Dissertations / Theses on the topic 'Neural border'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 17 dissertations / theses for your research on the topic 'Neural border.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Blair, Joel. "Building a better Placode: Modeling Neural Plate Border interactions with hPSCs." University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1627663141272833.
Full textPatthey, Cédric. "Induction of the isthmic organizer and specification of the neural plate border." Doctoral thesis, Umeå universitet, Umeå centrum för molekylär medicin (UCMM), 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1811.
Full textPatthey, Cédric. "Induction of the isthmic organizer and specification of the neural plate border /." Umeå : Univ, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1811.
Full textHerng, Eduardo Wu Jyh. "Detecção de bordas em imagens de ecocardiografia utilizando redes neurais artificiais." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/98/98131/tde-04062012-083028/.
Full textBeing non-invasive and having low cost, the echocardiography has been largely applied as diagnostic technique for left ventricle systolic and diastolic volumes determination that indirectly are used to calculate the left ventricle ejection volume, the cardiac cavities muscular contraction, the regional and global ejection fraction, the myocardial thickness, the ventricular mass, etc. For this reason, the detection of the left ventricle endocardial borders become necessary, but hampered by the noise that impairs the echocardiography images definition. In spite of having many image segmentation techniques, this work intend to detect the borders of left ventricle on echocardiography images by using a artificial neural network to recognize border patterns. To accelerate the process and facilitate the procedure, the operator uses the mouse to define a rectangular region inside the acoustic window of the pacient where all analyses and border recognitions will be accomplished. After labeling the recognized points as \'border\', gradient techniques and mobile boundary are used to connect the points of greater probability and delineate the left ventricle border. This technique has proved to be efficient when compared to the borders traced by the specialist. The ability of the operator is important in choosing of the region to be analyzed. After training with 50 samples of \"border\" pattern and 10 samples of \"no-border\" pattern, this technique was tested on 108 images, achieving good results on precision and velocitiy when we compared the calculated left ventricle area with the results of other techniques published on national and international literature.
Rossi, Christy Cortez. "Early development of two cell populations at the neural plate border : rohon-beard sensory neurons and neural crest cells /." Connect to full text via ProQuest. Limited to UCD Anschutz Medical Campus, 2008.
Find full textIncludes bibliographical references (leaves 112-120). Free to UCD affiliates. Online version available via ProQuest Digital Dissertations;
Liu, Boqi. "The gene regulatory network in the anterior neural plate border of ascidian embryos." Kyoto University, 2020. http://hdl.handle.net/2433/253119.
Full textWhite, Cory B. "A Neural Network Approach to Border Gateway Protocol Peer Failure Detection and Prediction." DigitalCommons@CalPoly, 2009. https://digitalcommons.calpoly.edu/theses/215.
Full textGrieves, Roderick McKinlay. "The neural basis of a cognitive map." Thesis, University of Stirling, 2015. http://hdl.handle.net/1893/21878.
Full textAn, Min. "Positional cloning and functional analysis of the SF3B1gene in zebrafish." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1180528932.
Full textGhimouz, Rym. "Caractérisation du rôle des facteurs de transcription Homez et CBFbeta au cours de la neurogenèse et de la formation de la crête neurale chez Xenopus laevis." Doctoral thesis, Universite Libre de Bruxelles, 2012. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209568.
Full textLe premier clone d’ADNc code pour l’homologue du facteur de transcription Homez, contenant trois homéodomaines et deux motifs leucine zipper et dont la fonction est inconnue. Mes résultats ont montré que chez l’embryon de xénope au stade neurula, Homez est exprimé préférentiellement dans la plaque neurale, l’expression la plus forte étant détectée dans les domaines où les neurones primaires apparaissent. Plus tard, Homez est détecté dans le tube neural dans des cellules neurales postmitotiques en cours de différenciation. En accord avec ce profil d’expression, j’ai observé que Homez est régulé positivement par l’atténuation des signaux BMPs et par le facteur proneural Ngnr1 et négativement par la voie Notch. Bien que le facteur Homez ne soit pas suffisant pour induire une expression ectopique de marqueurs neuronaux dans l’embryon de xénope, j’ai pu montrer, en utilisant une approche de morpholino antisens, que celui-ci est requis en aval du facteur Ngnr1 pour la différenciation des précurseurs neuraux en neurones primaires.
Le deuxième clone code pour l’homologue du facteur CBFβ qui s’associe avec une famille de protéines CBFα1-3/Aml1-3/Runx1-3 pour former un complexe hétérodimérique liant l’ADN. Alors que chez la souris, les facteurs Runx1 et Runx3 jouent un rôle important dans la neurogenèse dans les ganglions spinaux et que chez le xénope, Runx1 est requis pour la formation des neurones Rohon-Beard, le rôle de CBFβ au cours du développement du système nerveux est actuellement mal connu. Mes résultats ont montré que chez l’embryon de xénope au stade neurula, CBFβ est coexprimé avec les facteurs Runx1-3 en bordure de la plaque neurale, mais de manière plus étendue et plus précoce. Comme attendu pour un marqueur de la bordure de la plaque neurale, j’ai observé que l’expression de CBFβ est régulée par les signaux BMP, Wnt, FGF et Notch. De manière intéressante, son expression est induite par les facteurs proneuraux alors que celle de Runx1 est inhibée. Des expériences de perte de fonction à l’aide de morpholinos antisens bloquant la traduction de CBFβ ont été réalisées. Ces expériences suggèrent que le facteur CBFβ est nécessaire à la mise en place de la CN et à la différenciation des neurones de Rohon-Beard.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Hatanaka, Takahiro. "Studies of transport of neutral/basic amino acids and amino acid-derivative drugs using intestinal brush border membrane vesicles and the ATB[0,+] clone." Kyoto University, 2002. http://hdl.handle.net/2433/149524.
Full textWisniewski, Miriam Salete Wilk. "Efeitos da administração intracerebroventricular do ácido α-cetoisocaproico sobre parâmetros neuroquímicos em ratos jovens." reponame:Repositório Institucional da UNESC, 2015. http://repositorio.unesc.net/handle/1/3962.
Full textA doença da urina do xarope do bordo (DXB) é um distúrbio neurometabólico de herança autossômica recessiva, causado por uma deficiência da atividade do complexo desidrogenase dos α-cetoácidos de cadeia ramificada. Esta deficiência leva ao acúmulo dos aminoácidos de cadeia ramificada (AACR) leucina, isoleucina e valina, bem como de seus α-cetoácidos correspondentes em tecidos e líquidos corporais de pacientes. O acúmulo destes interfere no metabolismo astrocítico e neuronal, sendo que concentrações elevadas de leucina e do ácido α-cetoisocaproico (CIC) são consideradas particularmente tóxicas ao cérebro. Acredita-se que o CIC seja o mais tóxico dos cetoácidos, visto que esse inibiu o consumo de oxigênio cerebral, induziu estresse oxidativo, provocou deficiência na formação de mielina em cerebelo de ratos e está associado ao aparecimento de sintomas neurológicos. No entanto, até o momento, os mecanismos fisiopatológicos não estão completamente estabelecidos. Considerando que a viabilidade neuronal pode ser afetada pela redução dos fatores neurotróficos e pelo estresse oxidativo, o propósito deste estudo foi avaliar os efeitos neuroquímicos da administração intracerebroventricular (ICV) de CIC sobre estruturas cerebrais de ratos com 30 dias de vida. Analisaram-se os níveis proteicos do fator neurotrófico derivado do cérebro (BDNF), do pró-BDNF e do fator de crescimento neural (NGF). Também foram avaliados os níveis de substâncias reativas ao ácido tiobarbitúrico (TBA-RS), proteínas carboniladas, atividade das enzimas superóxido dismutase (SOD) e catalase (CAT), bem como o dano ao DNA em hipocampo, estriado e córtex cerebral uma hora após a administração ICV de CIC. Os resultados demonstraram que a administração de CIC reduziu os níveis proteicos do BDNF em hipocampo, estriado e córtex cerebral, sem alterar os níveis proteicos de pró-BDNF. Adicionalmente os níveis proteicos de NGF mostraram-se reduzidos em hipocampo, observou-se aumento significativo da concentração do marcador de peroxidação lipídica TBA-RS, bem como da quantidade de proteínas carboniladas em todas as estruturas cerebrais estudadas. A enzima CAT teve sua atividade reduzida no estriado, enquanto que a atividade da SOD se mostrou aumentada em hipocampo e estriado dos animais que receberam CIC. Por fim, a administração ICV de CIC ocasionou aumento significativo do índice e da frequência de danos ao DNA em todas as estruturas estudadas. Em conclusão, esses resultados sugerem que o CIC causa um desequilíbrio nos níveis de neurotrofinas, bem como induz estresse oxidativo. Baseando-se em dados da literatura que demonstram que os metabólitos acumulados na DXB causam desmielinização e prejuízos na memória, especula-se que os efeitos do CIC encontrados neste trabalho possam colaborar para tais achados por causar redução do suporte trófico de BDNF e NGF, pelo estresse oxidativo e dano ao DNA. Além disso, os baixos níveis de BDNF e NGF são consistentes com a hipótese que um déficit nestes fatores neurotróficos pode contribuir para alterações estruturais e funcionais do cérebro subjacentes à fisiopatologia da DXB, apoiando a hipótese do processo neurodegenerativo na DXB.
COSTA, Diogo Cavalcanti. "Mapa auto-organizável com campo receptivo adaptativo local para segmentação de imagens." Universidade Federal de Pernambuco, 2007. https://repositorio.ufpe.br/handle/123456789/2704.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico
Neste trabalho apresentamos um novo modelo neural para segmentação de imagens, baseado nos Mapas Auto-organizáveis SOM (Mapa Auto-organizável - Self-organizing Map) e GWR (Crescer Quando Requerido - Grow When Required) chamado de LARFSOM (Mapa Auto-organizável com Campo Receptivo Adaptativo Local - Local Adaptive Receptive Field Self-organizing Map). As características principais do modelo são: número adaptativo de nodos, topologia variável, inserção de novos nodos baseada em uma medida de similaridade dos protótipos existentes em relação ao padrão de entrada aferida por meio de campo receptivo, remoção de nodos com informações não significativas ao final do treinamento, rápida convergência e baixo custo de processamento para o treinamento. A rede LARFSOM é capaz de segmentar imagens por cor ou por borda: a primeira, é feita através do agrupamento de informações ocorrido no treinamento da rede LAFRSOM seguido de um processo de quantização de cores; já a segunda, ocorre pelo acréscimo de dois nodos RBF (Função de Base Radial - Radial Basis Function) à rede LARFSOM, criando um modelo de dois estágios chamado LARFSOM-RBF. Adicionalmente, o modelo é capaz de salvar em um formato variante do BMP indexado tanto a rede treinada como as informações espaciais dos pixels da imagem. Acrescido de compactação tipo ZIP o arquivo a ser salvo torna-se bem reduzido. Comparações com outros modelos neurais como o SOM, FS-SOM (Mapa Auto-organizável Sensível à Freqüência - Frequency Sensitive Self-organizing Map) e GNG (Gás Neural Crescente - Growing Neural Gas) são feitas mediante segmentação de imagens do mundo real com diferentes níveis de complexidade. Técnicas de processamento de imagens e o formato JPEG são usados para fins de comparação. Os resultados mostram que a rede LARFSOM atinge maior variação de cores da paleta e melhor distribuição espacial 3D RGB das cores selecionadas que os demais modelos. A qualidade das imagens geradas também figura entre os melhores resultados obtidos
Marais, Elbert. "Predicting Global Internet Instability Caused by Worms using Neural Networks." Thesis, 2006. http://hdl.handle.net/10539/1817.
Full textInternet worms are capable of quickly propagating by exploiting vulnerabilities of hosts that have access to the Internet. Once a computer has been infected, the worms have access to sensitive information on the computer, and are able to corrupt or retransmit this information. This dissertation describes a method of predicting Internet instability due to the presence of a worm on the Internet, using data currently available from global Internet routers. The work is based on previous research which has indicated a link between the increase in the number of Border Gateway Protocol (BGP) routing messages and global Internet instability. The type of system used to provide the prediction is known as an autoencoder. This is a specialised type of neural network, which is able to provide a degree of novelty for inputs. The autoencoder is trained to recognise “normal” data, and therefore provides a high novelty output for inputs dissimilar to the normal data. The BGP Update routing messages sent between routers were used as the only inputs to the autoencoder. These intra-router messages provide route availability information, and inform neighbouring routers of any route changes. The outputs from the network were shown to help provide an early warning mechanism for the presence of a worm. An alternative method for detecting instability is a rule-based system, which generates alarms if the number of certain BGP routing messages exceeds a prespecified threshold. This project compared the autoencoder to a simple rule-based system. The results showed that the autoencoder provided a better prediction and was less complex for a network administrator to configure. Although the correlation between the number of BGP Updates and global Internet instability has been shown previously, this work presents the first known application of a neural network to predict the instability using this correlation. A system based on this strategy has the potential to reduce the damage done by a worm’s propagation and payload, by providing an automated means of detection that is faster than that of a human.
Richards, Whitman, and H. Sebastian Seung. "Neural Voting Machines." 2004. http://hdl.handle.net/1721.1/30513.
Full textEsteves, Leonardo Galveias. "Federated Learning for IoT Edge Computing: An Experimental Study." Master's thesis, 2022. http://hdl.handle.net/10316/99424.
Full textOs dados gerados por anualmente rondam os 40 trilhões de gigabytes. Este aumento significativo de dados todos os anos trás a necessidade de assegurar a proteção de informação sensível. A Inteligência Artificial tem vindo a melhorar cada vez mais os seus resultados, apresentando modelos capazes de responder rigorosamente em áreas de atuação críticas, por exemplo, medicina, veículos autónomos, robótica, etc. Estes algoritmos precisam de enormes quantidades de dados disponíveis para otimizarem ao máximo a sua resposta perante todos a sua área de operação.Surgiu a necessidade de continuar a melhorar estes algoritmos mantendo a privacidade e confidencialidade dos dados utilizados.Desta forma, foi criado o conceito de Federated Learning. O Federated Learning permite continuar a treinar algoritmos de Machine Learning sem partilhar os dados utilizados para a convergência do modelo. O Federated Learning apresenta apresenta algumas similaridades com o Distributed Learning. Em ambos os conceitos o treino é distribuido, no entanto o Federated Learning descentraliza também os dados de forma a manter a informação privada.O objetivo desta dissertação passa por explorar o conceito de Federated Learning, assim como comparar diretamente este conceito com o Machine Learning centralizado. Para tal, é mostrada a arquitetura necessária para a construção de uma solução federada. Este documento apresenta ainda resultados obtidos com soluções federadas tanto em ambiente de simulação como numa implementação em ambiente real. Finalmente, é também apresentado um ponto de vista dos resultados obtidos e opções de otimização de uma solução com Federated Learning são discutidas.
The data generated annually is around 40 trillion gigabytes. This significant increase in data every year brings with it the need to ensure the protection of sensitive information. Artificial Intelligence has been improving its results more and more, presenting models capable of responding rigorously in critical areas, for example medicine, autonomous vehicles, robotics, etc. These algorithms need huge amounts of available data to optimize their response to all their area of operation.The urge to continue to improve these algorithms while maintaining the privacy and confidentiality of the data used emerged.Thus, the concept of Federated Learning was created. Federated Learning allows to continue training Machine Learning algorithms without sharing the data used for model convergence. Federated Learning has some similarities with Distributed Learning. In both concepts the training is distributed, however, Federated Learning also decentralizes the data in order to keep the information private.The objective of this dissertation is to explore the concept of Federated Learning, as well as to directly compare this concept with centralized Machine Learning. To this end, the architecture required to build a federated solution is analyzed in depth. This dissertation also presents results obtained with federated solutions in both simulation and real-world deployment. Finally, a viewpoint of the obtained results is also presented, and options for optimizing a solution with Federated Learning are discussed.
Ganin, Iaroslav. "Natural image processing and synthesis using deep learning." Thèse, 2019. http://hdl.handle.net/1866/23437.
Full textIn the present thesis, we study how deep neural networks can be applied to various tasks in computer vision. Computer vision is an interdisciplinary field that deals with understanding of digital images and video. Traditionally, the problems arising in this domain were tackled using heavily hand-engineered adhoc methods. A typical computer vision system up until recently consisted of a sequence of independent modules which barely talked to each other. Such an approach is quite reasonable in the case of limited data as it takes major advantage of the researcher's domain expertise. This strength turns into a weakness if some of the input scenarios are overlooked in the algorithm design process. With the rapidly increasing volumes and varieties of data and the advent of cheaper and faster computational resources end-to-end deep neural networks have become an appealing alternative to the traditional computer vision pipelines. We demonstrate this in a series of research articles, each of which considers a particular task of either image analysis or synthesis and presenting a solution based on a ``deep'' backbone. In the first article, we deal with a classic low-level vision problem of edge detection. Inspired by a top-performing non-neural approach, we take a step towards building an end-to-end system by combining feature extraction and description in a single convolutional network. The resulting fully data-driven method matches or surpasses the detection quality of the existing conventional approaches in the settings for which they were designed while being significantly more usable in the out-of-domain situations. In our second article, we introduce a custom architecture for image manipulation based on the idea that most of the pixels in the output image can be directly copied from the input. This technique bears several significant advantages over the naive black-box neural approach. It retains the level of detail of the original images, does not introduce artifacts due to insufficient capacity of the underlying neural network and simplifies training process, to name a few. We demonstrate the efficiency of the proposed architecture on the challenging gaze correction task where our system achieves excellent results. In the third article, we slightly diverge from pure computer vision and study a more general problem of domain adaption. There, we introduce a novel training-time algorithm (\ie, adaptation is attained by using an auxilliary objective in addition to the main one). We seek to extract features that maximally confuse a dedicated network called domain classifier while being useful for the task at hand. The domain classifier is learned simultaneosly with the features and attempts to tell whether those features are coming from the source or the target domain. The proposed technique is easy to implement, yet results in superior performance in all the standard benchmarks. Finally, the fourth article presents a new kind of generative model for image data. Unlike conventional neural network based approaches our system dubbed SPIRAL describes images in terms of concise low-level programs executed by off-the-shelf rendering software used by humans to create visual content. Among other things, this allows SPIRAL not to waste its capacity on minutae of datasets and focus more on the global structure. The latent space of our model is easily interpretable by design and provides means for predictable image manipulation. We test our approach on several popular datasets and demonstrate its power and flexibility.