probes, containing arrays of gSGFETs, have been successfully fabricated and used during in vivo microelectrocorticography recordings in anaesthesized and awake rodents. Flexible intracortical devices were inserted into the brain using a back-coating stiffening protocol with bioresobable silk fibroin protein, developed during this PhD thesis. The results presented in this PhD demonstrate the superior spatio-temporal resolution of gSGFETs compared to standard microelectordes technology; particularly the ability to map with high fidelity, infraslow activity (ISA, < 0.1 Hz) together with signals in the typical local field potential bandwidth. Today it is known that infraslow brain activity, including spreading depolarisations, contribute to the pathophysiology of several neurological disorders such as stroke, traumatic brain injury, migraine and epilepsy. However, this activity is seldom recorded due to intrinsic technical limitations of conventional AC-coupled electrodes. To demonstrate the usefulness of the developed flexible gSGFET arrays technology, recordings have been obtained with multichannel flexible graphene depth neural probes (gDNP) in relevant awake animal models of seizures and established epilepsy. ISA was detected and mapped through different cortical layers and subcortical regions, whilst simultaneously recording epileptiform activity in more conventional frequency bands (1-600Hz). Furthermore, the assessment of the long term recording stability and functionality, as well as biocompatibility of the gDNP has also been demonstrated as part of this thesis. The graphene based bioelectronic technology here described has the potential to become a gold standard tool for full bandwidth electrophysiology. This technology is envisioned to have a great impact on a broad and multidisciplinary community including neurotechnology researchers, biomedical engineers, neuroscientists studying wide-band cortical dynamics associated with spontaneous behaviour and/or brain states, as well as clinical researchers interested in the role of infraslow activity in epilepsy, stroke and migraine.
Richards, Stephen M. "End-user interfaces to electronic books." Thesis, Teesside University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358404.
Full textValdar, William Seth Jermy. "Residue conservation in the prediction of protein-protein interfaces." Thesis, University College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246927.
Full textTan, Daniel. "Restoring Sensation in Human Upper Extremity Amputees using Chronic Peripheral Nerve Interfaces." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1405070015.
Full textAsplund, Maria. "Conjugated Polymers for Neural Interfaces : Prospects, possibilities and future challenges." Doctoral thesis, Stockholm : Teknik och hälsa, Technology and Health, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9817.
Full textMeeker, Daniella Elena Patricia Burdick Joel Wakeman. "Cognitive neural prosthetics : brain machine interfaces based in parietal cortex /." Diss., Pasadena, Calif. : California Institute of Technology, 2005. http://resolver.caltech.edu/CaltechETD:etd-06032005-170438.
Full textRezaei, Masoud. "Multimodal implantable neural interfacing microsystem." Doctoral thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/36437.
Full textStudying brain functionality to help patients suffering from neurological diseases needs fully implantable brain interface to enable access to neural activities as well as read and analyze them. In this thesis, ultra-low power implantable brain-machine-interfaces (BMIs) that are based on several innovations on circuits and systems are studied for use in neural recording applications. Such a system is intended to collect information on neural activity emitted by several hundreds of neurons, while activating them on demand using actuating means like electro- and/or photo-stimulation. Such a system must provide several recording channels, while consuming very low energy, and have an extremely small size for safety and biocompatibility. Typically, a brain interfacing microsystem includes several building blocks, such as an analog front-end (AFE), an analog-to-digital converter (ADC), digital signal processing modules, and a wireless data transceiver. A BMI extracts neural signals from noise, digitizes them, and transmits them to a base station without interfering with the natural behavior of the subject. This thesis focuses on ultra-low power front-ends to be utilized in a BMI, and presents front-ends with several innovative strategies to consume less power, while enabling high-resolution and high-quality of data. First, we present a new front-end structure using a current-reuse scheme. This structure is scalable to huge numbers of recording channels, owing to its small implementation silicon area and its low power consumption. The proposed current-reuse AFE, which includes a low-noise amplifier (LNA) and a programmable gain amplifier (PGA), employs a new fully differential current-mirror topology using fewer transistors. This is an improvement over several design parameters, in terms of power consumption and noise, over previous current-reuse amplifier circuit implementations. In the second part of this thesis, we propose a new multi-channel sigma-delta converter that converts several channels independently using a single op-amp and several charge storage capacitors. Compared to conventional techniques, this method applies a new interleaved multiplexing scheme, which does not need any reset phase for the integrator while it switches to a new channel; this enhances its resolution. When the chip area is not a priority, other approaches can be more attractive, and we propose a new power-efficient strategy based on a new in-channel ultra-low power sigma-delta converter designed to decrease further power consumption. This new converter uses a low-voltage architecture based on an innovative feed-forward topology that minimizes the nonlinearity associated with low-voltage supply.
Klüber, Viktor. "Development of a BCI based on real-time neural source localization." Master's thesis, Pontificia Universidad Católica del Perú, 2016. http://tesis.pucp.edu.pe/repositorio/handle/123456789/9519.
Full textTesis
Gandhi, Vaibhav Sudhir. "Quantum neural network based EEG filtering and adaptive brain-robot interfaces." Thesis, Ulster University, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.573092.
Full textHess, Allison Elizabeth. "Integration of Process-Incompatible Materials for Microfabricated Polymer-Based Neural Interfaces." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1301687079.
Full textNoblía, Matilda. "Automatic Anomaly Detection in Graphical User Interfaces Using Deep Neural Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264457.
Full textAutomatisk detektering av kodfel är standard i kvalitetsarbetet som utförs vid mjukvaruveckling. Grafiska fel som kan uppstå i användargränssnitt upptäcks dock ofta manuellt. Den här rapporten undersöker ifall djupa neurala nätverk kan användas för att automatiskt detektera två vanliga fel som uppstår i användargränssnitt. Resultaten indikerar att så är fallet åtminstone för det specifika dataset som används.
Green, Rylie Adelle Graduate School of Biomedical Engineering Faculty of Engineering UNSW. "Conducting polymers for neural interfaces: impact of physico-chemical properties on biological performance." Publisher:University of New South Wales. Graduate School of Biomedical Engineering, 2009. http://handle.unsw.edu.au/1959.4/43337.
Full textNyberg, Tobias. "Nano and micro patterned organic devices : from neural interfaces to optoelectronic devices /." Linköping : Univ, 2002. http://www.bibl.liu.se/liupubl/disp/disp2002/tek750s.pdf.
Full textVomero, Maria [Verfasser]. "Development and Assessment of Ultra-Compliant Polyimide-Based Neural Interfaces / Maria Vomero." München : Verlag Dr. Hut, 2019. http://d-nb.info/1200754565/34.
Full textWattanapanitch, Woradorn. "An ultra low power implantable neural recording system for brain-machine interfaces." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/66472.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 179-187).
In the past few decades, direct recordings from different areas of the brain have enabled scientists to gradually understand and unlock the secrets of neural coding. This scientific advancement has shown great promise for successful development of practical brain-machine interfaces (BMIs) to restore lost body functions to patients with disorders in the central nervous system. Practical BMIs require the uses of implantable wireless neural recording systems to record and process neural signals, before transmitting neural information wirelessly to an external device, while avoiding the risk of infection due to through-skin connections. The implantability requirement poses major constraints on the size and total power consumption of the neural recording system. This thesis presents the design of an ultra-low-power implantable wireless neural recording system for use in brain-machine interfaces. The system is capable of amplifying and digitizing neural signals from 32 recording electrodes, and processing the digitized neural data before transmitting the neural information wirelessly to a receiver at a data rate of 2.5 Mbps. By combining state-of-the-art custom ASICs, a commercially-available FPGA, and discrete components, the system achieves excellent energy efficiency, while still offering design flexibility during the system development phase. The system's power consumption of 6.4 mW from a 3.6-V supply at a wireless output data rate of 2.5 Mbps makes it the most energy-efficient implantable wireless neural recording system reported to date. The system is integrated on a flexible PCB platform with dimensions of 1.8 cm x 5.6 cm and is designed to be powered by an implantable Li-ion battery. As part of this thesis, I describe the design of low-power integrated circuits (ICs) for amplification and digitization of the neural signals, including a neural amplifier and a 32-channel neural recording IC. Low-power low-noise design techniques are utilized in the design of the neural amplifier such that it achieves a noise efficiency factor (NEF) of 2.67, which is close to the theoretical limit determined by physics. The neural recording IC consists of neural amplifiers, analog multiplexers, ADCs, serial programming interfaces, and a digital processing unit. It can amplify and digitize neural signals from 32 recording electrodes, with a sampling rate of 31.25 kS/s per channel, and send the digitized data off-chip for further processing. The IC was successfully tested in an in-vivo wireless recording experiment from a behaving primate with an average power dissipation per channel of 10.1 [mu]W. Such a system is also widely useful in implantable brain-machine interfaces for the blind and paralyzed, and in cochlea implants for the deaf.
by Woradorn Wattanapanitch.
Ph.D.
Bernardin, Evans K. "Demonstration of Monolithic-Silicon Carbide (SiC) Neural Devices." Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7474.
Full textWharin, Caitlin. "Using neural reconfiguration to improve decode performance for use in brain machine interfaces." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110426.
Full textPour développer une prothèse neurale basée sur la cognition qui aiderait les patients souffrant de dysfonction moteur, nous devons être capable de décoder les intentions de mouvements des patients à partir de leur activité cérébrale. Des matrices de microélectrodes sont fréquemment employées pour échantillonner l'activité des neurones. Un défi auquel font habituellement face les chercheurs, lorsqu'ils utilisent des matrices de microélectrode, est que seul un petit ensemble de neurones peut être isolé et échantillonné adéquatement. De plus, ces neurones ont tendance à surreprésenter certaine région de l'espace et à présenter un manque dans la représentation des autres. Il y a donc un biais dans la représentation de l'espace dans lequel s'effectue normalement les mouvements. Plusieurs études réalisées sur des expériences impliquant des interfaces cerveau-machine (ICM) ont rapporté que l'activité des neurones des sujets entreprend une réorganisation fonctionnelle, suite aux contraintes imposées par l'ICM. Dans cette étude, nous avons testé l'hypothèse selon laquelle nous pourrions utiliser la récompense pour, non seulement induire activement une reconfiguration de l'activité, mais aussi pour guider la réorganisation fonctionnelle de façon à ce qu'elle résulte en une augmentation de la quantité d'information qui peut être extraite d'une population de neurones. Pour ce faire, nous avons échantillonné l'activité des neurones du cortex pariétal et de l'aire pré-moteur d'un macaque Rhésus en y implantant 96 électrodes. Nous avons conçu une tâche de contrôle par la pensé dans laquelle un décodeur Bayesien adaptatif utilise l'activité des neurones pour prédire les intentions de mouvement du bras du singe. Lors des essais fructueux, le singe a été récompensé par du jus. Au cours d'un essai, une indication visuelle délivrée en temps réel informait le singe de la performance du décodeur à déduire ses intentions. La performance du décodeur fixait la quantité de jus donnée au singe en récompense. Nos résultats démontrent que les performances du décodeur ont augmenté au cours du déroulement de l'expérience en même temps que les changements dans l'activité des neurones ont entraîné une représentation plus uniforme de l'espace. Ces résultats suggèrent que la récompense peut-être utilisée pour induire des changements dans l'activité des neurones qui améliore les performances d'un décodeur en augmentant la quantité d'information qui peut-être extraite de l'activité cérébrale.
Twardowski, Michael D. "Deriving Motor Unit-based Control Signals for Multi-Degree-of-Freedom Neural Interfaces." Digital WPI, 2020. https://digitalcommons.wpi.edu/etd-dissertations/601.
Full textWright, John A. Tai Yu-Chong. "Through-wafer 3-D micromachining and its applications for neural interfaces and microrelays /." Diss., Pasadena, Calif. : California Institute of Technology, 1999. http://resolver.caltech.edu/CaltechETD:etd-11092006-110012.
Full textSchaefer, Nathan. "High-density cortical implant for brain-machine interfaces based on two-dimensional materials." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/672514.
Full textEl descubrimiento experimental del grafeno en 2004 marcó el nacimiento de un nuevo campo de investigación basado en materiales bidimensionales, investigando sus propiedades para aplicaciones en electrónica, fotónica y optoelectrónica y, recientemente, también en tecnología biomédica. El transistor de puerta liquida basado en grafeno (gSGFET) es uno de los dispositivos de detección emergentes que utilizan materiales delgados, y que ha demostrado un gran potencial para las interfaces cerebro-máquina (BMIs), ya que es capaz de registrar con alta precisión la actividad neuronal. Históricamente, se han utilizado electrodos para tal aplicación, ya que son fáciles de fabricar y las señales grabadas se pueden adquirir usando técnicas simples de lectura. En los últimos años, sin embargo, se descubrió que el uso de sensores con un diseño de transistor es beneficioso para aplicaciones específicas, ya que también son capaces de registrar la actividad oscilatoria lenta, que todavía está en su mayoría inexplorada. Además, los transistores permiten construir matrices de sensores con una gran cantidad de sitios de grabación, ya que, a diferencia de los electrodos, no es necesario combinarlos con componentes electrónicos adicionales para permitir esquemas de direccionamiento sofisticados, lo que alivia en gran medida la complejidad tecnológica de fabricar estas matrices. El alto ruido intrínseco del sensor sigue siendo un problema crítico en electrofisiología debido a la pequeña amplitud de las señales neuronales en la superficie de la corteza. La naturaleza geométrica del grafeno y otros materiales bidimensionales los expone a influencias degradantes de su entorno y dificulta la creación de interfaces de alta calidad con dichos materiales. Esto conduce, por ejemplo, a un aumento de ruido de baja frecuencia en el gSGFET que contamina la banda de frecuencia de interés para los registros neuronales. Por lo tanto, como un primer paso hacia el desarrollo de una matriz de sensores neurales de alta calidad, en el capítulo 3 se exploran las mejoras tecnológicas que permiten reducir dicho ruido intrínseco del dispositivo. A continuación, se describe la fabricación y caracterización en sustrato flexible de matrices de sensores neurales de alta densidad, hasta 1000 gSGFET sensores. Dado que el tamaño del conector en aumenta directamente con el número de sensores, este impone restricciones en el recuento y en la densidad de los sitios de grabación que se pueden lograr en la matriz. De esta forma, los esquemas de lectura multiplexados compatibles con la tecnología gSGFET son de vital importancia. La multiplexación permite la combinación de múltiples flujos de información en una sola señal y, por lo tanto, permitiría superar las limitaciones de conectividad de las BMIs actuales. Más concretamente, en el capítulo 4 se presenta la compatibilidad de la tecnología gSGFET con los dos esquemas más comunes de lectura de datos multiplexados, la multiplexación por división de frecuencia y por división de tiempo. En última instancia, en el capítulo 5 se explora la integración monolítica de circuitos de direccionamiento en la matriz de sensores flexibles, ya que esto evitaría el acoplamiento entre sitios que puede degradar severamente la fidelidad de la señal grabada en grandes conjuntos de sensores multiplexados. Para este propósito, se sugiere el uso los materiales de “transition-metal-dichalcogenides” de dos dimensiones (por ejemplo, MoS2), ya que combinan la flexibilidad mecánica con una banda prohibida amplia, necesaria para obtener transistores de efecto de campo con altas relaciones encendido/apagado. Un conjunto de sensores híbridos gSGFET / MoS2-FET con funcionalidad de lectura multiplexada se presenta como un primer prototipo hacia una nueva generación de BMIs y se presenta una hoja de ruta para la ampliación de la tecnología.
The experimental discovery of graphene in 2004 marked the advent of a new research field based on two-dimensional materials, investigating their properties for applications in electronics, photonics and optoelectronics and, recently, also biomedical technology. Neurotechnology in particular, is a subject which could strongly benefit from these new materials, as their mechanical and chemical nature allow them to form a stable, conformable interface with the brain. The graphene solution-gated field-effect transistor (gSGFET) is one of several emerging sensing devices utilizing thin materials, and has shown great potential for brain-machine interfaces (BMIs), as it is able to record neural activity with high accuracy. Historically electrodes have been favored for such application, as they are easy to fabricate and the recorded signals can be acquired using simple read-out techniques. In recent years, however, the use of sensors with a transistor design was found to be beneficial for specific applications as they also unveil slow oscillatory activity, which is yet mostly unexplored. Moreover, transistors allow to construct sensor arrays with a large number of recording sites, since in contrary to electrodes they do not need to be combined with additional electronic components to enable sophisticated addressing schemes, thus strongly easing the technologic complexity of fabricating these arrays. High intrinsic sensor noise remains a critical issue in electrophysiology due to the small amplitude of neural signals on the surface of the cortex. The geometric nature of graphene and other two-dimensional materials exposes them to degrading influences from their surroundings and makes it challenging to create high-quality interfaces with such materials. This leads to, for example, augmented low-frequency noise in the gSGFET which contaminates the frequency band of interest for neural recordings. Thus, as a first step towards the development of a high quality neural sensor array, technological improvements which allow to lower such intrinsic device noise are explored in chapter 3. Next, the fabrication and characterization of high-density neural sensor arrays of above 1000 gSGFET sensors on flexible substrate is described. As a rapidly increasing size of the connector footprint with the number of sensors poses restrictions on the count and the density of recording sites achievable on the array, the compatibility of the gSGFET technology with multiplexed readout schemes is of critical importance. Multiplexing enable the combination of multiples streams of information into a single signal and would thereby allow to overcome connectivity limitations of the state-of-the-art BMIs. More concretely, the compatibility of the gSGFET technology with the two most common schemes of multiplexed data readout, namely frequency-division and time-division multiplexing, is presented in chapter 4. Ultimately, a monolithic integration of addressing circuitry into the flexible sensor array is explored in chapter 5, as this would prevent inter-site crosstalk which can severely degrade the fidelity of the recorded signal in large multiplexed sensor arrays. Two-dimension transition-metal-dichalcogenides (e.g. MoS2) are suggested for this purpose, as they combine mechanical flexibility with a wide bandgap necessary for building field-effect transistors with high on/off-ratios. A hybrid gSGFET/MoS2-FET sensor array with multiplexed readout functionality is showcased as a first prototype towards a new generation of BMIs and a roadmap for the technology's scale-up is presented.
Universitat Autònoma de Barcelona. Programa de Doctorat en Enginyeria Electrònica i de Telecomunicació
Matthews, Brett Alexander. "Probabilistic modeling of neural data for analysis and synthesis of speech." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/50116.
Full textNarasimhan, Seetharam. "Ultralow-Power and Robust Implantable Neural Interfaces: An Algorithm-Architecture-Circuit Co-Design Approach." Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1333743306.
Full textJehenne, Béryl. "Hybrid biophysical model of invasive electrical neural recordings : focus on chronic implants in the peripheral nervous system." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCB112.
Full textNeural interfaces are becoming a newly dynamic and promising field especially thanks to the numerous applications they could have in the biomedical domain. A great deal of these applications requires a monitoring of targeted neural activity. Among the different technologies available for such recording practice, chronic electrodes implanted in the peripheral nervous system offer a good compromise on the resolution versus invasiveness technological constraint. A large array of electrodes has been developed in this intention but there is still only a limited comprehension of their recording principles and weakness. This makes difficult any targeted improvement of the electrodes and led this field to be mainly dominated by a trial and error empirical approach simultaneously costly in funds, animal lives and time. In particular, intrafascicular electrodes, while providing exiting results for stimulation, have often failed in recordings. These electrodes typically show interesting recording performance right after implantation but have rapid decline of their efficacy up to the points that they often become useless after a few weeks. Such performance proves problematic as they drastically limit the transfer of experimental results to human applications. The extent of our work has been the development of a theoretical framework for the study of implantable electrodes. Our goal here has been to construct a model that could be used as a platform to better understand implanted electrode and compare their performance and possible improvement. We focused our work on intrafascicular electrode for the peripheral nervous system. However, our procedure could easily be applied to other type of interface. During this project we first constructed a detailed model of the recording biophysical process happening at the peripheral nerve electrical interface. This model encompasses all the mechanism known to influence the quality and shape of neural activity recordings. We have then recreated within our model specific controlled experiments and by comparing the properties of the simulated recording with their experimental counterparts demonstrated the potency of our approach to produce bio-plausible signals. This validated our model as an in silico alternative to compare and test electrodes. We then further developed this model to also simulate some of the changes happening in the nerve post implantation. In particular, we found that the growth of the fibrotic scar could already explain a large part of the signal degradation happening in the first weeks. Then to demonstrate the adaptability of this model we used it to compare the performance of the main type of electrodes implanted nowadays peripherally. Finally, as the main weakness of our model relied in its relative complexity and the related long computing time, we started to analyze how this model could be simplified without losing the precision necessary for the intended applications. In conclusion, this project led to the creation of a model which in its current form can be used as an in silico platform to test and compare electrodes. This will facilitate the planning and development of future peripheral neural interface by proving both more economical and informative that current strategies. Conjointly, we opened the way to future improvement of our model, leading to more practicality
Piazentin, Denis Renato de Moraes. "Conjuntos K de redes neurais e sua aplicação na classificação de imagética motora." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-10022015-203830/.
Full textThis dissertation aims to examine the K-sets, a hierarchy of biologically plausible neural networks, and apply them to the problem of motor imagery classification through electroencephalogram (EEG). Motor imagery is the act of processing a motor movement from long-term to short-term memory. Motor imagery leaves a trail in the EEG signal, which makes possible the identification and classification of different motor movements. Motor imagery classification is a complex problem due to non-linearity of the EEG time series, low signal-to-noise ratio, and the small amount of data typically available for learning. K-sets are a connectionist model that simulates the dynamic and chaotic behavior of populations of neurons in the brain, modeled based on observations of the olfactory system by Walter Freeman. K-sets have already been used in several different classification domains, including EEG, showing good results. Due to the characteristics of motor imagery classification, a hypothesis that the application of K-sets in the task could provide good results was raised. A simulator for K-sets was created for the experiments. Unfortunately, the hypothesis could not be validated, as the results of the conducted experiments with K-sets and motor imagery showed no significant improvements in comparison in the task performed.
Araujo, Carlos Eduardo de. "Implante neural controlado em malha fechada." Universidade Tecnológica Federal do Paraná, 2015. http://repositorio.utfpr.edu.br/jspui/handle/1/1687.
Full textOne of the challenges to biomedical engineers proposed by researchers in neuroscience is brain machine interaction. The nervous system communicates by interpreting electrochemical signals, and implantable circuits make decisions in order to interact with the biological environment. It is well known that Parkinson’s disease is related to a deficit of dopamine (DA). Different methods has been employed to control dopamine concentration like magnetic or electrical stimulators or drugs. In this work was automatically controlled the neurotransmitter concentration since this is not currently employed. To do that, four systems were designed and developed: deep brain stimulation (DBS), transmagnetic stimulation (TMS), Infusion Pump Control (IPC) for drug delivery, and fast scan cyclic voltammetry (FSCV) (sensing circuits which detect varying concentrations of neurotransmitters like dopamine caused by these stimulations). Some softwares also were developed for data display and analysis in synchronously with current events in the experiments. This allowed the use of infusion pumps and their flexibility is such that DBS or TMS can be used in single mode and other stimulation techniques and combinations like lights, sounds, etc. The developed system allows to control automatically the concentration of DA. The resolution of the system is around 0.4 µmol/L with time correction of concentration adjustable between 1 and 90 seconds. The system allows controlling DA concentrations between 1 and 10 µmol/L, with an error about +/- 0.8 µmol/L. Although designed to control DA concentration, the system can be used to control, the concentration of other substances. It is proposed to continue the closed loop development with FSCV and DBS (or TMS, or infusion) using parkinsonian animals models.
Allison, Brendan. "P3 or not P3 : toward a better P300 BCI /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2003. http://wwwlib.umi.com/cr/ucsd/fullcit?p3090451.
Full textSarasola, Sanz Andrea [Verfasser], and Niels [Akademischer Betreuer] Birbaumer. "Novel Neural Interfaces For Upper-Limb Motor Rehabilitation After Stroke / Andrea Sarasola Sanz ; Betreuer: Niels Birbaumer." Tübingen : Universitätsbibliothek Tübingen, 2019. http://d-nb.info/1189653710/34.
Full textSchiefer, Matthew Anthony. "Optimized Design of Neural Interfaces for Femoral Nerve Clinical Neuroprostheses: Anatomically-Based Modeling and Intraoperative Evaluation." Cleveland, Ohio : Case Western Reserve University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1237683232.
Full textMountney, John M. "Particle Filtering Programmable Gate Array Architecture for Brain Machine Interfaces." Diss., Temple University Libraries, 2011. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/140741.
Full textPh.D.
Decoding algorithms for brain machine interfaces map neural firing times to the underlying biological output signal through dynamic tuning functions. In order to maintain an accurate estimate of the biological signal, the state of the tuning function parameters must be tracked simultaneously. The evolution of this system state is often estimated by an adaptive filter. Recent work demonstrates that the Bayesian auxiliary particle filter (BAPF) offers improved estimates of the system state and underlying output signal over existing techniques. Performance of the BAPF is evaluated under both ideal conditions and commonly encountered spike detection errors such as missed and false detections and missorted spikes. However, this increase in neuronal signal decoding accuracy is at the expense of an increase in computational complexity. Real-time execution of the BAPF algorithm for neural signals using a sequential processor becomes prohibitive as the number of particles and neurons in the obs
Temple University--Theses
Aydinli, Aykut. "Interface Design: Personal Preference Analysis." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12610035/index.pdf.
Full textcharacteristics and users&rsquo
interface preferences. An online survey is developed for this study. This survey composed of two types of questions: (1) users&rsquo
personal information such as age, gender, country, cognitive structure, and also computer experience and (2) user interface elements. More than 2,500 participants from 120 different countries throughout the world completed our survey. Results were analyzed using cross tables. Our findings show that there is a relationship between users&rsquo
characteristics and users&rsquo
interface preferences. In the presence of this relationship, an artificial neural network model is developed for the estimation of the interface preferences based on the user characteristics.
Pumarica, Julio Cesar Saldaña. "Sistemas de detecção e classificação de impulsos elétricos de sinais neurais extracelulares." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/3/3140/tde-19122016-133542/.
Full textNeural signals recording through implantable microelectrode arrays in cortex extracellular medium has become an experimental paradigm for neuroscience. Moreover, recent research about motor neuroprostheses has shown that it is possible to decode motor commands from the signals recorded in the cerebral cortex extracellular medium. In both situations, experimental neuroscience and motor neuroprostheses development, one of the issues encountered in the state-of-the-art is the use of integrated circuits (chips) implanted in the brain. In these chips, neural signals measured with microelectrodes are amplified, filtered, processed, and transmitted to an external computer through wires that run through the skull. There is interest in developing implantable chips that transmit signals to the external computer without the need for wires passing through the skull. In the survey of the state-of-the-art it has found the use of such implantable wireless chips in rats and monkeys, but until the date of this writing we have not found reports of application in humans. One of the aspects that must be taken into account in the development of wireless implantable neural interfaces is the bandwidth of the communication channel. The greater the amount of data to be transmitted, the greater the bandwidth required and higher chip heating due to power dissipation. This thesis deals with extracellular neural signals processing systems that aim to reduce the amount of data to be transmitted and in this way to enable wireless transmission. In order to integrate them into an implantable chip, those processing systems must be optimized in terms of area and power consumption. Two processes found in the research of implantable neural interfaces are spike detection and spike sorting. In this thesis solutions for these types of processing are presented considering their implementation by CMOS (Complementary Metal Oxide Semiconductor). For the case of spike detection in this thesis it is presented an alternative for the hardware implementation of a mathematical operator known as NEO (Nonlinear Energy Operator). Through the application of this operator to a neural signal the presence of spikes becomes evident and the noise is attenuated. One of the innovative characteristics of the implementation presented in this thesis is the use of a squarer circuit which consists of only three transistors, as a basic function block for performing operation of NEO. NEO circuit consumes 300 pJ in processing a spike, and was characterized by simulation up to 30 kHz, frequency which is compatible with sampling rates found in the literature. The other processing discussed in this thesis, known as Spike Sorting, is the grouping of electrical impulses recorded by an electrode into categories so that the spikes belonging to the same category were generated by a single neuron. In other words, the goal is to recognize which of the spikes measured by the electrode belong to the same neuron, given that it is possible that several neurons influence the measure performed by a single electrode. A solution for the Spike Sorting suitable in the context of implantable systems, is the template matching. This technique is based on generating templates during an initial phase at the end of which the number of generated templates corresponds to the number of neurons identified by the electrode. In the next phase, the system associates each detected spike to one of the templates generated initially. In this thesis it is proposed a classification systems which performs that second phase of the spike sorting process. This thesis presents the design of a spike classification system based on template matching technique, implemented in CMOS technology. The processing proposed in this work is based on the time-based representation of the analog samples. This kind of representation of analog signals by delays of digital pulses is being widely used as an alternative to the classical representation of samples by voltage, current or electric charge. The advantage of this time-mode representation is that it is not severely affected by reduced supply voltage of integrated circuits manufactured in sub-micrometer technologies. The classification hit rate of the developed system is greater than 99% even when an offset of 20 mV is assumed for the output comparator. All the circuits presented in this work were designed using devices from TSMC 90nm technology.
Vitale, Nicholas Heywood. "A Bluetooth Low Energy-Enabled Neural Microsystem for Activity-Dependent Intracortical Microstimulation in Non-Human Primates." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case156534949054962.
Full textLiao, James Yu-Chang. "Evaluating Multi-Modal Brain-Computer Interfaces for Controlling Arm Movements Using a Simulator of Human Reaching." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1404138858.
Full textSouthard, Spencer. "Designing 2D Interfaces For 3D Gesture Retrieval Utilizing Deep Learning." UNF Digital Commons, 2017. https://digitalcommons.unf.edu/etd/774.
Full textWillett, Francis R. "Intracortical Brain-Computer Interfaces: Modeling the Feedback Control Loop, Improving Decoder Performance, and Restoring Upper Limb Function with Muscle Stimulation." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case149035819787053.
Full textQuaranta, Vanessa [Verfasser], Jörg [Gutachter] Behler, and Dominik [Gutachter] Marx. "Neural network molecular dynamics studies of water-zinc oxide interfaces / Vanessa Quaranta ; Gutachter: Jörg Behler, Dominik Marx ; Fakultät für Chemie und Biochemie." Bochum : Ruhr-Universität Bochum, 2018. http://d-nb.info/1157095763/34.
Full textGuo, Liang. "High-density stretchable microelectrode arrays: an integrated technology platform for neural and muscular surface interfacing." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39513.
Full textOrmenesse, Vinícius. "Interface cérebro-computador explorando métodos para representação esparsa dos sinais." reponame:Repositório Institucional da UFABC, 2018.
Find full textDissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Engenharia da Informação, Santo André, 2018.
Uma interface cerebro-computador (BCI) e projetada para que se consiga, de modo efetivo, fornecer uma via alternativa de comunicacao entre o cerebro do usuario e o computador. Sinais captados por meio de eletrodos, tipicamente posicionados no escalpo do individuo, sao previamente processados para que haja eliminacao de ruidos externos. A partir dai, diversas tecnicas para processamento de sinais sao utilizadas para posteriormente classificar os sinais registrados e realizar a traducao do estado mental do usuario em um comando especifico a ser executado pelo computador. No presente trabalho sao utilizadas tecnicas de representacao esparsa dos sinais para a extracao de caracteristicas relevantes para classificacao dos mesmos, com intuito de aumentar a robustez e melhorar o desempenho do sistema. Para a extracao de sinais esparsos, foram utilizados algoritmos de criacao de dicionarios, a partir dos quais e possivel obter uma representacao esparsa para todo o subespaco de sinal. No trabalho foram utilizados 5 diferentes algoritmos de criacao de dicionario: Metodo de direcoes otimas (MOD), K-SVD, RLS-DLA, LS-DLA e Aprendizado de dicionario Online (ODL). A classificacao dos sinais foi realizada com o metodo de .. vizinhos mais proximos (k - NN). Os resultados obtidos com a abordagem de representacao esparsa foram comparados com os resultados do BCI Competition IV dataset 2a. Para o primeiro colocado da competicao foi obtido, em termos do coeficiente kappa, uma acuracia de 0.57 enquanto que no trabalho utilizando os metodos esparsos, obteve-se, em coeficiente kappa, uma acuracia de 0.90. Em comparacao obteve-se um ganho de 0.33 de acuracia, onde se deduz que o uso de sinais esparsos pode ser benefico para o dificil problema de se projetar uma interface cerebro computador.
A brain computer interface (BCI) is designed to effectively translate commands thought by human individuals into commands that a computer can effectively understand. Electrical impulses generated from the brain sculp are recorded from a device called an electroencephalograph and are preprocessed for elimination of external noise. From there, several techniques for signal processing are used to later classify the signals obtained by the electroencephalograph. In this work, techniques for sparse representation of signals are used for feature extraction, in order to increase robustness and system performance. For the extraction of sparse signals, five different dictionary learning algorithms were used, being able to produce a basis capable of represensing the entire signal subspace. In this work, 5 different dictionary learning algorithms were used: Method of Optimal Directions (MOD), K-SVD, Recursive Least Square Dictionary Learning (RLS-DLA), Least Square Dictionary Learning (LS-DLA) and Online Dictionary Learning (ODL). For the classification task, the k-NN method was used. The simulation results obtained with this approach were compared with the best BCI Competition IV dataset 2a results. For the first place in the competition, an accuracy of 0.57 was obtained, in terms of the kappa coefficient, whereas in the work using the sparse methods, a kappa coefficient of 0.90 was obtainned, improving accuracy in 0.33 accuracy was obtained, which indicates that the use of sparse signals may be beneficial to the difficult problem of designing a brain computer interface.
Natter, Martin, Andreas Mild, Markus Feurstein, Georg Dorffner, and Alfred Taudes. "The effect of incentive schemes and organizational arrangements on new product development process." SFB Adaptive Information Systems and Modelling in Economics and Management Science, WU Vienna University of Economics and Business, 2001. http://epub.wu.ac.at/160/1/document.pdf.
Full textSeries: Report Series SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
Burger, Christiaan. "A novel method of improving EEG signals for BCI classification." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95984.
Full textENGLISH ABSTRACT: Muscular dystrophy, spinal cord injury, or amyotrophic lateral sclerosis (ALS) are injuries and disorders that disrupts the neuromuscular channels of the human body thus prohibiting the brain from controlling the body. Brain computer interface (BCI) allows individuals to bypass the neuromuscular channels and interact with the environment using the brain. The system relies on the user manipulating his neural activity in order to control an external device. Electroencephalography (EEG) is a cheap, non-invasive, real time acquisition device used in BCI applications to record neural activity. However, noise, known as artifacts, can contaminate the recording, thus distorting the true neural activity. Eye blinks are a common source of artifacts present in EEG recordings. Due to its large amplitude it greatly distorts the EEG data making it difficult to interpret data for BCI applications. This study proposes a new combination of techniques to detect and correct eye blink artifacts to improve the quality of EEG for BCI applications. Independent component analysis (ICA) is used to separate the EEG signals into independent source components. The source component containing eye blink artifacts are corrected by detecting each eye blink within the source component and using a trained wavelet neural network (WNN) to correct only a segment of the source component containing the eye blink artifact. Afterwards, the EEG is reconstructed without distorting or removing the source component. The results show a 91.1% detection rate and a 97.9% correction rate for all detected eye blinks. Furthermore for channels located over the frontal lobe, eye blink artifacts are corrected preserving the neural activity. The novel combination overall reduces EEG information lost, when compared to existing literature, and is a step towards improving EEG pre-processing in order to provide cleaner EEG data for BCI applications.
AFRIKAANSE OPSOMMING: Spierdistrofie, ’n rugmurgbesering, of amiotrofiese laterale sklerose (ALS) is beserings en steurnisse wat die neuromuskulêre kanale van die menslike liggaam ontwrig en dus verhoed dat die brein die liggaam beheer. ’n Breinrekenaarkoppelvlak laat toe dat die neuromuskulêre kanale omlei word en op die omgewing reageer deur die brein. Die BCI-stelsel vertrou op die gebruiker wat sy eie senuwee-aktiwiteit manipuleer om sodoende ’n eksterne toestel te beheer. Elektro-enkefalografie (EEG) is ’n goedkoop, nie-indringende, intydse dataverkrygingstoestel wat gebruik word in BCI toepassings. Nie net senuwee aktiwiteit nie, maar ook geraas , bekend as artefakte word opgeneem, wat dus die ware senuwee aktiwiteit versteur. Oogknip artefakte is een van die algemene artefakte wat teenwoordig is in EEG opnames. Die groot omvang van hierdie artefakte verwring die EEG data wat dit moeilik maak om die data te ontleed vir BCI toepassings. Die studie stel ’n nuwe kombinasie tegnieke voor wat oogknip artefakte waarneem en regstel om sodoende die kwaliteit van ’n EEG vir BCI toepassings te verbeter. Onafhanklike onderdeel analise (Independent component analysis (ICA)) word gebruik om die EEG seine te skei na onafhanklike bron-komponente. Die bronkomponent wat oogknip artefakte bevat word reggestel binne die komponent en gebruik ’n ervare/geoefende golfsenuwee-netwerk om slegs ’n deel van die komponent wat die oogknip artefak bevat reg te stel. Daarna word die EEG hervorm sonder verwringing of om die bron-komponent te verwyder. Die resultate toon ’n 91.1% opsporingskoers en ’n 97.9% regstellingskoers vir alle waarneembare oogknippe. Oogknip artefakte in kanale op die voorste lob word reggestel en behou die senuwee aktiwiteit wat die oorhoofse EEG kwaliteit vir BCI toepassings verhoog.
Motuk, Halil Erdem. "Intelligent Student Assessment And Coaching Interface To Web-based Education-oriented Intelligent Experimentation On Robot Supported Laboratory Set-ups." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/1092931/index.pdf.
Full textViana, Casals Damià. "EGNITE: Engineered Graphene for Neural Interface." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/673330.
Full textLa tecnología de implantes neuronales en medicina tiene como objetivo restaurar la funcionalidad del sistema nervioso en casos de degeneración o daño grave registrando o estimulando la actividad eléctrica del tejido nervioso. Los implantes neurales disponibles actualmente ofrecen una eficacia clínica modesta, en parte debido a las limitaciones que plantean los metales utilizados en la interfaz eléctrica con el tejido. Dichos materiales comprometen la resolución de la interfaz y, por lo tanto, la restauración funcional con el rendimiento y la estabilidad. En este trabajo presento unos implantes neuronales flexibles basados en una película delgada de grafeno poroso nanoestructurado y biocompatible que proporciona una interfaz neural bidireccional estable y de alto rendimiento. En comparación con los dispositivos de microelectrodos de platino estándar, electrodos de 25 μm de diámetro basados en grafeno ofrecen una impedancia significativamente menor y pueden inyectar de forma segura 200 veces más carga durante más de 100 millones de pulsos. Aquí evaluo sus capacidades in vivo registrando actividad epicortical con alta fidelidad y alta resolución, estimulando subconjuntos de axones dentro del nervio ciático con umbrales de corriente bajos y alta selectividad y modulando la actividad de la retina con alta precisión. La tecnología de película fina de grafeno aquí descrita tiene el potencial de convertirse en el nuevo punto de referencia para la próxima generación de tecnología de implantes neuronales.
Neural implants technology in medicine aims to restore nervous system functionality in cases of severe degeneration or damage by recording or stimulating the electrical activity of the nervous tissue. Currently available neural implants offer a modest clinical efficacy partly due to the limitations posed by the metals used at the electrical interface with the tissue. Such materials compromise interfacing resolution, and therefore functional restoration, with performance and stability. In this work, I present flexible neural implants based on a biocompatible nanostructured porous graphene thin film that provides a stable and high performance bidirectional neural interface. Compared to standard platinum microelectrode devices, the graphene-based electrodes of 25 μm diameter offer significantly lower impedance and can safely inject 200 times more charge for more than 100 million pulses. I assessed their performance in vivo by recording high fidelity and high resolution epicortical activity, by stimulating subsets of axons within the sciatic nerve with low thresholds and high selectivity and by modulating the retinal activity with high precision. The graphene thin film technology I describe here has the potential to become the new performance benchmark for the next generation of neural implant technology.
Universitat Autònoma de Barcelona. Programa de Doctorat en Enginyeria Electrònica i de Telecomunicació
D'Angio, Paul Christopher. "Adaptive and Passive Non-Visual Driver Assistance Technologies for the Blind Driver Challenge®." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/27582.
Full textPh. D.