Academic literature on the topic 'Neural interfaces'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Neural interfaces.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Neural interfaces"

1

Grill, Warren. "Neural Interfaces." American Scientist 98, no. 1 (2010): 48. http://dx.doi.org/10.1511/2010.82.48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Warden, Melissa R., Jessica A. Cardin, and Karl Deisseroth. "Optical Neural Interfaces." Annual Review of Biomedical Engineering 16, no. 1 (July 11, 2014): 103–29. http://dx.doi.org/10.1146/annurev-bioeng-071813-104733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Milin, Zijian Tang, Xilin Liu, and Jan Van der Spiegel. "Electronic neural interfaces." Nature Electronics 3, no. 4 (April 2020): 191–200. http://dx.doi.org/10.1038/s41928-020-0390-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Hongzhi, Mei Yu, Lei Xie, Linlin Jin, and Zhe Yu. "Carbon-Nanofibers-Based Micro-/Nanodevices for Neural-Electrical and Neural-Chemical Interfaces." Journal of Nanomaterials 2012 (2012): 1–6. http://dx.doi.org/10.1155/2012/280902.

Full text
Abstract:
Carbon nanofibers (CNFs) have shown great potentials for development of micro-/nanodevices for neural interfaces due to their suitable properties, such as chemical stability, good electrical conductivity, ultramicro size with low electrical impedance, 3D structures with high surface-to-volume ratio, and long-term biocompatibility. In this paper, we review the applications of CNFs as neural-electrical interfaces and neural-chemical interfaces for neural recording and stimulation, electroconductive nanofibrous scaffolds for nerve tissue engineering, drug and gene delivery, and neurochemical sens
APA, Harvard, Vancouver, ISO, and other styles
5

Ahmed, Zabir, Jay W. Reddy, Mohammad H. Malekoshoaraie, Vahid Hassanzade, Ibrahim Kimukin, Vishal Jain, and Maysamreza Chamanzar. "Flexible optoelectric neural interfaces." Current Opinion in Biotechnology 72 (December 2021): 121–30. http://dx.doi.org/10.1016/j.copbio.2021.11.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kuncel, Alexis M., and Warren M. Grill. "NIH Neural Interfaces Workshop." Expert Review of Medical Devices 3, no. 6 (November 2006): 695–97. http://dx.doi.org/10.1586/17434440.3.6.695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bellamkonda, Ravi V., S. Balakrishna Pai, and Philippe Renaud. "Materials for neural interfaces." MRS Bulletin 37, no. 6 (June 2012): 557–61. http://dx.doi.org/10.1557/mrs.2012.122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sheng, Hao, Xiaomeng Wang, Ning Kong, Wang Xi, Hang Yang, Xiaotong Wu, Kangling Wu, et al. "Neural interfaces by hydrogels." Extreme Mechanics Letters 30 (July 2019): 100510. http://dx.doi.org/10.1016/j.eml.2019.100510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Yongchen, Hanlin Zhu, Huiran Yang, Aaron D. Argall, Lan Luan, Chong Xie, and Liang Guo. "Nano functional neural interfaces." Nano Research 11, no. 10 (July 10, 2018): 5065–106. http://dx.doi.org/10.1007/s12274-018-2127-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Xiaomeng, Hao Sheng, and Hao Wang. "Neural interfaces by hydrogels." IBRO Reports 6 (September 2019): S394. http://dx.doi.org/10.1016/j.ibror.2019.07.1252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Neural interfaces"

1

Minev, Ivan Rusev. "Soft neural interfaces." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Park, Seongjun. "Multifunctional fiber-based neural interfaces." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118086.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (pages 161-174).<br>Neurological disorders affect up to a billion people worldwide, and their socioeconomic burden is projected to increase as the population ages. However, our ability to understand and to treat neural disorders is currently limited by the lack of tools capable of interfacing with the brain over extended periods of time. This is hypothesized to stem from the mismatch in mechanical
APA, Harvard, Vancouver, ISO, and other styles
3

Garcia, Cortadella Ramon. "High-Bandwidth Graphene Neural Interfaces." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/673787.

Full text
Abstract:
El funcionament del cervell es basa en processos complexos, que encara no s’han descrit i comprès detalladament. En les últimes dècades, la neurociència ha experimentat un desenvolupament accelerat, impulsat per noves neurotecnologías que permeten monitoritzar les dinàmiques de l’activitat elèctrica al cervell amb una major resolució espai-temporal i una àrea de cobertura més àmplia. No obstant això, a causa de l’alta complexitat de les xarxes neuronals al cervell, que són compostes per poblacions neuronals fortament interconnectades en àmplies regions cerebrals, estem lluny de detectar una fr
APA, Harvard, Vancouver, ISO, and other styles
4

Barrett, Richard. "Novel processing routes for neural interfaces." Thesis, University of Birmingham, 2014. http://etheses.bham.ac.uk//id/eprint/5137/.

Full text
Abstract:
The thesis describes novel processing routes that have been developed to fabricate neural interfaces. A process has been investigated that uses microfabrication techniques to fabricate a multi-channel regenerative implant that can record nerve impulses in the peripheral nervous system (PNS), called the Spiral Peripheral Nerve Interface (SPNI). It is shown both theoretically and experimentally that the implant improves the ability to record signals in the PNS via micro-channels that act as axonal amplifiers. New processing routes are introduced to create robust interconnections from the SPNI to
APA, Harvard, Vancouver, ISO, and other styles
5

Watterson, William James. "Fractal Interfaces for Stimulating and Recording Neural Implants." Thesis, University of Oregon, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10636408.

Full text
Abstract:
<p> From investigating movement in an insect to deciphering cognition in a human brain to treating Parkinson's disease, hearing loss, or even blindness, electronic implants are an essential tool for understanding the brain and treating neural diseases. Currently, the stimulating and recording resolution of these implants remains low. For instance, they can record all the neuron activity associated with movement in an insect, but are quite far from recording, at an individual neuron resolution, the large volumes of brain tissue associated with cognition. Likewise, there is remarkable success in
APA, Harvard, Vancouver, ISO, and other styles
6

Tringides, Christina M. (Christina Myra). "Materials selection and processing for reliable neural interfaces." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98667.

Full text
Abstract:
Thesis: S.B., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2015.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (pages 48-50).<br>The understanding of the brain would be revolutionized by a tool that can measure intra- and extra-cellular electrical potentials on a parallelized scale, without disrupting the neural physiology. Existing technologies do not sufficiently carry out these functions. Using a thermal drawing process (TDP), multimaterial fibers comprised of polymer-metal composites can be fabricated to create fl
APA, Harvard, Vancouver, ISO, and other styles
7

Watterson, William. "Fractal Interfaces for Stimulating and Recording Neural Implants." Thesis, University of Oregon, 2018. http://hdl.handle.net/1794/23169.

Full text
Abstract:
From investigating movement in an insect to deciphering cognition in a human brain to treating Parkinson's disease, hearing loss, or even blindness, electronic implants are an essential tool for understanding the brain and treating neural diseases. Currently, the stimulating and recording resolution of these implants remains low. For instance, they can record all the neuron activity associated with movement in an insect, but are quite far from recording, at an individual neuron resolution, the large volumes of brain tissue associated with cognition. Likewise, there is remarkable success in the
APA, Harvard, Vancouver, ISO, and other styles
8

Bonaccini, Calia Andrea. "Graphene field-effect transistors as flexible neural interfaces for intracortical electrophysiology." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/671635.

Full text
Abstract:
En els últims anys s’han produït desenvolupaments tecnològics innovadors en el camp dels implants neuronals per a aplicacions mèdiques. La comprensió de el cervell humà es considera com un dels majors reptes científics del nostre temps; com a conseqüència, estem sent testimonis d’una intensificació de la investigació en el desenvolupament de les interfícies cervell-màquina (IMC) per llegir i estimular l’activitat cerebral. No obstant això, els implants neuronals actualment disponibles ofereixen una eficàcia clínica modesta, en part a causa de les limitacions que plantegen la invasivitat dels m
APA, Harvard, Vancouver, ISO, and other styles
9

Richards, Stephen M. "End-user interfaces to electronic books." Thesis, Teesside University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358404.

Full text
Abstract:
Electronic book production is a developing field which is still in its infancy. As such, there is still relatively little material available in the form of design principles or guidelines for the production of such books. It is also extremely complex, in that electronic book designers can take advantage of a number of delivery techniques which are not available to authors of traditional paper-based books. Such techniques include: multimedia (the delivery of text, pictures, sound, and moving pictures); and hypermedia (the linking of reactive information items to form non-linear structures). Thi
APA, Harvard, Vancouver, ISO, and other styles
10

Valdar, William Seth Jermy. "Residue conservation in the prediction of protein-protein interfaces." Thesis, University College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Neural interfaces"

1

I, Bey, ed. Neutral interfaces in design, simulation, and programming for robotics. Berlin: Springer-Verlag, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Holleman, Jeremy, Fan Zhang, and Brian Otis. Ultra Low-Power Integrated Circuit Design for Wireless Neural Interfaces. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6727-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fan, Zhang, Otis Brian, and SpringerLink (Online service), eds. Ultra Low-Power Integrated Circuit Design for Wireless Neural Interfaces. New York, NY: Springer Science+Business Media, LLC, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fels, S. Sidney. Building adaptive interfaces with neural networks: The Glove-Talk pilot study. Toronto: University of Toronto, Dept. of Computer Science, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ran, Ginosar, and SpringerLink (Online service), eds. The NeuroProcessor: An Integrated Interface to Biological Neural Networks. Dordrecht: Springer Science+Business Media B.V., 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Coates, Thomas D. Neural interfacing: Forging the human-machine connection. San Rafael, Calif. (1537 Fourth St, San Rafael, CA 94901 USA): Morgan & Claypool Publishers, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Taylor, Cynthia E. Documentation of TSMC software that interfaces with traffic analysis problems. [Olympia, Wash.]: Washington State Dept. of Transportation, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brain machine interfaces: Implications for science, clinical practice and society. Amsterdam: Elsevier, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vasquez, Daniel. Hierarchical Neural Network Structures for Phoneme Recognition. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fels, S. Sidney. Glove-Talk II: Mapping hard gestures to speech using neural networks : an approach to building adaptive interfaces. Toronto: University of Toronto, Dept. of Computer Science, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Neural interfaces"

1

Yoda, Minami, Jean-Luc Garden, Olivier Bourgeois, Aeraj Haque, Aloke Kumar, Hans Deyhle, Simone Hieber, et al. "Neural Interfaces." In Encyclopedia of Nanotechnology, 1895. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

He, Bin, Han Yuan, Jianjun Meng, and Shangkai Gao. "Brain–Computer Interfaces." In Neural Engineering, 131–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43395-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

He, Bin, Shangkai Gao, Han Yuan, and Jonathan R. Wolpaw. "Brain–Computer Interfaces." In Neural Engineering, 87–151. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-5227-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kang, Woo Hyeun, Wenzhe Cao, Sigurd Wagner, and Barclay Morrison. "Stretchable Neural Interfaces." In Stretchable Electronics, 379–99. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527646982.ch16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Moore Jackson, Melody, and Rudolph Mappus. "Neural Control Interfaces." In Brain-Computer Interfaces, 21–33. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-272-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lebedev, Mikhail A., and Alexei Ossadtchi. "Bidirectional Neural Interfaces." In Brain–Computer Interfaces Handbook, 701–20. Boca Raton : Taylor & Francis, CRC Press, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781351231954-37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Broccard, Frédéric D., Siddharth Joshi, Jun Wang, and Gert Cauwenberghs. "Neuromorphic Neural Interfaces." In Handbook of Neuroengineering, 1–33. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-15-2848-4_41-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Oby, Emily R., Jay A. Hennig, Aaron P. Batista, Byron M. Yu, and Steven M. Chase. "Intracortical Brain–Machine Interfaces." In Neural Engineering, 185–221. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43395-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Brockmeier, Austin J., and José C. Príncipe. "Decoding Algorithms for Brain–Machine Interfaces." In Neural Engineering, 223–57. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-5227-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Laiwalla, Farah, and Arto Nurmikko. "Future of Neural Interfaces." In Advances in Experimental Medicine and Biology, 225–41. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-2050-7_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Neural interfaces"

1

Балакин, Петр Владимирович, Светлана Анатольевна Микаева, and Юлия Алексеевна Журавлева. "NEURAL INTERFACES." In Высокие технологии и инновации в науке: сборник избранных статей Международной научной конференции (Санкт-Петербург, Май 2022). Crossref, 2022. http://dx.doi.org/10.37539/vt197.2022.39.20.012.

Full text
Abstract:
Авторы описывают принципы работы нейроинтерфейсов и перспективные области, в которых проводятся исследования на данный момент. The authors describe the principles of operation of neurointerfaces and the promising areas in which research is currently being conducted.
APA, Harvard, Vancouver, ISO, and other styles
2

Walker, Ross M., Loren Rieth, Subramanian S. Iyer, Adeel A. Bajwa, Jason Silver, Taufiq Ahmed, Naila Tasneem, Mohit Sharma, and A. Tye Gardner. "Integrated neural interfaces." In 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2017. http://dx.doi.org/10.1109/mwscas.2017.8053106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Viventi, Jonathan. "Flexible electronics for neural interfaces." In Neural Interfaces and Artificial Senses. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.nias.2021.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rogers, John. "Soft, Biocompatible Optoelectronic Neural Interfaces." In Neural Interfaces and Artificial Senses. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.nias.2021.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Session IV: Neural interfaces, neural-inspired architectures and resistive sensor interfaces." In 2015 6th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI). IEEE, 2015. http://dx.doi.org/10.1109/iwasi.2015.7184999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Session I: Neural interfaces." In 2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI). IEEE, 2017. http://dx.doi.org/10.1109/iwasi.2017.7974199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Harrison, Reid. "F8: Integrated neural interfaces." In 2009 IEEE International Solid-State Circuits Conference (ISSCC 2009). IEEE, 2009. http://dx.doi.org/10.1109/isscc.2009.4977536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Perez Fornos, Angelica, Nils Guinand, Raymond Van de Berg, Maurizio Ranieri, Samuel Cavuscens, Anissa Boutabla, Julie Corre, and Herman Kingma. "Vestibular Implants in Humans: Steps Towards a Clinical Application." In Neural Interfaces and Artificial Senses. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.nias.2021.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhao, Zifang, Claudia Cea, Jennifer Gelinas, and Dion Khodagholy. "Ions-based high bandwidth communication for implantable bioelectronics." In Neural Interfaces and Artificial Senses. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.nias.2021.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Seo, DJ. "Minimally invasive brain-machine interface at Neuralink." In Neural Interfaces and Artificial Senses. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.nias.2021.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Neural interfaces"

1

Kipke, Daryl R., Jeffrey Carrier, and David J. Anderson. Implantable Neural Interfaces for Sharks. Fort Belvoir, VA: Defense Technical Information Center, May 2007. http://dx.doi.org/10.21236/ada470127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shea, Thomas B. Optimization of Neuronal-Computer Interface. Fort Belvoir, VA: Defense Technical Information Center, June 2009. http://dx.doi.org/10.21236/ada515409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Weber, Douglas J. A New Animal Model for Developing a Somatosensory Neural Interface for Prosthetic Limbs. Fort Belvoir, VA: Defense Technical Information Center, February 2008. http://dx.doi.org/10.21236/ada482995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!