Academic literature on the topic 'Neumann problems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Neumann problems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Neumann problems"

1

Manning, Robert S. "Conjugate Points Revisited and Neumann–Neumann Problems." SIAM Review 51, no. 1 (February 5, 2009): 193–212. http://dx.doi.org/10.1137/060668547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Szajewska, Marzena, and Agnieszka Tereszkiewicz. "TWO-DIMENSIONAL HYBRIDS WITH MIXED BOUNDARY VALUE PROBLEMS." Acta Polytechnica 56, no. 3 (June 30, 2016): 245. http://dx.doi.org/10.14311/ap.2016.56.0245.

Full text
Abstract:
Boundary value problems are considered on a simplex <em>F</em> in the real Euclidean space R<sup>2</sup>. The recent discovery of new families of special functions, orthogonal on <em>F</em>, makes it possible to consider not only the Dirichlet or Neumann boundary value problems on <em>F</em>, but also the mixed boundary value problem which is a mixture of Dirichlet and Neumann type, ie. on some parts of the boundary of <em>F</em> a Dirichlet condition is fulfilled and on the other Neumann’s works.
APA, Harvard, Vancouver, ISO, and other styles
3

Gasiński, Leszek, Liliana Klimczak, and Nikolaos S. Papageorgiou. "Nonlinear noncoercive Neumann problems." Communications on Pure and Applied Analysis 15, no. 4 (April 2016): 1107–23. http://dx.doi.org/10.3934/cpaa.2016.15.1107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gasiński, Leszek, and Nikolaos S. Papageorgiou. "Anisotropic nonlinear Neumann problems." Calculus of Variations and Partial Differential Equations 42, no. 3-4 (January 19, 2011): 323–54. http://dx.doi.org/10.1007/s00526-011-0390-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Motreanu, D., V. V. Motreanu, and N. S. Papageorgiou. "On resonant Neumann problems." Mathematische Annalen 354, no. 3 (December 23, 2011): 1117–45. http://dx.doi.org/10.1007/s00208-011-0763-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nittka, Robin. "Inhomogeneous parabolic Neumann problems." Czechoslovak Mathematical Journal 64, no. 3 (September 2014): 703–42. http://dx.doi.org/10.1007/s10587-014-0127-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gasiński, Leszek, and Nikolaos S. Papageorgiou. "Nonlinear Neumann Problems with Constraints." Funkcialaj Ekvacioj 56, no. 2 (2013): 249–70. http://dx.doi.org/10.1619/fesi.56.249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Motreanu, D., V. V. Motreanu, and N. S. Papageorgiou. "Nonlinear Neumann problems near resonance." Indiana University Mathematics Journal 58, no. 3 (2009): 1257–80. http://dx.doi.org/10.1512/iumj.2009.58.3565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ferone, V., and A. Mercaldo. "Neumann Problems and Steiner Symmetrization." Communications in Partial Differential Equations 30, no. 10 (September 2005): 1537–53. http://dx.doi.org/10.1080/03605300500299596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bramanti, Marco. "Symmetrization in parabolic neumann problems." Applicable Analysis 40, no. 1 (January 1991): 21–39. http://dx.doi.org/10.1080/00036819008839990.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Neumann problems"

1

Yang, Xue. "Neumann problems for second order elliptic operators with singular coefficients." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/neumann-problems-for-second-order-elliptic-operators-with-singular-coefficients(2e65b780-df58-4429-89df-6d87777843c8).html.

Full text
Abstract:
In this thesis, we prove the existence and uniqueness of the solution to a Neumann boundary problem for an elliptic differential operator with singular coefficients, and reveal the relationship between the solution to the partial differential equation (PDE in abbreviation) and the solution to a kind of backward stochastic differential equations (BSDE in abbreviation).This study is motivated by the research on the Dirichlet problem for an elliptic operator (\cite{Z}). But it turns out that different methods are needed to deal with the reflecting diffusion on a bounded domain. For example, the integral with respect to the boundary local time, which is a nondecreasing process associated with the reflecting diffusion, needs to be estimated. This leads us to a detailed study of the reflecting diffusion. As a result, two-sided estimates on the heat kernels are established. We introduce a new type of backward differential equations with infinity horizon and prove the existence and uniqueness of both L2 and L1 solutions of the BSDEs. In this thesis, we use the BSDE to solve the semilinear Neumann boundary problem. However, this research on the BSDEs has its independent interest. Under certain conditions on both the "singular" coefficient of the elliptic operator and the "semilinear coefficient" in the deterministic differential equation, we find an explicit probabilistic solution to the Neumann problem, which supplies a L2 solution of a BSDE with infinite horizon. We also show that, less restrictive conditions on the coefficients are needed if the solution to the Neumann boundary problem only provides a L1 solution to the BSDE.
APA, Harvard, Vancouver, ISO, and other styles
2

Kulkarni, Mandar S. "Multi-coefficient Dirichlet Neumann type elliptic inverse problems with application to reflection seismology." Birmingham, Ala. : University of Alabama at Birmingham, 2009. https://www.mhsl.uab.edu/dt/2010r/kulkarni.pdf.

Full text
Abstract:
Thesis (Ph. D.)--University of Alabama at Birmingham, 2009.
Title from PDF t.p. (viewed July 21, 2010). Additional advisors: Thomas Jannett, Tsun-Zee Mai, S. S. Ravindran, Günter Stolz, Gilbert Weinstein. Includes bibliographical references (p. 59-64).
APA, Harvard, Vancouver, ISO, and other styles
3

Karimianpour, Camelia. "The Stone-von Neumann Construction in Branching Rules and Minimal Degree Problems." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34240.

Full text
Abstract:
In Part I, we investigate the principal series representations of the n-fold covering groups of the special linear group over a p-adic field. Such representations are constructed via the Stone-von Neumann theorem. We have three interrelated results. We first compute the K-types of these representations. We then give a complete set of reducibility points for the unramified principal series representations. Among these are the unitary unramified principal series representations, for which we further investigate the distribution of the K-types among its irreducible components. In Part II, we demonstrate another application of the Stone-von Neumann theorem. Namely, we present a lower bound for the minimal degree of a faithful representation of an adjoint Chevalley group over a quotient ring of a non-Archimedean local field.
APA, Harvard, Vancouver, ISO, and other styles
4

Guo, Sheng. "On Neumann Problems for Fully Nonlinear Elliptic and Parabolic Equations on Manifolds." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1571696906482925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

PERROTTA, Antea. "Differential Formulation coupled to the Dirichlet-to-Neumann operator for scattering problems." Doctoral thesis, Università degli studi di Cassino, 2020. http://hdl.handle.net/11580/75845.

Full text
Abstract:
This Thesis proposes the use of the Dirichlet-to-Neumann (DtN) operator to improve the accuracy and the efficiency of the numerical solution of an electromagnetic scattering problem, described in terms of a differential formulation. From a general perspective, the DtN operator provides the “connection” (the mapping) between the Dirichlet and the Neumann data onto a proper closed surface. This allows truncation of the computational domain when treating a scattering problem in an unbounded media. Moreover, the DtN operator provides an exact boundary condition, in contrast to other methods such as Perfectly Matching Layer (PML) or Absorbing Boundary Conditions (ABC). In addition, when the surface where the DtN is introduced has a canonical shape, as in the present contribution, the DtN operator can be computed analytically. This thesis is focused on a 2D geometry under TM illumination. The numerical model combines a differential formulation with the DtN operator defined onto a canonical surface where it can be computed analytically. Test cases demonstrate the accuracy and the computational advantage of the proposed technique.
APA, Harvard, Vancouver, ISO, and other styles
6

Alcántara, Bode Julio, and J. Yngvason. "Algebraic quantum field theory and noncommutative moment problems I." Pontificia Universidad Católica del Perú, 2013. http://repositorio.pucp.edu.pe/index/handle/123456789/96072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alsaedy, Ammar, and Nikolai Tarkhanov. "Normally solvable nonlinear boundary value problems." Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2013/6507/.

Full text
Abstract:
We study a boundary value problem for an overdetermined elliptic system of nonlinear first order differential equations with linear boundary operators. Such a problem is solvable for a small set of data, and so we pass to its variational formulation which consists in minimising the discrepancy. The Euler-Lagrange equations for the variational problem are far-reaching analogues of the classical Laplace equation. Within the framework of Euler-Lagrange equations we specify an operator on the boundary whose zero set consists precisely of those boundary data for which the initial problem is solvable. The construction of such operator has much in common with that of the familiar Dirichlet to Neumann operator. In the case of linear problems we establish complete results.
APA, Harvard, Vancouver, ISO, and other styles
8

Orey, Maria de Serpa Salema Reis de. "Factorization of elliptic boundary value problems by invariant embedding and application to overdetermined problems." Doctoral thesis, Faculdade de Ciências e Tecnologia, 2011. http://hdl.handle.net/10362/8677.

Full text
Abstract:
Dissertação para obtenção do Grau de Doutor em Matemática
The purpose of this thesis is the factorization of elliptic boundary value problems defined in cylindrical domains, in a system of decoupled first order initial value problems. We begin with the Poisson equation with mixed boundary conditions, and use the method of invariant embedding: we embed our initial problem in a family of similar problems, defined in sub-domains of the initial domain, with a moving boundary, and an additional condition in the moving boundary. This factorization is inspired by the technique of invariant temporal embedding used in Control Theory when computing the optimal feedback, for, in fact, as we show, our initial problem may be defined as an optimal control problem. The factorization thus obtained may be regarded as a generalized block Gauss LU factorization. From this procedure emerges an operator that can be either the Dirichlet-to-Neumann or the Neumann-to-Dirichlet operator, depending on which boundary data is given on the moving boundary. In any case this operator verifies a Riccati equation that is studied directly by using an Yosida regularization. Then we extend the former results to more general strongly elliptic operators. We also obtain a QR type factorization of the initial problem, where Q is an orthogonal operator and R is an upper triangular operator. This is related to a least mean squares formulation of the boundary value problem. In addition, we obtain the factorization of overdetermined boundary value problems, when we consider an additional Neumann boundary condition: if this data is not compatible with the initial data, then the problem has no solution. In order to solve it, we introduce a perturbation in the original problem and minimize the norm of this perturbation, under the hypothesis of existence of solution. We deduce the normal equations for the overdetermined problem and, as before, we apply the method of invariant embedding to factorize the normal equations in a system of decoupled first order initial value problems.
APA, Harvard, Vancouver, ISO, and other styles
9

Boller, Stefan. "Spectral Theory of Modular Operators for von Neumann Algebras and Related Inverse Problems." Doctoral thesis, Universitätsbibliothek Leipzig, 2004. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-37397.

Full text
Abstract:
In dieser Arbeit werden die Modularobjekte zu zyklischen und separierenden Vektoren für von-Neumann-Algebren untersucht. Besondere Beachtung erfahren dabei die Modularoperatoren und deren Spektraleigenschaften. Diese Eigenschaften werden genutzt, um Klassifikationen für Lösungen einiger inverser Probleme der Modulartheorie anzugeben. Im ersten Teil der Arbeit wird zunächst der Zusammenhang zwischen dem zyklischen und separierenden Vektor und seinen Modularobjekten mit Hilfe (verallgemeinerter) Spurvektoren für halbendliche und Typ $III_{\lambda}$ Algebren ($0<\lambda<1$) näher untersucht. Diese Untersuchungen erlauben es, das Spektrum der Modularoperatoren für Typ $I$ Algebren anzugeben. Dazu werden die Begriffe {\em zentraler Eigenwert} und zentrale Vielfachheit eingeführt. Weiterhin ergibt sich, dass die Modularoperatoren durch ihre Spektraleigenschaften eindeutig charakterisiert sind. Modularoperatoren für Typ $I_{n}$ Algebren sind genau die $n$-zerlegbaren Operatoren, die multiplikatives, zentrales Spektrum vom Typ $I_{n}$ besitzen. ähnliche Ergebnisse werden auch für Typ $II$ und $III_{\lambda}$ Algebren gewonnen unter der Vorausetzung, dass die zugehörigen Vektoren diagonalisierbar sind. Im zweiten Teil der Arbeit werden diese Ergebnisse exemplarisch auf ein inverses Problem der Modulartheorie angewendet. Dabei stellt sich heraus, dass die Begriffe zentraler Eigenwert und zentrale Vielfachheit Invarianten des inversen Problems sind und eine vollständige Klassifizierung seiner Lösungen unter obigen Voraussetzungen erlauben. Außerdem wird eine Klasse von Modularoperatoren untersucht, für die das inversese Problem nur ein oder zwei Lösungsklassen besitzt
In this work modular objects of cyclic and separating vectors for von~Neumann~algebras are considered. In particular, the modular operators and their spectral properties are investigated. These properties are used to classify the solutions of some inverse problems in modular theory. In the first part of the work the correspondence between cyclic and separating vectors and their modular objects are considered for semifinite and type $III_{\lambda}$ algebras ($0<\lambda<1$) in more detail, where (generalized) trace vectors are used. These considerations allow to compute the spectrum of modular operators for type $I$ algebras. To this end, the notions of central eigenvalue and central multiplicity are introduced. Furthermore, it is stated that modular operators are uniquely determined by their spectral properties. Modular operators for type $I_{n}$ algebras are exactly the $n$-decomposable operators, which possess {\em multiplicative central spectrum of type $I_{n}$}. Similar results are derived for type $II$ and $III_{\lambda}$ algebras under the assumption that the corresponding vectors are diagonalizable. In the second part of this work these results are applied to an inverse problem of modular theory. It comes out, that the central eigenvalues and central multiplicities are invariants of this inverse problem and that they give a complete classification of its solutions. Moreover, a class of modular operators is investigated, whose inverse problem possesses only one or two classes of solutions
APA, Harvard, Vancouver, ISO, and other styles
10

Hänel, André [Verfasser]. "Singular Problems in Quantum and Elastic Waveguides via Dirichlet-to-Neumann Analysis / André Hänel." Aachen : Shaker, 2015. http://d-nb.info/1080762264/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Neumann problems"

1

The [D-bar] Neumann problem and Schrödinger operators. Berlin: Walter de Gruyter, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Elliot, Tonkes, ed. On the nonlinear Neumann problem with critical and supercritical nonlinearities. Warszawa: Polska Akademia Nauk, Instytut Matematyczny, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Benedek, Agnes Ilona. Remarks on a theorem of Å. Pleijel and related topics. Bahia Blanca, Argentina: INMABB-CONICET, Universidad Nacional del Sur, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

A, Soloviev Alexander, Shaposhnikova Tatyana, and SpringerLink (Online service), eds. Boundary Integral Equations on Contours with Peaks. Basel: Birkhäuser Basel, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Neumann systems for the algebraic AKNS problem. Providence, RI: American Mathematical Society, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Society, European Mathematical, ed. Lectures on the L2-Sobolev theory of the [d-bar]-Neumann problem. Zürich: European Mathematical Society, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tie, Jingzhi. Analysis of the Heisenberg group and applications to the d-bar-Neumann problem. Toronto: [s.n.], 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Benson, Alexander. A new approach to the boundary integral method for the three dimensional Neumann problem. Salford: University of Salford, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Abdulhussain, T. H. The solution of the exterior Neumann problem for arbitrary shaped bodies with particular application to ellipsoids. Salford: University of Salford, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

1974-, Robert Frédéric, and Wei Juncheng 1968-, eds. The Lin-Ni's problem for mean convex domains. Providence, R.I: American Mathematical Society, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Neumann problems"

1

Sayas, Francisco-Javier, Thomas S. Brown, and Matthew E. Hassell. "Poincaré inequalities and Neumann problems." In Variational Techniques for Elliptic Partial Differential Equations, 125–48. Boca Raton, Florida : CRC Press, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/9780429507069-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Serov, Valery. "The Dirichlet and Neumann Problems." In Applied Mathematical Sciences, 437–49. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65262-7_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pflüger, Klaus. "On Indefinite Nonlinear Neumann Problems." In Partial Differential and Integral Equations, 335–46. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4613-3276-3_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schaaf, Renate. "Neumann problems, period maps and semilinear dirichlet problems." In Lecture Notes in Mathematics, 45–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/bfb0098348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Azevedo, A., J. F. Rodrigues, and L. Santos. "The N-membranes Problem with Neumann Type Boundary Condition." In Free Boundary Problems, 55–64. Basel: Birkhäuser Basel, 2006. http://dx.doi.org/10.1007/978-3-7643-7719-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bjørstad, Petter E., and Piotr Krzyżanowski. "A Flexible 2-Level Neumann-Neumann Method for Structural Analysis Problems." In Parallel Processing and Applied Mathematics, 387–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-48086-2_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mortini, Raymond, and Rudolf Rupp. "Polynomial, Noetherian, and von Neumann regular rings." In Extension Problems and Stable Ranks, 1153–94. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73872-3_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Feltrin, Guglielmo. "Neumann and Periodic Boundary Conditions: Existence Results." In Positive Solutions to Indefinite Problems, 69–99. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94238-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Feltrin, Guglielmo. "Neumann and Periodic Boundary Conditions: Multiplicity Results." In Positive Solutions to Indefinite Problems, 101–30. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94238-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Adomian, George. "Decomposition Solutions for Neumann Boundary Conditions." In Solving Frontier Problems of Physics: The Decomposition Method, 190–95. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8289-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Neumann problems"

1

Chien, C. S., and B. W. Jneg. "Continuation-Conjugate Gradient Algorithms for Semilinear Elliptic Neumann Problems." In Proceedings of the Third International Conference on Difference Equations. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.4324/9780203745854-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hasni, Mohd Mughti, Zanariah Abdul Majid, and Norazak Senu. "Solving linear Neumann boundary value problems using block methods." In PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES: Research in Mathematical Sciences: A Catalyst for Creativity and Innovation. AIP, 2013. http://dx.doi.org/10.1063/1.4801145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ciric, I. R. "Formal expressions for the solution of Dirichlet and Neumann problems." In 11th International Symposium on Antenna Technology and Applied Electromagnetics [ANTEM 2005]. IEEE, 2005. http://dx.doi.org/10.1109/antem.2005.7852052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gámez, José L. "Local bifurcation for elliptic problems: Neumann versus Dirichlet boundary conditions." In The First 60 Years of Nonlinear Analysis of Jean Mawhin. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702906_0006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Karachik, V. V., and B. Kh Turmetov. "On a class of Neumann type problems for polyharmonic equation." In PROCEEDINGS OF THE 45TH INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE’19). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5133491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jahanshahi, M. "Reduction of Two Dimensional Neumann and Mixed Boundary Value Problems to Dirichlet Boundary Value Problems." In Proceedings of the 4th International ISAAC Congress. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701732_0017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bendahmane, M., M. Chrif, and S. El Manouni. "Existence and multiplicity results for some p(x)-Laplacian Neumann problems." In Proceedings of the Conference in Mathematics and Mathematical Physics. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814295574_0014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

DI FALCO, ANTONIO GIUSEPPE. "INFINITELY MANY SOLUTIONS TO DIRICHLET AND NEUMANN PROBLEMS FOR QUASILINEAR ELLIPTIC SYSTEMS." In Proceedings of the 5th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835635_0080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mauro Felix Squarcio, Roberto. "APPLYING THE MONTE CARLO λ-NEUMANN MODEL TO STOCHASTIC REACTION-DIFFUSION PROBLEMS." In 24th ABCM International Congress of Mechanical Engineering. ABCM, 2017. http://dx.doi.org/10.26678/abcm.cobem2017.cob17-2894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Moretti, Rocco, and Marc Errera. "Comparison between Dirichlet-Robin and Neumann-Robin Interface Conditions in CHT Problems." In International Conference of Fluid Flow, Heat and Mass Transfer. Avestia Publishing, 2018. http://dx.doi.org/10.11159/ffhmt18.112.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Neumann problems"

1

Bernstein, Carlos A. On an Overdetermined Neumann Problem,. Fort Belvoir, VA: Defense Technical Information Center, July 1987. http://dx.doi.org/10.21236/ada187451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography