Journal articles on the topic 'Networks anomalies detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Networks anomalies detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mažeika, Dalius, and Saulius Jasonis. "NETWORK TRAFFIC ANOMALIES DETECTING USING MAXIMUM ENTROPY METHOD / KOMPIUTERIŲ TINKLO SRAUTO ANOMALIJŲ ATPAŽINIMAS MAKSIMALIOS ENTROPIJOS METODU." Mokslas – Lietuvos ateitis 6, no. 2 (April 24, 2014): 162–67. http://dx.doi.org/10.3846/mla.2014.22.
Full textRačys, Donatas, and Dalius Mažeika. "NETWORK TRAFFIC ANOMALIES IDENTIFICATION BASED ON CLASSIFICATION METHODS / TINKLO SRAUTO ANOMALIJŲ IDENTIFIKAVIMAS, TAIKANT KLASIFIKAVIMO METODUS." Mokslas – Lietuvos ateitis 7, no. 3 (July 13, 2015): 340–44. http://dx.doi.org/10.3846/mla.2015.796.
Full textRejito, Juli, Deris Stiawan, Ahmed Alshaflut, and Rahmat Budiarto. "Machine learning-based anomaly detection for smart home networks under adversarial attack." Computer Science and Information Technologies 5, no. 2 (July 1, 2024): 122–29. http://dx.doi.org/10.11591/csit.v5i2.p122-129.
Full textRejito, Juli, Deris Stiawan, Ahmed Alshaflut, and Rahmat Budiarto. "Machine learning-based anomaly detection for smart home networks under adversarial attack." Computer Science and Information Technologies 5, no. 2 (July 1, 2024): 122–29. http://dx.doi.org/10.11591/csit.v5i2.pp122-129.
Full textLiao, Xiao Ju, Yi Wang, and Hai Lu. "Rule Anomalies Detection in Firewalls." Key Engineering Materials 474-476 (April 2011): 822–27. http://dx.doi.org/10.4028/www.scientific.net/kem.474-476.822.
Full textGutiérrez-Gómez, Leonardo, Alexandre Bovet, and Jean-Charles Delvenne. "Multi-Scale Anomaly Detection on Attributed Networks." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 01 (April 3, 2020): 678–85. http://dx.doi.org/10.1609/aaai.v34i01.5409.
Full textRana, Samir. "Anomaly Detection in Network Traffic using Machine Learning and Deep Learning Techniques." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 10, no. 2 (September 10, 2019): 1063–67. http://dx.doi.org/10.17762/turcomat.v10i2.13626.
Full textJiang, Ding De, Cheng Yao, Zheng Zheng Xu, Peng Zhang, Zhen Yuan, and Wen Da Qin. "An Continuous Wavelet Transform-Based Detection Approach to Traffic Anomalies." Applied Mechanics and Materials 130-134 (October 2011): 2098–102. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.2098.
Full textA, Nandini. "Anomaly Detection Using CNN with I3D Feature Extraction." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 03 (March 18, 2024): 1–5. http://dx.doi.org/10.55041/ijsrem29371.
Full textBadr, Malek, Shaha Al-Otaibi, Nazik Alturki, and Tanvir Abir. "Deep Learning-Based Networks for Detecting Anomalies in Chest X-Rays." BioMed Research International 2022 (July 23, 2022): 1–10. http://dx.doi.org/10.1155/2022/7833516.
Full textSozol, Md Shariar, Golam Mostafa Saki, and Md Mostafizur Rahman. "Anomaly Detection in Cybersecurity with Graph-Based Approaches." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 008 (August 13, 2024): 1–5. http://dx.doi.org/10.55041/ijsrem37061.
Full textDehbozorgi, Leila, Reza Akbari-Hasanjani, and Reza Sabbaghi-Nadooshan. "Chaotic seismic signal modeling based on noise and earthquake anomaly detection." Facta universitatis - series: Electronics and Energetics 35, no. 4 (2022): 603–17. http://dx.doi.org/10.2298/fuee2204603d.
Full textKotenko, Igor, Igor Saenko, Oleg Lauta, and Alexander Kriebel. "Anomaly and Cyber Attack Detection Technique Based on the Integration of Fractal Analysis and Machine Learning Methods." Informatics and Automation 21, no. 6 (November 24, 2022): 1328–58. http://dx.doi.org/10.15622/ia.21.6.9.
Full textPEROV, ROMAN A., OLEG S. LAUTA, ALEXANDER M. KRIBEL, and YURI V. FEDULOV. "A METHOD FOR DETECTING ANOMALIES IN NETWORK TRAFFIC." H&ES Research 14, no. 3 (2022): 25–31. http://dx.doi.org/10.36724/2409-5419-2022-14-3-25-31.
Full textBarrionuevo, Mercedes, Mariela Lopresti, Natalia Miranda, and Fabiana Piccoli. "Secure Computer Network: Strategies and Challengers in Big Data Era." Journal of Computer Science and Technology 18, no. 03 (December 12, 2018): e28. http://dx.doi.org/10.24215/16666038.18.e28.
Full textYallamanda Rajesh Babu, Et al. "Subgraph Anomaly Detection in Social Networks using Clustering-Based Deep Autoencoders." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 9 (November 5, 2023): 1646–55. http://dx.doi.org/10.17762/ijritcc.v11i9.9150.
Full textRizwan, Ramsha, Farrukh Aslam Khan, Haider Abbas, and Sajjad Hussain Chauhdary. "Anomaly Detection in Wireless Sensor Networks Using Immune-Based Bioinspired Mechanism." International Journal of Distributed Sensor Networks 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/684952.
Full textBurgueño, Jesús, Isabel de-la-Bandera, Jessica Mendoza, David Palacios, Cesar Morillas, and Raquel Barco. "Online Anomaly Detection System for Mobile Networks." Sensors 20, no. 24 (December 17, 2020): 7232. http://dx.doi.org/10.3390/s20247232.
Full textMa, Shu Hua, Jin Kuan Wang, Zhi Gang Liu, and Hou Yan Jiang. "Density-Based Distributed Elliptical Anomaly Detection in Wireless Sensor Networks." Applied Mechanics and Materials 249-250 (December 2012): 226–30. http://dx.doi.org/10.4028/www.scientific.net/amm.249-250.226.
Full textLegashev, Leonid, Irina Bolodurina, Lubov Zabrodina, Yuri Ushakov, Alexander Shukhman, Denis Parfenov, Yong Zhou, and Yan Xu. "Message Authentication and Network Anomalies Detection in Vehicular Ad Hoc Networks." Security and Communication Networks 2022 (February 24, 2022): 1–18. http://dx.doi.org/10.1155/2022/9440886.
Full textMillán-Roures, Laura, Irene Epifanio, and Vicente Martínez. "Detection of Anomalies in Water Networks by Functional Data Analysis." Mathematical Problems in Engineering 2018 (June 21, 2018): 1–13. http://dx.doi.org/10.1155/2018/5129735.
Full textBattini Sujatha, Et al. "An Efficient Fuzzy Based Multi Level Clustering Model Using Artificial Bee Colony For Intrusion Detection." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 11 (November 30, 2023): 264–73. http://dx.doi.org/10.17762/ijritcc.v11i11.9390.
Full textAlfardus, Asma, and Danda B. Rawat. "Machine Learning-Based Anomaly Detection for Securing In-Vehicle Networks." Electronics 13, no. 10 (May 16, 2024): 1962. http://dx.doi.org/10.3390/electronics13101962.
Full textŽarković, Mileta, and Goran Dobrić. "Artificial Intelligence for Energy Theft Detection in Distribution Networks." Energies 17, no. 7 (March 26, 2024): 1580. http://dx.doi.org/10.3390/en17071580.
Full textRovatsos, Georgios, George V. Moustakides, and Venugopal V. Veeravalli. "Quickest Detection of Moving Anomalies in Sensor Networks." IEEE Journal on Selected Areas in Information Theory 2, no. 2 (June 2021): 762–73. http://dx.doi.org/10.1109/jsait.2021.3076043.
Full textTian, Hui, Jingtian Liu, and Meimei Ding. "Promising techniques for anomaly detection on network traffic." Computer Science and Information Systems 14, no. 3 (2017): 597–609. http://dx.doi.org/10.2298/csis170201018h.
Full textGarcía González, Gastón, Pedro Casas, Alicia Fernández, and Gabriel Gómez. "On the Usage of Generative Models for Network Anomaly Detection in Multivariate Time-Series." ACM SIGMETRICS Performance Evaluation Review 48, no. 4 (May 17, 2021): 49–52. http://dx.doi.org/10.1145/3466826.3466843.
Full textYan Lei. "Smart Network Forensics with Generative Adversarial Networks Leveraging Blockchain for Anomaly Detection and Immutable Audit Trails." Power System Technology 48, no. 1 (May 28, 2024): 1625–42. http://dx.doi.org/10.52783/pst.432.
Full textKuang, Ye, Dandan Li, Xiaohong Huang, and Mo Zhou. "On the Modeling of RTT Time Series for Network Anomaly Detection." Security and Communication Networks 2022 (May 6, 2022): 1–13. http://dx.doi.org/10.1155/2022/5499080.
Full textHajirahimova, Makrufa, and Leyla Yusifova. "Experimental Study of Machine Learning Methods in Anomaly Detection." Problems of Information Technology 13, no. 1 (January 24, 2022): 9–19. http://dx.doi.org/10.25045/jpit.v13.i1.02.
Full textZehra, Sehar, Ummay Faseeha, Hassan Jamil Syed, Fahad Samad, Ashraf Osman Ibrahim, Anas W. Abulfaraj, and Wamda Nagmeldin. "Machine Learning-Based Anomaly Detection in NFV: A Comprehensive Survey." Sensors 23, no. 11 (June 5, 2023): 5340. http://dx.doi.org/10.3390/s23115340.
Full textRadivilova, Tamara, Lyudmyla Kirichenko, Maksym Tawalbeh, and Andrii Ilkov. "DETECTION OF ANOMALIES IN THE TELECOMMUNICATIONS TRAFFIC BY STATISTICAL METHODS." Cybersecurity: Education, Science, Technique 11, no. 3 (2021): 183–94. http://dx.doi.org/10.28925/2663-4023.2021.11.183194.
Full textSousa, Inês Sousa, António Casimiro, and José Cecílio. "Artificial Neural Networks for Real-Time Data Quality Assurance." ACM SIGAda Ada Letters 42, no. 1 (December 15, 2022): 86–89. http://dx.doi.org/10.1145/3577949.3577966.
Full textKomadina, Adrian, Ivan Kovačević, Bruno Štengl, and Stjepan Groš. "Comparative Analysis of Anomaly Detection Approaches in Firewall Logs: Integrating Light-Weight Synthesis of Security Logs and Artificially Generated Attack Detection." Sensors 24, no. 8 (April 20, 2024): 2636. http://dx.doi.org/10.3390/s24082636.
Full textRajaboevich, Gulomov Sherzod, and Ganiev Abdukhalil Abdujalilovich. "Methods and models of protecting computer networks from un-wanted network traffic." International Journal of Engineering & Technology 7, no. 4 (September 24, 2018): 2541. http://dx.doi.org/10.14419/ijet.v7i4.14744.
Full textDymora, Paweł, and Mirosław Mazurek. "Anomaly Detection in IoT Communication Network Based on Spectral Analysis and Hurst Exponent." Applied Sciences 9, no. 24 (December 6, 2019): 5319. http://dx.doi.org/10.3390/app9245319.
Full textMandrikova, O. V. "Intelligent methods for natural data analysis: application to space weather." Computer Optics 48, no. 1 (February 2024): 139–48. http://dx.doi.org/10.18287/2412-6179-co-1367.
Full textHabeeb, Mohammed Sayeeduddin, and Tummala Ranga Babu. "MS-CFFS: Multistage Coarse and Fine Feature Selecton for Advanced Anomaly Detection in IoT Security Networks." International Journal of Electrical and Electronics Research 12, no. 3 (July 25, 2024): 780–90. http://dx.doi.org/10.37391/ijeer.120308.
Full textLópez-Vizcaíno, Manuel, Carlos Dafonte, Francisco Nóvoa, Daniel Garabato, and M. Álvarez. "Network Data Unsupervised Clustering to Anomaly Detection." Proceedings 2, no. 18 (September 17, 2018): 1173. http://dx.doi.org/10.3390/proceedings2181173.
Full textMeneganti, M., F. S. Saviello, and R. Tagliaferri. "Fuzzy neural networks for classification and detection of anomalies." IEEE Transactions on Neural Networks 9, no. 5 (1998): 848–61. http://dx.doi.org/10.1109/72.712157.
Full textP, Bharathisindhu, and Dr S.SelvaBrunda. "Probability Model for Intrusion Detection System in Mobile Adhoc Network." International Journal of Engineering & Technology 7, no. 2.20 (April 18, 2018): 302. http://dx.doi.org/10.14419/ijet.v7i2.20.16722.
Full text.., Pallavi, and Sarika Chaudhary. "Maximizing Anomaly Detection Performance in Next-Generation Networks." Journal of Cybersecurity and Information Management 12, no. 2 (2023): 36–51. http://dx.doi.org/10.54216/jcim.120203.
Full textSun, Yumeng. "Unsupervised Wireless Network Model-Assisted Abnormal Warning Information in Government Management." Journal of Sensors 2021 (October 26, 2021): 1–12. http://dx.doi.org/10.1155/2021/1614055.
Full textClausen, Henry, Gudmund Grov, and David Aspinall. "CBAM: A Contextual Model for Network Anomaly Detection." Computers 10, no. 6 (June 11, 2021): 79. http://dx.doi.org/10.3390/computers10060079.
Full textYu, Xiang, Hui Lu, Xianfei Yang, Ying Chen, Haifeng Song, Jianhua Li, and Wei Shi. "An adaptive method based on contextual anomaly detection in Internet of Things through wireless sensor networks." International Journal of Distributed Sensor Networks 16, no. 5 (May 2020): 155014772092047. http://dx.doi.org/10.1177/1550147720920478.
Full textMeleshko, Alexey, Anton Shulepov, Vasily Desnitsky, and Evgenia Novikova. "Integrated approach to revelation of anomalies in wireless sensor networks for water control cases." Computer Tools in Education, no. 1 (March 28, 2021): 58–67. http://dx.doi.org/10.32603/2071-2340-2021-1-59-68.
Full textKhilar, Rashmita, K. Mariyappan, Mary Subaja Christo, J. Amutharaj, T. Anitha, T. Rajendran, and Areda Batu. "Artificial Intelligence-Based Security Protocols to Resist Attacks in Internet of Things." Wireless Communications and Mobile Computing 2022 (April 5, 2022): 1–10. http://dx.doi.org/10.1155/2022/1440538.
Full textDymora, Paweł, and Mirosław Mazurek. "An Innovative Approach to Anomaly Detection in Communication Networks Using Multifractal Analysis." Applied Sciences 10, no. 9 (May 8, 2020): 3277. http://dx.doi.org/10.3390/app10093277.
Full textPatel, Darsh, Kathiravan Srinivasan, Chuan-Yu Chang, Takshi Gupta, and Aman Kataria. "Network Anomaly Detection inside Consumer Networks—A Hybrid Approach." Electronics 9, no. 6 (June 1, 2020): 923. http://dx.doi.org/10.3390/electronics9060923.
Full textImtiaz, Syed Ibrahim, Liaqat Ali Khan, Ahmad S. Almadhor, Sidra Abbas, Shtwai Alsubai, Michal Gregus, and Zunera Jalil. "Efficient Approach for Anomaly Detection in Internet of Things Traffic Using Deep Learning." Wireless Communications and Mobile Computing 2022 (September 10, 2022): 1–15. http://dx.doi.org/10.1155/2022/8266347.
Full text