Journal articles on the topic 'Neural fields equations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Neural fields equations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Veltz, Romain, and Olivier Faugeras. "A Center Manifold Result for Delayed Neural Fields Equations." SIAM Journal on Mathematical Analysis 45, no. 3 (January 2013): 1527–62. http://dx.doi.org/10.1137/110856162.
Full textBelhe, Yash, Michaël Gharbi, Matthew Fisher, Iliyan Georgiev, Ravi Ramamoorthi, and Tzu-Mao Li. "Discontinuity-Aware 2D Neural Fields." ACM Transactions on Graphics 42, no. 6 (December 5, 2023): 1–11. http://dx.doi.org/10.1145/3618379.
Full textNicks, Rachel, Abigail Cocks, Daniele Avitabile, Alan Johnston, and Stephen Coombes. "Understanding Sensory Induced Hallucinations: From Neural Fields to Amplitude Equations." SIAM Journal on Applied Dynamical Systems 20, no. 4 (January 2021): 1683–714. http://dx.doi.org/10.1137/20m1366885.
Full textVeltz, Romain, and Olivier Faugeras. "ERRATUM: A Center Manifold Result for Delayed Neural Fields Equations." SIAM Journal on Mathematical Analysis 47, no. 2 (January 2015): 1665–70. http://dx.doi.org/10.1137/140962279.
Full textBressloff, Paul C., and Zachary P. Kilpatrick. "Nonlinear Langevin Equations for Wandering Patterns in Stochastic Neural Fields." SIAM Journal on Applied Dynamical Systems 14, no. 1 (January 2015): 305–34. http://dx.doi.org/10.1137/140990371.
Full textScheinker, Alexander, and Reeju Pokharel. "Physics-constrained 3D convolutional neural networks for electrodynamics." APL Machine Learning 1, no. 2 (June 1, 2023): 026109. http://dx.doi.org/10.1063/5.0132433.
Full textSim, Fabio M., Eka Budiarto, and Rusman Rusyadi. "Comparison and Analysis of Neural Solver Methods for Differential Equations in Physical Systems." ELKHA 13, no. 2 (October 22, 2021): 134. http://dx.doi.org/10.26418/elkha.v13i2.49097.
Full textITOH, MAKOTO, and LEON O. CHUA. "IMAGE PROCESSING AND SELF-ORGANIZING CNN." International Journal of Bifurcation and Chaos 15, no. 09 (September 2005): 2939–58. http://dx.doi.org/10.1142/s0218127405013794.
Full textWennekers, Thomas. "Dynamic Approximation of Spatiotemporal Receptive Fields in Nonlinear Neural Field Models." Neural Computation 14, no. 8 (August 1, 2002): 1801–25. http://dx.doi.org/10.1162/089976602760128027.
Full textMentzer, Katherine L., and J. Luc Peterson. "Neural network surrogate models for equations of state." Physics of Plasmas 30, no. 3 (March 2023): 032704. http://dx.doi.org/10.1063/5.0126708.
Full textSamia Atallah. "The Numerical Methods of Fractional Differential Equations." مجلة جامعة بني وليد للعلوم الإنسانية والتطبيقية 8, no. 4 (September 25, 2023): 496–512. http://dx.doi.org/10.58916/jhas.v8i4.44.
Full textChu, Mengyu, Lingjie Liu, Quan Zheng, Erik Franz, Hans-Peter Seidel, Christian Theobalt, and Rhaleb Zayer. "Physics informed neural fields for smoke reconstruction with sparse data." ACM Transactions on Graphics 41, no. 4 (July 2022): 1–14. http://dx.doi.org/10.1145/3528223.3530169.
Full textGuo, Yanan, Xiaoqun Cao, Bainian Liu, and Mei Gao. "Solving Partial Differential Equations Using Deep Learning and Physical Constraints." Applied Sciences 10, no. 17 (August 26, 2020): 5917. http://dx.doi.org/10.3390/app10175917.
Full textRaissi, Maziar, Alireza Yazdani, and George Em Karniadakis. "Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations." Science 367, no. 6481 (January 30, 2020): 1026–30. http://dx.doi.org/10.1126/science.aaw4741.
Full textKwessi, Eddy. "A Consistent Estimator of Nontrivial Stationary Solutions of Dynamic Neural Fields." Stats 4, no. 1 (February 13, 2021): 122–37. http://dx.doi.org/10.3390/stats4010010.
Full textDi Carlo, D., D. Heitz, and T. Corpetti. "Post Processing Sparse And Instantaneous 2D Velocity Fields Using Physics-Informed Neural Networks." Proceedings of the International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics 20 (July 11, 2022): 1–11. http://dx.doi.org/10.55037/lxlaser.20th.183.
Full textBÄKER, M., T. KALKREUTER, G. MACK, and M. SPEH. "NEURAL MULTIGRID METHODS FOR GAUGE THEORIES AND OTHER DISORDERED SYSTEMS." International Journal of Modern Physics C 04, no. 02 (April 1993): 239–47. http://dx.doi.org/10.1142/s0129183193000252.
Full textPang, Xue, Jian Wang, Faliang Yin, and Jun Yao. "Construction of elliptic stochastic partial differential equations solver in groundwater flow with convolutional neural networks." Journal of Physics: Conference Series 2083, no. 4 (November 1, 2021): 042064. http://dx.doi.org/10.1088/1742-6596/2083/4/042064.
Full textAqil, Marco, Selen Atasoy, Morten L. Kringelbach, and Rikkert Hindriks. "Graph neural fields: A framework for spatiotemporal dynamical models on the human connectome." PLOS Computational Biology 17, no. 1 (January 28, 2021): e1008310. http://dx.doi.org/10.1371/journal.pcbi.1008310.
Full textPeng, Liangrong, and Liu Hong. "Recent Advances in Conservation–Dissipation Formalism for Irreversible Processes." Entropy 23, no. 11 (October 31, 2021): 1447. http://dx.doi.org/10.3390/e23111447.
Full textHu, Beichao, and Dwayne McDaniel. "Applying Physics-Informed Neural Networks to Solve Navier–Stokes Equations for Laminar Flow around a Particle." Mathematical and Computational Applications 28, no. 5 (October 13, 2023): 102. http://dx.doi.org/10.3390/mca28050102.
Full textShinde, Rajwardhan, Onkar Dherange, Rahul Gavhane, Hemant Koul, and Nilam Patil. "HANDWRITTEN MATHEMATICAL EQUATION SOLVER." International Journal of Engineering Applied Sciences and Technology 6, no. 10 (February 1, 2022): 146–49. http://dx.doi.org/10.33564/ijeast.2022.v06i10.018.
Full textYang, Zhou, Yuwang Xu, Jionglin Jing, Xuepeng Fu, Bofu Wang, Haojie Ren, Mengmeng Zhang, and Tongxiao Sun. "Investigation of Physics-Informed Neural Networks to Reconstruct a Flow Field with High Resolution." Journal of Marine Science and Engineering 11, no. 11 (October 25, 2023): 2045. http://dx.doi.org/10.3390/jmse11112045.
Full textTa, Hoa, Shi Wen Wong, Nathan McClanahan, Jung-Han Kimn, and Kaiqun Fu. "Exploration on Physics-Informed Neural Networks on Partial Differential Equations (Student Abstract)." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 13 (June 26, 2023): 16344–45. http://dx.doi.org/10.1609/aaai.v37i13.27032.
Full textLiu, Xiangdong, and Yu Gu. "Study of Pricing of High-Dimensional Financial Derivatives Based on Deep Learning." Mathematics 11, no. 12 (June 11, 2023): 2658. http://dx.doi.org/10.3390/math11122658.
Full textATALAY, VOLKAN, and EROL GELENBE. "PARALLEL ALGORITHM FOR COLOUR TEXTURE GENERATION USING THE RANDOM NEURAL NETWORK MODEL." International Journal of Pattern Recognition and Artificial Intelligence 06, no. 02n03 (August 1992): 437–46. http://dx.doi.org/10.1142/s0218001492000266.
Full textTouboul, Jonathan. "Mean-field equations for stochastic firing-rate neural fields with delays: Derivation and noise-induced transitions." Physica D: Nonlinear Phenomena 241, no. 15 (August 2012): 1223–44. http://dx.doi.org/10.1016/j.physd.2012.03.010.
Full textSchaback, Robert, and Holger Wendland. "Kernel techniques: From machine learning to meshless methods." Acta Numerica 15 (May 2006): 543–639. http://dx.doi.org/10.1017/s0962492906270016.
Full textWilliams, Kyle, Stephen Rudin, Daniel Bednarek, Ammad Baig, Adnan Hussain Siddiqui, Elad I. Levy, and Ciprian Ionita. "226 Advancing Neurovascular Diagnostics for Abnormal Hemodynamic Conditions Through AI-Driven Physics-informed Neural Networks." Neurosurgery 70, Supplement_1 (April 2024): 61. http://dx.doi.org/10.1227/neu.0000000000002809_226.
Full textATALAY, VOLKAN, EROL GELENBE, and NESE YALABIK. "THE RANDOM NEURAL NETWORK MODEL FOR TEXTURE GENERATION." International Journal of Pattern Recognition and Artificial Intelligence 06, no. 01 (April 1992): 131–41. http://dx.doi.org/10.1142/s0218001492000072.
Full textBaazeem, Amani S., Muhammad Shoaib Arif, and Kamaleldin Abodayeh. "An Efficient and Accurate Approach to Electrical Boundary Layer Nanofluid Flow Simulation: A Use of Artificial Intelligence." Processes 11, no. 9 (September 13, 2023): 2736. http://dx.doi.org/10.3390/pr11092736.
Full textAra, Asmat, Oyoon Abdul Razzaq, and Najeeb Alam Khan. "A Single Layer Functional Link Artificial Neural Network based on Chebyshev Polynomials for Neural Evaluations of Nonlinear Nth Order Fuzzy Differential Equations." Annals of West University of Timisoara - Mathematics and Computer Science 56, no. 1 (July 1, 2018): 3–22. http://dx.doi.org/10.2478/awutm-2018-0001.
Full textChen, Simin, Zhixiang Liu, Wenbo Zhang, and Jinkun Yang. "A Hard-Constraint Wide-Body Physics-Informed Neural Network Model for Solving Multiple Cases in Forward Problems for Partial Differential Equations." Applied Sciences 14, no. 1 (December 25, 2023): 189. http://dx.doi.org/10.3390/app14010189.
Full textJakeer, Shaik, Seethi Reddy Reddisekhar Reddy, Sathishkumar Veerappampalayam Easwaramoorthy, Hayath Thameem Basha, and Jaehyuk Cho. "Exploring the Influence of Induced Magnetic Fields and Double-Diffusive Convection on Carreau Nanofluid Flow through Diverse Geometries: A Comparative Study Using Numerical and ANN Approaches." Mathematics 11, no. 17 (August 27, 2023): 3687. http://dx.doi.org/10.3390/math11173687.
Full textPioch, Fabian, Jan Hauke Harmening, Andreas Maximilian Müller, Franz-Josef Peitzmann, Dieter Schramm, and Ould el Moctar. "Turbulence Modeling for Physics-Informed Neural Networks: Comparison of Different RANS Models for the Backward-Facing Step Flow." Fluids 8, no. 2 (January 26, 2023): 43. http://dx.doi.org/10.3390/fluids8020043.
Full textPortal-Porras, Koldo, Unai Fernandez-Gamiz, Ainara Ugarte-Anero, Ekaitz Zulueta, and Asier Zulueta. "Alternative Artificial Neural Network Structures for Turbulent Flow Velocity Field Prediction." Mathematics 9, no. 16 (August 14, 2021): 1939. http://dx.doi.org/10.3390/math9161939.
Full textAbudusaimaiti, Mairemunisa, Abuduwali Abudukeremu, and Amina Sabir. "Fixed/Preassigned-Time Stochastic Synchronization of Complex-Valued Fuzzy Neural Networks with Time Delay." Mathematics 11, no. 17 (September 2, 2023): 3769. http://dx.doi.org/10.3390/math11173769.
Full textDu, Mengxuan. "Analysis of Chaos Fluctuations in Atmospheric Prediction, Fluid Mechanics and Power System Load Forecasting." Highlights in Science, Engineering and Technology 72 (December 15, 2023): 594–601. http://dx.doi.org/10.54097/3kqd5952.
Full textHu, Fujia, Weebeng Tay, Yilun Zhou, and Boocheong Khoo. "A Novel Hybrid Deep Learning Method for Predicting the Flow Fields of Biomimetic Flapping Wings." Biomimetics 9, no. 2 (January 25, 2024): 72. http://dx.doi.org/10.3390/biomimetics9020072.
Full textJenison, Rick L., Richard A. Reale, Joseph E. Hind, and John F. Brugge. "Modeling of Auditory Spatial Receptive Fields With Spherical Approximation Functions." Journal of Neurophysiology 80, no. 5 (November 1, 1998): 2645–56. http://dx.doi.org/10.1152/jn.1998.80.5.2645.
Full textChampion, Kathleen, Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. "Data-driven discovery of coordinates and governing equations." Proceedings of the National Academy of Sciences 116, no. 45 (October 21, 2019): 22445–51. http://dx.doi.org/10.1073/pnas.1906995116.
Full textZancanaro, Matteo, Markus Mrosek, Giovanni Stabile, Carsten Othmer, and Gianluigi Rozza. "Hybrid Neural Network Reduced Order Modelling for Turbulent Flows with Geometric Parameters." Fluids 6, no. 8 (August 22, 2021): 296. http://dx.doi.org/10.3390/fluids6080296.
Full textBohner, Martin, Giuseppe Caristi, Shapour Heidarkhani, and Shahin Moradi. "Three solutions for a discrete fourth-order boundary value problem with four parameters." Boletim da Sociedade Paranaense de Matemática 42 (April 19, 2024): 1–13. http://dx.doi.org/10.5269/bspm.64229.
Full textTodorova, Sonia, and Valérie Ventura. "Neural Decoding: A Predictive Viewpoint." Neural Computation 29, no. 12 (December 2017): 3290–310. http://dx.doi.org/10.1162/neco_a_01020.
Full textda Silva, Severino Horácio. "Lower Semicontinuity of Global Attractors for a Class of Evolution Equations of Neural Fields Type in a Bounded Domain." Differential Equations and Dynamical Systems 26, no. 4 (August 7, 2015): 371–91. http://dx.doi.org/10.1007/s12591-015-0258-6.
Full textGajamannage, K., D. I. Jayathilake, Y. Park, and E. M. Bollt. "Recurrent neural networks for dynamical systems: Applications to ordinary differential equations, collective motion, and hydrological modeling." Chaos: An Interdisciplinary Journal of Nonlinear Science 33, no. 1 (January 2023): 013109. http://dx.doi.org/10.1063/5.0088748.
Full textSitte, Michael Philip, and Nguyen Anh Khoa Doan. "Velocity reconstruction in puffing pool fires with physics-informed neural networks." Physics of Fluids 34, no. 8 (August 2022): 087124. http://dx.doi.org/10.1063/5.0097496.
Full textYan, Xiaohui, Fu Du, Tianqi Zhang, Qian Cui, Zuhao Zhu, and Ziming Song. "Predicting the Flow Fields in Meandering Rivers with a Deep Super-Resolution Convolutional Neural Network." Water 16, no. 3 (January 28, 2024): 425. http://dx.doi.org/10.3390/w16030425.
Full textHu, Yaowei, Yongkai Wu, Lu Zhang, and Xintao Wu. "A Generative Adversarial Framework for Bounding Confounded Causal Effects." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 13 (May 18, 2021): 12104–12. http://dx.doi.org/10.1609/aaai.v35i13.17437.
Full textPeng, Jiang-Zhou, Xianglei Liu, Zhen-Dong Xia, Nadine Aubry, Zhihua Chen, and Wei-Tao Wu. "Data-Driven Modeling of Geometry-Adaptive Steady Heat Convection Based on Convolutional Neural Networks." Fluids 6, no. 12 (December 1, 2021): 436. http://dx.doi.org/10.3390/fluids6120436.
Full text