Academic literature on the topic 'Neumann boundary control problems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Neumann boundary control problems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Neumann boundary control problems"
López, Ginés, and Juan-Aurelio Montero-Sánchez. "Neumann boundary value problems across resonance." ESAIM: Control, Optimisation and Calculus of Variations 12, no. 3 (June 20, 2006): 398–408. http://dx.doi.org/10.1051/cocv:2006009.
Full textKowalewski, Adam, and Anna Krakowiak. "Optimal boundary control problems of retarded parabolic systems." Archives of Control Sciences 23, no. 3 (September 1, 2013): 261–79. http://dx.doi.org/10.2478/acsc-2013-0016.
Full textBollo, Carolina M., Claudia M. Gariboldi, and Domingo A. Tarzia. "Neumann boundary optimal control problems governed by parabolic variational equalities." Control and Cybernetics 50, no. 2 (June 1, 2021): 227–52. http://dx.doi.org/10.2478/candc-2021-0012.
Full textHamamuki, Nao, and Qing Liu. "A deterministic game interpretation for fully nonlinear parabolic equations with dynamic boundary conditions." ESAIM: Control, Optimisation and Calculus of Variations 26 (2020): 13. http://dx.doi.org/10.1051/cocv/2019076.
Full textGunzburger, Max D., Hyung-Chun Lee, and Jangwoon Lee. "Error Estimates of Stochastic Optimal Neumann Boundary Control Problems." SIAM Journal on Numerical Analysis 49, no. 4 (January 2011): 1532–52. http://dx.doi.org/10.1137/100801731.
Full textEppler, Karsten, and Helmut Harbrecht. "Tracking Neumann Data for Stationary Free Boundary Problems." SIAM Journal on Control and Optimization 48, no. 5 (January 2010): 2901–16. http://dx.doi.org/10.1137/080733760.
Full textWerner, K. D. "Boundary value control problems involving the bessel differential operator." Journal of the Australian Mathematical Society. Series B. Applied Mathematics 27, no. 4 (April 1986): 453–72. http://dx.doi.org/10.1017/s0334270000005075.
Full textKowalewski, Adam, and Marek Miśkowicz. "Extremal Problems for Infinite Order Parabolic Systems with Boundary Conditions Involving Integral Time Lags." Pomiary Automatyka Robotyka 26, no. 4 (December 20, 2022): 37–42. http://dx.doi.org/10.14313/par_246/37.
Full textWong, Kar Hung. "On the computational algorithms for time-lag optimal control problems." Bulletin of the Australian Mathematical Society 32, no. 2 (October 1985): 309–11. http://dx.doi.org/10.1017/s0004972700009989.
Full textKrumbiegel, K., and J. Pfefferer. "Superconvergence for Neumann boundary control problems governed by semilinear elliptic equations." Computational Optimization and Applications 61, no. 2 (December 2, 2014): 373–408. http://dx.doi.org/10.1007/s10589-014-9718-0.
Full textDissertations / Theses on the topic "Neumann boundary control problems"
Pfefferer, Johannes [Verfasser], Thomas [Akademischer Betreuer] Apel, and Arnd [Akademischer Betreuer] Rösch. "Numerical analysis for elliptic Neumann boundary control problems on polygonal domains / Johannes Pfefferer. Universität der Bundeswehr München, Fakultät für Bauingenieurwesen und Umweltwissenschaften. Gutachter: Thomas Apel ; Arnd Rösch. Betreuer: Thomas Apel." Neubiberg : Universitätsbibliothek der Universität der Bundeswehr München, 2014. http://d-nb.info/1054706824/34.
Full textLu, Xing. "La contrôlabilité frontière exacte et la synchronisation frontière exacte pour un système couplé d’équations des ondes avec des contrôles frontières de Neumann et des contrôles frontières couplés de Robin." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAD013/document.
Full textThis thesis studies the widespread natural phenomenon of synchronization, which was first observed by Huygens en 1665. On the basis of the results on the exact boundary controllability, for a coupled system of wave equations with Neumann boundary controls, we consider its exact boundary synchronization (by groups), as well as the determination of the state of synchronization. Then, we consider the exact boundary controllability and the exact boundary synchronization (by groups) for the coupled system with coupled Robin boundary controls. Due to difficulties from the lack of regularity of the solution, we have to face a bigger challenge. In order to overcome this difficulty, we take advantage of the regularity results for the mixed problem with Neumann boundary conditions (Lasiecka and Triggiani) to discuss the exact boundary controllability, and by the method of compact perturbation, to obtain the non-exact controllability for the system
Winkler, Max [Verfasser], Thomas [Akademischer Betreuer] Apel, Olaf [Akademischer Betreuer] Steinbach, and Roland [Akademischer Betreuer] Herzog. "Finite Element Error Analysis for Neumann Boundary Control Problems on Polygonal and Polyhedral Domains / Max Winkler. Universität der Bundeswehr München, Fakultät für Bauingenieurwesen und Umweltwissenschaften. Betreuer: Thomas Apel. Gutachter: Thomas Apel ; Olaf Steinbach ; Roland Herzog." Neubiberg : Universitätsbibliothek der Universität der Bundeswehr München, 2015. http://d-nb.info/1077773129/34.
Full textAlsaedy, Ammar, and Nikolai Tarkhanov. "Normally solvable nonlinear boundary value problems." Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2013/6507/.
Full textYang, Xue. "Neumann problems for second order elliptic operators with singular coefficients." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/neumann-problems-for-second-order-elliptic-operators-with-singular-coefficients(2e65b780-df58-4429-89df-6d87777843c8).html.
Full textOrey, Maria de Serpa Salema Reis de. "Factorization of elliptic boundary value problems by invariant embedding and application to overdetermined problems." Doctoral thesis, Faculdade de Ciências e Tecnologia, 2011. http://hdl.handle.net/10362/8677.
Full textThe purpose of this thesis is the factorization of elliptic boundary value problems defined in cylindrical domains, in a system of decoupled first order initial value problems. We begin with the Poisson equation with mixed boundary conditions, and use the method of invariant embedding: we embed our initial problem in a family of similar problems, defined in sub-domains of the initial domain, with a moving boundary, and an additional condition in the moving boundary. This factorization is inspired by the technique of invariant temporal embedding used in Control Theory when computing the optimal feedback, for, in fact, as we show, our initial problem may be defined as an optimal control problem. The factorization thus obtained may be regarded as a generalized block Gauss LU factorization. From this procedure emerges an operator that can be either the Dirichlet-to-Neumann or the Neumann-to-Dirichlet operator, depending on which boundary data is given on the moving boundary. In any case this operator verifies a Riccati equation that is studied directly by using an Yosida regularization. Then we extend the former results to more general strongly elliptic operators. We also obtain a QR type factorization of the initial problem, where Q is an orthogonal operator and R is an upper triangular operator. This is related to a least mean squares formulation of the boundary value problem. In addition, we obtain the factorization of overdetermined boundary value problems, when we consider an additional Neumann boundary condition: if this data is not compatible with the initial data, then the problem has no solution. In order to solve it, we introduce a perturbation in the original problem and minimize the norm of this perturbation, under the hypothesis of existence of solution. We deduce the normal equations for the overdetermined problem and, as before, we apply the method of invariant embedding to factorize the normal equations in a system of decoupled first order initial value problems.
López, Ríos Juan Carlos. "Water-wave equations and free boundary problems: inverse problems and control." Tesis, Universidad de Chile, 2015. http://repositorio.uchile.cl/handle/2250/135179.
Full textEn este trabajo se aborda el problema de existencia de algunos tipos de soluciones para las ecuaciones de ondas en el agua así como la relación que existe entre estas soluciones y la forma de un fondo impermeable sobre la que se desliza el fluido. Empezamos por describir las ecuaciones que modelan el fenómeno físico a partir de las leyes de conservación; el modelo general de las ecuaciones de ondas en el agua, escrito para la restricción de la velocidad potencial a la superficie libre, es \begin{equation*} \left\{ \begin{aligned} &\partial_t\zeta-G(\zeta,b)\psi=0, \\ &\partial_t\psi+g\zeta+\frac{1}{2}|\nabla_X\psi|^2-\frac{1}{2(1+|\nabla_X\zeta|^2)}(G(\zeta,b)\psi+\nabla_X\zeta\cdot\nabla_X\psi)^2=0, \end{aligned} \right. \end{equation*} donde $G=G(\zeta,b)\psi$ es el operador Dirichlet-Neumann, el cual contiene la información del fondo $b$, \begin{equation*} G(\zeta,b)\psi:=-\sqrt{1+|\nabla_X\zeta|^2}\partial_n\phi|_{y=\zeta(t,X)}, \end{equation*} y \begin{equation*} \left\{ \begin{array}{rl} & \Delta\phi=0, \quad \R\times(b,\zeta), \\ & \phi|_{y=\zeta}=\psi, \quad \partial_n \phi|_{y=b(X)}=0. \end{array} \right. \end{equation*} Después de describir las condiciones para un teorema de existencia y unicidad de soluciones de las ecuaciones de ondas en el agua, en espacios de Sobolev, nos preguntamos sobre el mínimo de datos necesarios, sobre la superficie libre, para identificar el fondo de manera única. Por la relación que existe entre el operador Dirichlet-Neumann y la velocidad dentro del fluido y utilizando la propiedad de continuación única de las funciones armónicas hemos probado que basta conocer el perfil, la velocidad potencial y la velocidad normal en un instante de tiempo dado y un abierto de $\R$, aún cuando nuestro sistema es de evolución. En la segunda parte se estudia la existencia de soluciones en forma de salto hidráulico para las ecuaciones estacionarias de ondas en el agua, en dimensión dos y su relación con la velocidad aguas arriba, caracterizada por un parámetro adimensional, llamado el número de Froude, $F$, como consecuencia de la existencia de ramas de bifurcación de la solución trivial para el problema \begin{equation*} \mathcal{F}(\eta,F)=\eta+F\widetilde{\psi}_{y^{\prime }}+\frac{\epsilon}{2}(% \widetilde{\psi}_{x^{\prime }}^2+\widetilde{\psi}_{y^{\prime }}^2)-\epsilon^2\eta_x\widetilde{\psi}_{x^{\prime }}\widetilde{\psi}% _{y^{\prime }}+\frac{\epsilon^3}{2}\eta_x^2\widetilde{\psi}_{y^{\prime }}^2; \end{equation*} donde \begin{equation*} \left\{ \begin{aligned} &\Delta\widetilde{\psi}=\epsilon G, && (-L,L)\times(0,1), \\ &\widetilde{\psi}_{x'}=0, && x'=-L,L, \\ &\widetilde{\psi}=0, && y'=0, \\ &\widetilde{\psi}=-F\eta, && y'=1. \end{aligned} \right. \end{equation*}
PERROTTA, Antea. "Differential Formulation coupled to the Dirichlet-to-Neumann operator for scattering problems." Doctoral thesis, Università degli studi di Cassino, 2020. http://hdl.handle.net/11580/75845.
Full textKulkarni, Mandar S. "Multi-coefficient Dirichlet Neumann type elliptic inverse problems with application to reflection seismology." Birmingham, Ala. : University of Alabama at Birmingham, 2009. https://www.mhsl.uab.edu/dt/2010r/kulkarni.pdf.
Full textTitle from PDF t.p. (viewed July 21, 2010). Additional advisors: Thomas Jannett, Tsun-Zee Mai, S. S. Ravindran, Günter Stolz, Gilbert Weinstein. Includes bibliographical references (p. 59-64).
Kamyad, A. V. "Boundary control problems for the multi-dimensional diffusion equation." Thesis, University of Leeds, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382023.
Full textBooks on the topic "Neumann boundary control problems"
Kunoth, Angela. Wavelet Methods — Elliptic Boundary Value Problems and Control Problems. Wiesbaden: Vieweg+Teubner Verlag, 2001. http://dx.doi.org/10.1007/978-3-322-80027-5.
Full textKunoth, Angela. Wavelet Methods -- Elliptic Boundary Value Problems and Control Problems. Wiesbaden: Vieweg+Teubner Verlag, 2001.
Find full textThe [D-bar] Neumann problem and Schrödinger operators. Berlin: Walter de Gruyter, 2014.
Find full textElliot, Tonkes, ed. On the nonlinear Neumann problem with critical and supercritical nonlinearities. Warszawa: Polska Akademia Nauk, Instytut Matematyczny, 2003.
Find full textA, Soloviev Alexander, Shaposhnikova Tatyana, and SpringerLink (Online service), eds. Boundary Integral Equations on Contours with Peaks. Basel: Birkhäuser Basel, 2010.
Find full textColli, Pierluigi, Angelo Favini, Elisabetta Rocca, Giulio Schimperna, and Jürgen Sprekels, eds. Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64489-9.
Full textBenedek, Agnes Ilona. Remarks on a theorem of Å. Pleijel and related topics. Bahia Blanca, Argentina: INMABB-CONICET, Universidad Nacional del Sur, 2005.
Find full textPawłow, Irena. Analysis and control of evolution multi-phase problems with free boundaries. Wrocław: Zakład Narodowy im. Ossolińskich, 1987.
Find full textBratiĭchuk, N. S. Granichnye zadachi dli͡a︡ prot͡s︡essov s nezavisimymi prirashchenii͡a︡mi. Kiev: Nauk. dumka, 1990.
Find full textJ, Simon, ed. Control of boundaries and stabilization: Proceedings of the IFIP WG 7.2 Conference, Clermont Ferrand, France, June 20-23, 1988. Berlin: Springer-Verlag, 1989.
Find full textBook chapters on the topic "Neumann boundary control problems"
Nowakowski, Andrzej. "A Neumann Boundary Control for Multidimensional Parabolic “Minmax” Control Problems." In Advances in Dynamic Games and Their Applications, 1–13. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4834-3_4.
Full textTakacs, Stefan, and Walter Zulehner. "Multigrid Methods for Elliptic Optimal Control Problems with Neumann Boundary Control." In Numerical Mathematics and Advanced Applications 2009, 855–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11795-4_92.
Full textGonçalves, Etereldes, and Marcus Sarkis. "Robust Parameter-Free Multilevel Methods for Neumann Boundary Control Problems." In Lecture Notes in Computational Science and Engineering, 111–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35275-1_11.
Full textBongarti, Marcelo, and Irena Lasiecka. "Boundary Stabilization of the Linear MGT Equation with Feedback Neumann Control." In Deterministic and Stochastic Optimal Control and Inverse Problems, 150–67. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003050575-7.
Full textKogut, Peter I., and Günter R. Leugering. "Asymptotic Analysis of Elliptic Optimal Control Problems in Thick Multistructures with Dirichlet and Neumann Boundary Controls." In Optimal Control Problems for Partial Differential Equations on Reticulated Domains, 477–514. Boston: Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-8149-4_13.
Full textPOP, NICOLAE, Luige Vladareanu, and Victor Vladareanu. "On the Neumann Boundary Optimal Control of a Frictional Quasistatic Contact Problem with Dry Friction." In Progress on Difference Equations and Discrete Dynamical Systems, 327–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60107-2_17.
Full textAzevedo, A., J. F. Rodrigues, and L. Santos. "The N-membranes Problem with Neumann Type Boundary Condition." In Free Boundary Problems, 55–64. Basel: Birkhäuser Basel, 2006. http://dx.doi.org/10.1007/978-3-7643-7719-9_6.
Full textFeltrin, Guglielmo. "Neumann and Periodic Boundary Conditions: Existence Results." In Positive Solutions to Indefinite Problems, 69–99. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94238-4_3.
Full textFeltrin, Guglielmo. "Neumann and Periodic Boundary Conditions: Multiplicity Results." In Positive Solutions to Indefinite Problems, 101–30. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94238-4_4.
Full textAdomian, George. "Decomposition Solutions for Neumann Boundary Conditions." In Solving Frontier Problems of Physics: The Decomposition Method, 190–95. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8289-6_7.
Full textConference papers on the topic "Neumann boundary control problems"
Sipin, Alexander S. "Random Walk on Balls for the Neumann Boundary Value Problem." In 2022 6th International Scientific Conference on Information, Control, and Communication Technologies (ICCT). IEEE, 2022. http://dx.doi.org/10.1109/icct56057.2022.9976762.
Full textZhao, Qing-hai, Xiao-kai Chen, Yi Lin, and Zheng-Dong Ma. "Linear Heat Conduction Equation Based Filtering Iteration for Topology Optimization." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87631.
Full textLi, Hui, Baoli Deng, Chunlei Liu, Jian Zou, and Huilong Ren. "Prediction of Wave-Induced Motions and Loads of Ships With Forward Speed by Matching Method." In ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-18614.
Full textHasni, Mohd Mughti, Zanariah Abdul Majid, and Norazak Senu. "Solving linear Neumann boundary value problems using block methods." In PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES: Research in Mathematical Sciences: A Catalyst for Creativity and Innovation. AIP, 2013. http://dx.doi.org/10.1063/1.4801145.
Full textJahanshahi, M. "Reduction of Two Dimensional Neumann and Mixed Boundary Value Problems to Dirichlet Boundary Value Problems." In Proceedings of the 4th International ISAAC Congress. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701732_0017.
Full textGámez, José L. "Local bifurcation for elliptic problems: Neumann versus Dirichlet boundary conditions." In The First 60 Years of Nonlinear Analysis of Jean Mawhin. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702906_0006.
Full textBornia, Giorgio, and Saikanth Ratnavale. "Different approaches for Dirichlet and Neumann boundary optimal control." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5043899.
Full textKuryliak, D. B., and Z. T. Nazarchuk. "Wave scattering by wedge with Dirichlet and Neumann boundary conditions." In Proceedings of III International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory. DIPED-98. IEEE, 1998. http://dx.doi.org/10.1109/diped.1998.730938.
Full textNingning, Yan. "Boundary Element Method for Boundary Control Problems." In 2007 Chinese Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/chicc.2006.4346826.
Full textHong, Keum S., and Joseph Bentsman. "Stability Criterion for a Linear Oscillatory Parabolic System with Neumann Boundary Conditions." In 1989 American Control Conference. IEEE, 1989. http://dx.doi.org/10.23919/acc.1989.4790367.
Full textReports on the topic "Neumann boundary control problems"
Seidman, Thomas I. Free Boundary Problems Arising in the Control of a Flexible Robot Arm,. Fort Belvoir, VA: Defense Technical Information Center, September 1987. http://dx.doi.org/10.21236/ada189124.
Full textHackbarth, Carolyn, and Rebeca Weissinger. Water quality in the Northern Colorado Plateau Network: Water years 2016–2018 (revised with cost estimate). National Park Service, November 2023. http://dx.doi.org/10.36967/nrr-2279508.
Full text