Academic literature on the topic 'Neural fields equations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Neural fields equations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Neural fields equations"
Veltz, Romain, and Olivier Faugeras. "A Center Manifold Result for Delayed Neural Fields Equations." SIAM Journal on Mathematical Analysis 45, no. 3 (January 2013): 1527–62. http://dx.doi.org/10.1137/110856162.
Full textBelhe, Yash, Michaël Gharbi, Matthew Fisher, Iliyan Georgiev, Ravi Ramamoorthi, and Tzu-Mao Li. "Discontinuity-Aware 2D Neural Fields." ACM Transactions on Graphics 42, no. 6 (December 5, 2023): 1–11. http://dx.doi.org/10.1145/3618379.
Full textNicks, Rachel, Abigail Cocks, Daniele Avitabile, Alan Johnston, and Stephen Coombes. "Understanding Sensory Induced Hallucinations: From Neural Fields to Amplitude Equations." SIAM Journal on Applied Dynamical Systems 20, no. 4 (January 2021): 1683–714. http://dx.doi.org/10.1137/20m1366885.
Full textVeltz, Romain, and Olivier Faugeras. "ERRATUM: A Center Manifold Result for Delayed Neural Fields Equations." SIAM Journal on Mathematical Analysis 47, no. 2 (January 2015): 1665–70. http://dx.doi.org/10.1137/140962279.
Full textBressloff, Paul C., and Zachary P. Kilpatrick. "Nonlinear Langevin Equations for Wandering Patterns in Stochastic Neural Fields." SIAM Journal on Applied Dynamical Systems 14, no. 1 (January 2015): 305–34. http://dx.doi.org/10.1137/140990371.
Full textScheinker, Alexander, and Reeju Pokharel. "Physics-constrained 3D convolutional neural networks for electrodynamics." APL Machine Learning 1, no. 2 (June 1, 2023): 026109. http://dx.doi.org/10.1063/5.0132433.
Full textSim, Fabio M., Eka Budiarto, and Rusman Rusyadi. "Comparison and Analysis of Neural Solver Methods for Differential Equations in Physical Systems." ELKHA 13, no. 2 (October 22, 2021): 134. http://dx.doi.org/10.26418/elkha.v13i2.49097.
Full textITOH, MAKOTO, and LEON O. CHUA. "IMAGE PROCESSING AND SELF-ORGANIZING CNN." International Journal of Bifurcation and Chaos 15, no. 09 (September 2005): 2939–58. http://dx.doi.org/10.1142/s0218127405013794.
Full textWennekers, Thomas. "Dynamic Approximation of Spatiotemporal Receptive Fields in Nonlinear Neural Field Models." Neural Computation 14, no. 8 (August 1, 2002): 1801–25. http://dx.doi.org/10.1162/089976602760128027.
Full textMentzer, Katherine L., and J. Luc Peterson. "Neural network surrogate models for equations of state." Physics of Plasmas 30, no. 3 (March 2023): 032704. http://dx.doi.org/10.1063/5.0126708.
Full textDissertations / Theses on the topic "Neural fields equations"
Ueda, Hiroyuki. "Studies on low-field functional MRI to detect tiny neural magnetic fields." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263666.
Full text京都大学
新制・課程博士
博士(工学)
甲第23205号
工博第4849号
京都大学大学院工学研究科電気工学専攻
(主査)教授 小林 哲生, 教授 松尾 哲司, 特定教授 中村 武恒
学位規則第4条第1項該当
Doctor of Philosophy (Engineering)
Kyoto University
DFAM
Faye, Grégory. "Symmetry breaking and pattern formation in some neural field equations." Nice, 2012. http://www.theses.fr/2012NICE4017.
Full textThe aim of this Thesis is to give a deeper understanding of pattern formation in neural field equations with symmetry, and to understand the significance of these symmetries in modelling the visual cortex. Neural fields equations are mesoscopic models that describe the spatio-temporal activity of populations of neurons. They were introduced in the 1970s and are often called the Wilson-Cowan-Amari equations in reference to their authors. From a mathematical point of view, neural fields equations are integro-differential equations set on domains particular to the modelled anatomical / functional properties. The first part of the Thesis is an introduction to mesoscopic modelling of the visual cortex and presents a model of the processing of image edges and textures. The second part is dedicated to the study of spatially periodic solutions of neural field equations, in different geometries, with applications to visual hallucination patterns. The results developed are general enough to be applied to other pattern formation problems. Finally, the last part is centred on the study of localized solutions of neural field equations set on unbounded domains
ALMEIDA, Arthur Santos de. "Algumas propriedades de equações diferenciais em espaços de Banach e aplicações de campos neurais." Universidade Federal de Campina Grande, 2015. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1404.
Full textMade available in DSpace on 2018-08-10T17:51:03Z (GMT). No. of bitstreams: 1 BRUNO ARTHUR SANTOS DE ALMEIDA - DISSERTAÇÃO PPGMAT 2015..pdf: 938463 bytes, checksum: ad040a3bd6379e6ea801856f1925dcca (MD5) Previous issue date: 2015-08
Capes
Para ler o resumo deste trabalho recomendamos o download do arquivo, uma vez que o mesmo possui fórmulas e caracteres matemáticos que não foram possíveis trascreve-los aqui.
To read the summary of this work we recommend downloading the file, since it has formulas and mathematical characters that were not possible to transcribe them here.
Wang, Wei 1974. "On solutions of advanced-retarded travelling wave equations arising in a neural field theory." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=98515.
Full textKeywords. Neuronal network; firing rate function; mixed-type functional differential equations; delays; travelling wave solutions
Tamekue, Cyprien. "Controllability, Visual Illusions and Perception." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPAST105.
Full textThis thesis explores two distinct control theory applications in different scientific domains: physics and neuroscience. The first application focuses on the null controllability of the parabolic, spherical Baouendi-Grushin equation. In contrast, the second application involves the mathematical description of the MacKay-type visual illusions, focusing on the MacKay effect and Billock and Tsou's psychophysical experiments by controlling the one-layer Amari-type neural fields equation. Additionally, intending to study input-to-state stability and robust stabilization, the thesis investigates the existence of equilibrium in a multi-layer neural fields population model of Wilson-Cowan, specifically when the sensory input is a proportional feedback acting only on the system's state of the populations of excitatory neurons.In the first part, we investigate the null controllability properties of the parabolic equation associated with the Baouendi-Grushin operator defined by the canonical almost-Riemannian structure on the 2-dimensional sphere. It presents a degeneracy at the equator of the sphere. We provide some null controllability properties of this equation to this curved setting, which generalize that of the parabolic Baouendi-Grushin equation defined on the plane.Regarding neuroscience, initially, the focus lies on the description of visual illusions for which the tools of bifurcation theory and even multiscale analysis appear unsuitable. In our study, we use the neural fields equation of Amari-type in which the sensory input is interpreted as a cortical representation of the visual stimulus used in each experiment. It contains a localised distributed control function that models the stimulus's specificity, e.g., the redundant information in the centre of MacKay's funnel pattern (``MacKay rays'') or the fact that visual stimuli in Billock and Tsou's experiments are localized in the visual field.Always within the framework of neurosciences, we investigate the existence of equilibrium in a multi-layers neural fields population model of Wilson-Cowan when the sensory input is a proportional feedback that acts only on the system's state of the population of excitatory neurons. There, we provide a mild condition on the response functions under which such an equilibrium exists. The interest of this work lies in its application in studying the disruption of pathological brain oscillations associated with Parkinson's disease when stimulating and measuring only the population of excitatory neurons
SILVA, Michel Barros. "Comportamento Assintótico para Equação de Campos Neurais." Universidade Federal de Campina Grande, 2014. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1395.
Full textMade available in DSpace on 2018-08-09T17:18:23Z (GMT). No. of bitstreams: 1 MICHEL BARROS SILVA - DISSERTAÇÃO PPGMAT 2014..pdf: 335576 bytes, checksum: f2ee6b6d68cdefa6c32e300154d28756 (MD5) Previous issue date: 2014-02
Capes
Para ler o reumo deste trabalho recomendamos o download do arquivo, pois o mesmo possui fórmulas e caracteres matemáticos que não foram possíveis transcreve-los.
To read the progress of this work we recommend downloading the file, as it has formulas and mathematical characters that could not be transcribed.
Vellmer, Sebastian. "Applications of the Fokker-Planck Equation in Computational and Cognitive Neuroscience." Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21597.
Full textThis thesis is concerned with the calculation of statistics, in particular the power spectra, of point processes generated by stochastic multidimensional integrate-and-fire (IF) neurons, networks of IF neurons and decision-making models from the corresponding Fokker-Planck equations. In the brain, information is encoded by sequences of action potentials. In studies that focus on spike timing, IF neurons that drastically simplify the spike generation have become the standard model. One-dimensional IF neurons do not suffice to accurately model neural dynamics, however, the extension towards multiple dimensions yields realistic behavior at the price of growing complexity. The first part of this work develops a theory of spike-train power spectra for stochastic, multidimensional IF neurons. From the Fokker-Planck equation, a set of partial differential equations is derived that describes the stationary probability density, the firing rate and the spike-train power spectrum. In the second part of this work, a mean-field theory of large and sparsely connected homogeneous networks of spiking neurons is developed that takes into account the self-consistent temporal correlations of spike trains. Neural input is approximated by colored Gaussian noise generated by a multidimensional Ornstein-Uhlenbeck process of which the coefficients are initially unknown but determined by the self-consistency condition and define the solution of the theory. To explore heterogeneous networks, an iterative scheme is extended to determine the distribution of spectra. In the third part, the Fokker-Planck equation is applied to calculate the statistics of sequences of binary decisions from diffusion-decision models (DDM). For the analytically tractable DDM, the statistics are calculated from the corresponding Fokker-Planck equation. To determine the statistics for nonlinear models, the threshold-integration method is generalized.
Daya, Bassam. "Résolution numérique des équations du champ neural : étude de la coordination du mouvement par des modèles mathématiques du cervelet." Angers, 1996. http://www.theses.fr/1996ANGE0013.
Full textQuininao, Cristobal. "Mathematical modeling in neuroscience : collective behavior of neuronal networks & the role of local homeoproteins diffusion in morphogenesis." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066152/document.
Full textThis work is devoted to the study of mathematical questions arising from the modeling of biological systems combining analytic and probabilistic tools. In the first part, we are interested in the derivation of the mean-field equations related to some neuronal networks, and in the study of the convergence to the equilibria of the solutions to the limit equations. In Chapter 2, we use the coupling method to prove the chaos propagation for a neuronal network with delays and random architecture. In Chapter 3, we consider a kinetic FitzHugh-Nagumo equation. We analyze the existence of solutions and prove the nonlinear exponential convergence in the weak connectivity regime. In the second part, we study the role of homeoproteins (HPs) on the robustness of boundaries of functional areas. In Chapter 4, we propose a general model for neuronal development. We prove that in the absence of diffusion, the HPs are expressed on irregular areas. But in presence of diffusion, even arbitrarily small, well defined boundaries emerge. In Chapter 5, we consider the general model in the one dimensional case and prove the existence of monotonic stationary solutions defining a unique intersection point for any arbitrarily small diffusion coefficient. Finally, in the third part, we study a subcritical Keller-Segel equation. We show the chaos propagation without any restriction on the force kernel. Eventually, we demonstrate that the propagation of chaos holds in the entropic sense
Костів, Б. В. "Удосконалення безкоштовного визначення струмів в стінках підземних трубопроводів для контролю їх ізоляційного покриття." Thesis, Івано-Франківський національний технічний університет нафти і газу, 2010. http://elar.nung.edu.ua/handle/123456789/1974.
Full textУ дисертації розроблено спосіб безконтактного визначення струму в стінках одного підземного трубопроводу на основі однократного вимірювання напруженостей п’ятьма магнітними антенами, що знаходяться в двох блоках, без попередньої орієнтації бази вимірювальної системи в перпендикулярній до осі трубопроводу площині. Розроблено спосіб автоматичного профілювання горизонтальної складової напруженості магнітного поля при проходженні із вимірювачьною системою над трубопроводами в перпендикулярному відносно їх осей напрямку. Запропоновано використання трьохшарової нейронної мережі для безконтактного визначення струму в стінках одного і двох підземних трубопроводів на основі даних профілю напруженостей магнітного поля над цими трубопроводами. Розроблено спосіб, в якому передбачено використання умовних рівнянь і отримання на їх базі нормальних рівнянь для безконтактного визначення струмів в стінках підземних трубопроводів при перпендикулярному проходженні над ними. Запропоновано структурну схему і виготовлено систему для безконтактного визначення струму в стінках підземних трубопроводів, яка реалізує всі запропоновані способи визначення цих струмів. Виконано метрологічний аналіз розробленої системи безконтактного визначення струмів в підземних трубопроводах, розроблена установка, яка дає змогу проводити експериментальні дослідження метрологічних характеристик розробленої системи безконтактного визначення струмів в підземних трубопроводах, а також подібних їй приладів і систем. Визначено метрологічні показники розробленої системи при безконтактному визначенні струмів у стінках контрольованих трубопроводів. Проведені лабораторні, польові і промислові випробування розробленої системи, які підтвердили її працездатність і можливість використання для контролю ізоляційного покриття підземних трубопроводів на основі заникання струму вздовж траси.
Books on the topic "Neural fields equations"
Potthast, Roland, P. Beim Graben, Wright James, and Stephen Coombes. Neural Fields: Theory and Applications. Springer Berlin / Heidelberg, 2016.
Find full textPotthast, Roland, Wright James, Stephen Coombes, and Peter beim Graben. Neural Fields: Theory and Applications. Springer London, Limited, 2014.
Find full textWaves In Neural Media From Single Neurons To Neural Fields. Springer-Verlag New York Inc., 2013.
Find full textWadman, Wytse J., and Fernando H. Lopes da Silva. Biophysical Aspects of EEG and MEG Generation. Edited by Donald L. Schomer and Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0004.
Full textvan Hinsbergh, Victor W. M. Physiology of blood vessels. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198755777.003.0002.
Full textBook chapters on the topic "Neural fields equations"
Helias, Moritz, and David Dahmen. "Functional Formulation of Stochastic Differential Equations." In Statistical Field Theory for Neural Networks, 57–67. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46444-8_7.
Full textHelias, Moritz, and David Dahmen. "Perturbation Theory for Stochastic Differential Equations." In Statistical Field Theory for Neural Networks, 77–93. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46444-8_9.
Full textAlecu, Lucian, and Hervé Frezza-Buet. "Application-Driven Parameter Tuning Methodology for Dynamic Neural Field Equations." In Neural Information Processing, 135–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10677-4_15.
Full textLa Camera, Giancarlo. "The Mean Field Approach for Populations of Spiking Neurons." In Advances in Experimental Medicine and Biology, 125–57. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89439-9_6.
Full textLa Camera, Giancarlo. "The Mean Field Approach for Populations of Spiking Neurons." In Advances in Experimental Medicine and Biology, 125–57. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89439-9_6.
Full textLima, Pedro M. "Numerical Investigation of Stochastic Neural Field Equations." In Advances in Mechanics and Mathematics, 51–67. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02487-1_2.
Full textTakabe, Hideaki. "Basic Properties of Plasma in Fluid Model." In Springer Series in Plasma Science and Technology, 15–97. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-45473-8_2.
Full textBurlakov, Evgenii, Vitaly Verkhlyutov, Ivan Malkov, and Vadim Ushakov. "Assessment of Cortical Travelling Waves Parameters Using Radially Symmetric Solutions to Neural Field Equations with Microstructure." In Advances in Neural Computation, Machine Learning, and Cognitive Research IV, 51–57. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60577-3_5.
Full textTakabe, Hideaki. "Non-local Transport of Electrons in Plasmas." In Springer Series in Plasma Science and Technology, 285–323. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-45473-8_6.
Full textHaskell, Evan C., and Vehbi E. Paksoy. "Localized Activity States for Neuronal Field Equations of Feature Selectivity in a Stimulus Space with Toroidal Topology." In Nonlinear and Complex Dynamics, 207–16. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0231-2_17.
Full textConference papers on the topic "Neural fields equations"
Yan, Chang, Shengjun Ju, Dilong Guo, Guowei Yang, and Shuanbao Yao. "Inferring Unsteady Wake Flow Fields From Partial Data by Physics-Informed Neural Networks." In ASME 2022 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/fedsm2022-86945.
Full textJo, Minju, Seungji Kook, and Noseong Park. "Hawkes Process Based on Controlled Differential Equations." In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/239.
Full textZhang, Chi, Shihao Wang, and Yu-Shu Wu. "A Physics-Informed Neural Network for Temporospatial Prediction of Hydraulic-Geomechanical Processes." In SPE Reservoir Simulation Conference. SPE, 2023. http://dx.doi.org/10.2118/212202-ms.
Full textPost, Pascal, Benjamin Winhart, and Francesca di Mare. "Investigation of Physics-Informed Neural Networks Based Solution Techniques for Internal Flows." In ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-80960.
Full textWang, Jun, Kevin Chiu, and Mark Fuge. "Learning to Abstract and Compose Mechanical Device Function and Behavior." In ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22714.
Full textYe, Ximeng, Hongyu Li, and Guoliang Qin. "Solving Flows Across Rotor and Stator Cascades With Local Neural Operator for Computational Fluid Dynamics." In ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-116339.
Full textNagy, Allen L. "Individual differences in color discrimination and neural coding." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.my4.
Full textAlhubail, Ali, Marwan Fahs, Francois Lehmann, and Hussein Hoteit. "Physics-Informed Neural Networks for Modeling Flow in Heterogeneous Porous Media: A Decoupled Pressure-Velocity Approach." In International Petroleum Technology Conference. IPTC, 2024. http://dx.doi.org/10.2523/iptc-24362-ms.
Full textCai, Shengze, Zhicheng Wang, Chryssostomos Chryssostomidis, and George Em Karniadakis. "Heat Transfer Prediction With Unknown Thermal Boundary Conditions Using Physics-Informed Neural Networks." In ASME 2020 Fluids Engineering Division Summer Meeting collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/fedsm2020-20159.
Full textTaraghi, Pouya, Yong Li, Nader Yoosef-Ghodsi, Matt Fowler, Muntaseer Kainat, and Samer Adeeb. "Response of Buried Pipelines Under Permanent Ground Movements: Physics-Informed Deep Neural Network Approach." In ASME 2023 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/pvp2023-106201.
Full textReports on the topic "Neural fields equations"
Warrick, Arthur W., Gideon Oron, Mary M. Poulton, Rony Wallach, and Alex Furman. Multi-Dimensional Infiltration and Distribution of Water of Different Qualities and Solutes Related Through Artificial Neural Networks. United States Department of Agriculture, January 2009. http://dx.doi.org/10.32747/2009.7695865.bard.
Full text