Dissertations / Theses on the topic 'Network traffic detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Network traffic detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Brauckhoff, Daniela. "Network traffic anomaly detection and evaluation." Aachen Shaker, 2010. http://d-nb.info/1001177746/04.
Full textUdd, Robert. "Anomaly Detection in SCADA Network Traffic." Thesis, Linköpings universitet, Programvara och system, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122680.
Full textYellapragada, Ramani. "Probabilistic Model for Detecting Network Traffic Anomalies." Ohio University / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1088538020.
Full textZhang, Junjie. "Effective and scalable botnet detection in network traffic." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44837.
Full textVu, Hong Linh. "DNS Traffic Analysis for Network-based Malware Detection." Thesis, KTH, Kommunikationssystem, CoS, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-93842.
Full textBotnets betraktas som ett av de svåraste Internet-hoten idag. Botnets har använts vid många attacker mot multinationella organisationer och även nationella myndigheters och andra nationella Internet-tjänster. Allt eftersom mer effektiva detekterings - och skyddstekniker tas fram av säkerhetsforskare, har utvecklarna av botnets tagit fram nya tekniker för att undvika upptäckt. Därför är det inte förvånande att domännamnssystemet (Domain Name System, DNS) missbrukas av botnets för att undvika upptäckt, på grund av den viktiga roll domännamnssystemet har för Internets funktion - DNS ger en flexibel bindning mellan domännamn och IP-adresser. Domain-flux och fast-flux (även kallat IP-flux) är två relativt nya tekniker som används för att undvika spårning och svartlistning av IP-adresser av botnet-skyddsmekanismer genom att snabbt förändra bindningen mellan namn och IP-adresser som används av botnets. I denna rapport används passiv DNS-analys för att utveckla en anomali-baserad teknik för detektering av botnets som använder sig av domain-flux eller fast-flux. Tekniken baseras på skapandet av en uppslagnings-graf och en fel-graf från insamlad DNS-traffik och bryter ned dessa grafer i kluster som har stark korrelation mellan de ingående domänerna, maskinerna, och IP-adresserna. DNSrelaterade egenskaper extraheras för varje kluster och används som indata till en klassifficeringsmodul för identiffiering av domain-flux och fast-flux botnets i nätet. Utvärdering av metoden genom experiment på insamlade traffikspår visar att den föreslagna tekniken lyckas upptäcka domain-flux botnets i traffiken. Genom att fokusera på DNS-information kompletterar den föreslagna tekniken andra tekniker för detektering av botnets genom traffikanalys.
Gupta, Vikas. "File Detection in Network Traffic Using Approximate Matching." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for telematikk, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-22696.
Full textBrauckhoff, Daniela [Verfasser]. "Network Traffic Anomaly Detection and Evaluation / Daniela Brauckhoff." Aachen : Shaker, 2010. http://d-nb.info/1122546610/34.
Full textDandurand, Luc. "Detection of network infrastructure attacks using artificial traffic." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq44906.pdf.
Full textTaggart, Benjamin T. "Incorporating neural network traffic prediction into freeway incident detection." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=723.
Full textTitle from document title page. Document formatted into pages; contains viii, 55 p. : ill. (some col.) Vita. Includes abstract. Includes bibliographical references (p. 52-55).
Kakavelakis, Georgios. "A real-time system for abusive network traffic detection." Thesis, Monterey, California. Naval Postgraduate School, 2011. http://hdl.handle.net/10945/5754.
Full textAbusive network traffic--to include unsolicited e-mail, malware propagation, and denial-of-service attacks--remains a constant problem in the Internet. Despite extensive research in, and subsequent deployment of, abusive-traffic detection infrastructure, none of the available techniques addresses the problem effectively or completely. The fundamental failing of existing methods is that spammers and attack perpetrators rapidly adapt to and circumvent new mitigation techniques. Analyzing network traffic by exploiting transport-layer characteristics can help remedy this and provide effective detection of abusive traffic. Within this framework, we develop a real-time, online system that integrates transport layer characteristics into the existing SpamAssasin tool for detecting unsolicited commercial e-mail (spam). Specifically, we implement the previously proposed, but undeveloped, SpamFlow technique. We determine appropriate algorithms based on classification performance, training required, adaptability, and computational load. We evaluate system performance in a virtual test bed and live environment and present analytical results. Finally, we evaluate our system in the context of Spam Assassin's auto-learning mode, providing an effective method to train the system without explicit user interaction or feedback.
Moe, Lwin P. "Cyber security risk analysis framework : network traffic anomaly detection." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118536.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 84-86).
Cybersecurity is a growing research area with direct commercial impact to organizations and companies in every industry. With all other technological advancements in the Internet of Things (IoT), mobile devices, cloud computing, 5G network, and artificial intelligence, the need for cybersecurity is more critical than ever before. These technologies drive the need for tighter cybersecurity implementations, while at the same time act as enablers to provide more advanced security solutions. This paper will discuss a framework that can predict cybersecurity risk by identifying normal network behavior and detect network traffic anomalies. Our research focuses on the analysis of the historical network traffic data to identify network usage trends and security vulnerabilities. Specifically, this thesis will focus on multiple components of the data analytics platform. It explores the big data platform architecture, and data ingestion, analysis, and engineering processes. The experiments were conducted utilizing various time series algorithms (Seasonal ETS, Seasonal ARIMA, TBATS, Double-Seasonal Holt-Winters, and Ensemble methods) and Long Short-Term Memory Recurrent Neural Network algorithm. Upon creating the baselines and forecasting network traffic trends, the anomaly detection algorithm was implemented using specific thresholds to detect network traffic trends that show significant variation from the baseline. Lastly, the network traffic data was analyzed and forecasted in various dimensions: total volume, source vs. destination volume, protocol, port, machine, geography, and network structure and pattern. The experiments were conducted with multiple approaches to get more insights into the network patterns and traffic trends to detect anomalies.
by Lwin P. Moe.
S.M. in Engineering and Management
Carlsson, Oskar, and Daniel Nabhani. "User and Entity Behavior Anomaly Detection using Network Traffic." Thesis, Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14636.
Full textCaulkins, Bruce. "SESSION-BASED INTRUSION DETECTION SYSTEM TO MAP ANOMALOUS NETWORK TRAFFIC." Doctoral diss., University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3466.
Full textPh.D.
Other
Arts and Sciences
Modeling and Simulation
LUO, SONG. "CREATING MODELS OF INTERNET BACKGROUND TRAFFIC SUITABLE FOR USE IN EVALUATING NETWORK INTRUSION DETECTION SYSTEMS." Doctoral diss., University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2790.
Full textPh.D.
Engineering and Computer Science
Computer Science
Cowan, KC Kaye. "Detecting Hidden Wireless Cameras through Network Traffic Analysis." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/100148.
Full textMaster of Science
Wireless cameras may be found almost anywhere, whether they are used to monitor city traffic and report on travel conditions or to act as home surveillance when residents are away. Regardless of their purpose, wireless cameras may observe people wherever they are, as long as a power source and Wi-Fi connection are available. While most wireless camera users install such devices for peace of mind, there are some who take advantage of cameras to record others without their permission, sometimes in compromising positions or places. Because of this, systems are needed that may detect hidden wireless cameras. We develop a system that monitors network traffic packets, specifically based on their packet lengths and direction, and determines if the properties of the packets mimic those of a wireless camera stream. A double-layered classification technique is used to uncover hidden wireless cameras and filter out non-wireless camera devices.
Ramadas, Manikantan. "Detecting Anomalous Network Traffic With Self-Organizing Maps." Ohio University / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1049472005.
Full textKim, Seong Soo. "Real-time analysis of aggregate network traffic for anomaly detection." Texas A&M University, 2005. http://hdl.handle.net/1969.1/2312.
Full textEl-Shehaly, Mai Hassan. "A Visualization Framework for SiLK Data exploration and Scan Detection." Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/34606.
Full textMaster of Science
Sathyanarayana, Supreeth. "Characterizing the effects of device components on network traffic." Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47640.
Full textAlizadeh, Hassan. "Intrusion detection and traffic classification using application-aware traffic profiles." Doctoral thesis, Universidade de Aveiro, 2018. http://hdl.handle.net/10773/23545.
Full textAlong with the ever-growing number of applications and end-users, online network attacks and advanced generations of malware have continuously proliferated. Many studies have addressed the issue of intrusion detection by inspecting aggregated network traffic with no knowledge of the responsible applications/services. Such systems may detect abnormal tra c, but fail to detect intrusions in applications whenever their abnormal traffic ts into the network normality profiles. Moreover, they cannot identify intrusion-infected applications responsible for the abnormal traffic. This work addresses the detection of intrusions in applications when their traffic exhibits anomalies. To do so, we need to: (1) bind traffic to applications; (2) have per-application traffic profiles; and (3) detect deviations from profiles given a set of traffic samples. The first requirement has been addressed in our previous works. Assuming that such binding is available, this thesis' work addresses the last two topics in the detection of abnormal traffic and thereby identify its source (possibly malware-infected) application. Applications' traffic profiles are not a new concept, since researchers in the field of Traffic Identification and Classification (TIC) make use of them as a baseline of their systems to identify and categorize traffic samples by application (types-of-interest). But they do not seem to have received much attention in the scope of intrusion detection systems (IDS). We first provide a survey on TIC strategies, within a taxonomy framework, focusing on how the referred TIC techniques could help us for building application's traffic profiles. As a result of this study, we found that most TIC methodologies are based on some statistical (well-known) assumptions extracted from different traffic sources and make the use of machine learning techniques in order to build models (profiles) for recognition of either application types-of-interest or application-layer protocols. Moreover, the literature of traffic classification observed some traffic sources (e.g. first few packets of ows and multiple sub- ows) that do not seem to have received much attention in the scope of IDS research. An IDS can take advantage of such traffic sources in order to provide timely detection of intrusions before they propagate their infected traffic. First, we utilize conventional Gaussian Mixture Models (GMMs) to build per-application profiles. No prior information on data distribution of each application is available. Despite the improvement in performance, stability in high-dimensional data and calibrating a proper threshold for intrusion detection are still main concern. Therefore, we improve the framework restoring universal background model (UBM) to robustly learn application specific models. The proposed anomaly detection systems are based on class-specific and global thresholding mechanisms, where a threshold is set at Equal Error Rate (EER) operating point to determine whether a ow claimed by an application is genuine. Our proposed modelling approaches can also be used in a traffic classification scenario, where the aim is to assign each specific ow to an application (type-of-interest). We also investigate the suitability of the proposed approaches with just a few, initial packets from a traffic ow, in order to provide a more eficient and timely detection system. Several tests are conducted on multiple public datasets collected from real networks. In the numerous experiments that are reported, the evidence of the efectiveness of the proposed approaches are provided.
Em paralelo com o número crescente de aplicações e usuários finais, os ataques em linha na Internet e as gerações avançadas de malware têm proliferado continuadamente. Muitos estudos abordaram a questão da detecção de intrusões através da inspecção do tráfego de rede agregado, sem o conhecimento das aplicações / serviços responsáveis. Esses sistemas podem detectar tráfego anormal, mas não conseguem detectar intrusões em aplicações sempre que seu tráfego anormal encaixa nos perfis de normalidade da rede. Além disso, eles não conseguem identificar as aplicações infectadas por intrusões que são responsáveis pelo tráfego anormal. Este trabalho aborda a detecção de intrusões em aplicações quando seu tráfego exibe anomalias. Para isso, precisamos: (1) vincular o tráfego a aplicações; (2) possuir perfis de tráfego por aplicação; e (3) detectar desvios dos perfis dado um conjunto de amostras de tráfego. O primeiro requisito foi abordado em trabalhos nossos anteriores. Assumindo que essa ligação esteja disponível, o trabalho desta tese aborda os dois últimos tópicos na detecção de tráfego anormal e, assim, identificar a sua aplicação fonte (possivelmente infectada por um malware). Os perfis de tráfego das aplicações não são um conceito novo, uma vez que os investigadores na área da Identificação e Classificação de Tráfego (TIC) utilizam-nos nos seus sistemas para identificar e categorizar amostras de tráfego por tipos de aplicações (ou tipos de interesse). Mas eles não parecem ter recebido muita atenção no âmbito dos sistemas de detecção de intrusões (IDS). Assim, primeiramente fornecemos um levantamento de estratégias de TIC, dentro de uma estrutura taxonómica, tendo como foco a forma como as técnicas de TIC existentes nos poderiam ajudar a lidar com perfis de tráfego de aplicações. Como resultado deste estudo, verificou-se que a maioria das metodologias TIC baseia-se nalguns pressupostos estatísticos (bem conhecidos) extraídos de diferentes fontes de tráfego e usam técnicas de aprendizagem automática para construir os modelos (perfis) para o reconhecimento de quaisquer tipos de interesse ou protocolos aplicacionais. Além disso, a literatura de classificação de tráfego analisou algumas fontes de tráfego (por exemplo, primeiros pacotes de fluxos e subfluxos múltiplos) que não parecem ter recebido muita atenção no âmbito da IDS. Um IDS pode aproveitar essas fontes de tráfego para fornecer detecção atempada de intrusões antes de propagarem o seu tráfego infectado. Primeiro, utilizamos modelos convencionais de mistura gaussiana (GMMs) para construir perfis por aplicação. Nenhuma informação prévia sobre a distribuição de dados de cada aplicação estava disponível. Apesar da melhoria no desempenho, a estabilidade com dados de alta dimensionalidade e a calibração de um limiar adequado para a detecção de intrusões continuaram a ser um problema. Consequentemente, melhoramos a infraestrutura de detecção através da introdução do modelo basal universal (UBM) para robustecer a aprendizagem do modelo especifico de cada aplicação. As abordagens de modelação que propomos também podem ser usadas cenários de classificação de trafego, onde o objectivo e atribuir cada fluxo especifico a uma aplicação (tipo de interesse). Os sistemas de detecção de anomalias propostos baseiam-se em mecanismos de limiar específicos de classes e globais, nos quais um limiar e definido no ponto de operação da Taxa de Erros Igual (EER) para determinar se um fluxo reivindicado por uma aplicação é genuíno. Também investigamos a adequação das abordagens propostas com apenas alguns pacotes iniciais de um fluxo de trafego, a fim de proporcionar um sistema de detecção mais eficiente e oportuno. Para avaliar a eficácia das aproximações tomadas realizamos vários testes com múltiplos conjuntos de dados públicos, colectados em redes reais. Nas numerosas experiências que são relatadas, são fornecidas evidências da eficácia das abordagens propostas.
Syal, Astha. "Automatic Network Traffic Anomaly Detection and Analysis using SupervisedMachine Learning Techniques." Youngstown State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1578259840945109.
Full textWang, Xiaoming. "Hierarchical TCP network traffic classification with adaptive optimisation." Thesis, Loughborough University, 2010. https://dspace.lboro.ac.uk/2134/8228.
Full textLee, Robert. "ON THE APPLICATION OF LOCALITY TO NETWORK INTRUSION DETECTION: WORKING-SET ANALYSIS OF REAL AND SYNTHETIC NETWORK SERVER TRAFFIC." Doctoral diss., Orlando, Fla. : University of Central Florida, 2009. http://purl.fcla.edu/fcla/etd/CFE0002718.
Full textMinton, Carl Edward. "Modeling and Estimation Techniques for Wide-Area Network Traffic with Atypical Components." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/32044.
Full text
Another form of atypical traffic is shown to result in multimodal
distributions of connection statistics. Putative methods for bimodal
estimation are reviewed and a novel technique, the midpoint-distance
profile, is presented. The performance of these estimation techniques
is studied via simulation and the methods are examined in the context
of atypical network traffic. The advantages and disadvantages of each
method are reported.
Master of Science
Soysal, Murat. "A Novel Method For The Detection Of P2p Traffic In The Network Backbone Inspired By Intrusion Detection Systems." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/3/12607315/index.pdf.
Full textCasas, Hernandez Pedro. "Statistical analysis of network traffic for anomaly detection and quality of service provisioning." Télécom Bretagne, 2010. http://www.theses.fr/2010TELB0111.
Full textNetwork-wide traffic analysis and monitoring in large-scale networks is a challenging and expensive task. In this thesis work we have proposed to analyze the traffic of a large-scale IP network from aggregated traffic measurements, reducing measurement overheads and simplifying implementation issues. We have provided contributions in three different networking fields related to network-wide traffic analysis and monitoring in large-scale IP networks. The first contribution regards Traffic Matrix (TM) modeling and estimation, where we have proposed new statistical models and new estimation methods to analyze the Origin-Destination (OD) flows of a large-scale TM from easily available link traffic measurements. The second contribution regards the detection and localization of volume anomalies in the TM, where we have introduced novel methods with solid optimality properties that outperform current well-known techniques for network-wide anomaly detection proposed so far in the literature. The last contribution regards the optimization of the routing configuration in large-scale IP networks, particularly when the traffic is highly variable and difficult to predict. Using the notions of Robust Routing Optimization we have proposed new approaches for Quality of Service provisioning under highly variable and uncertain traffic scenarios. In order to provide strong evidence on the relevance of our contributions, all the methods proposed in this thesis work were validated using real traffic data from different operational networks. Additionally, their performance was compared against well-known works in each field, showing outperforming results in most cases. Taking together the ensemble of developed TM models, the optimal network-wide anomaly detection and localization methods, and the routing optimization algorithms, this thesis work offers a complete solution for network operators to efficiently monitor large-scale IP networks from aggregated traffic measurements and to provide accurate QoS-based performance, even in the event of volume traffic anomalies
Wang, Qinghua. "Traffic analysis, modeling and their applications in energy-constrained wireless sensor networks on network optimization and anomaly detection /." Doctoral thesis, Sundsvall : Tryckeriet Mittuniversitetet, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-10690.
Full textKhasgiwala, Jitesh. "Analysis of Time-Based Approach for Detecting Anomalous Network Traffic." Ohio University / OhioLINK, 2005. http://www.ohiolink.edu/etd/view.cgi?ohiou1113583042.
Full textThomas, Kim. "Incident detection on arterials using neural network data fusion of simulated probe vehicle and loop detector data /." [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18433.pdf.
Full textDamour, Gabriel. "Information-Theoretic Framework for Network Anomaly Detection: Enabling online application of statistical learning models to high-speed traffic." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252560.
Full textI takt med att antalet cyberattacker växer snabbt blir det alltmer viktigt för våra digitaliserade ekonomier att skydda uppkopplade verksamheter från nätverksintrång. Maskininlärning (ML) porträtteras som ett kraftfullt alternativ till konventionella regelbaserade lösningar och dess anmärkningsvärda framgångar bådar för en ny generation detekteringssytem mot intrång (IDS). Trots denna utveckling, bygger många IDS:er fortfarande på signaturbaserade metoder, vilket förklaras av de stora svagheter som präglar många ML-baserade lösningar. I detta arbete utgår vi från en granskning av nuvarande forskning kring tillämpningen av ML för intrångsdetektering, med fokus på de nödvändiga steg som omger modellernas implementation inom IDS. Genom att sätta upp ett ramverk för hur variabler konstrueras och identifiering av attackkällor (ASI) utförs i olika lösningar, kan vi identifiera de flaskhalsar och begränsningar som förhindrar deras praktiska implementation. Särskild vikt läggs vid analysen av de populära flödesbaserade modellerna, vars resurskrävande bearbetning av rådata leder till signifikant tidsfördröjning, vilket omöjliggör deras användning i realtidssystem. För att bemöta dessa svagheter föreslår vi ett nytt ramverk -- det informationsteoretiska ramverket för detektering av nätverksanomalier (ITF-NAD) -- vars syfte är att möjliggöra direktanslutning av ML-modeller över nätverkslänkar med höghastighetstrafik, samt tillhandahåller en metod för identifiering av de bakomliggande källorna till attacken. Ramverket bygger på modern entropiestimeringsteknik, designad för att tillämpas över dataströmmar, samt en ASI-metod inspirerad av entropibaserad detektering av avvikande punkter i kategoriska rum. Utöver detta presenteras en studie av ramverkets prestanda över verklig internettrafik, vilken innehåller 5 olika typer av överbelastningsattacker (DoS) genererad från populära DDoS-verktyg, vilket i sin tur illustrerar ramverkets användning med en enkel semi-övervakad ML-modell. Resultaten visar på hög nivå av noggrannhet för detektion av samtliga attacktyper samt lovande prestanda gällande ramverkets förmåga att identifiera de bakomliggande aktörerna.
Kačic, Matej. "Analýza útoků na bezdrátové sítě." Doctoral thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2018. http://www.nusl.cz/ntk/nusl-412597.
Full textAkhlaq, Monis. "Improved performance high speed network intrusion detection systems (NIDS) : a high speed NIDS architectures to address limitations of packet loss and low detection rate by adoption of dynamic cluster architecture and traffic anomaly filtration (IADF)." Thesis, University of Bradford, 2011. http://hdl.handle.net/10454/5377.
Full textLi, Zhi. "Fuzzy logic based robust control of queue management and optimal treatment of traffic over TCP/IP networks." University of Southern Queensland, Faculty of Sciences, 2005. http://eprints.usq.edu.au/archive/00001461/.
Full textHoelscher, Igor Gustavo. "Detecção e classificação de sinalização vertical de trânsito em cenários complexos." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/163777.
Full textMobility is an imprint of our civilization. Both freight and passenger transport share a huge infrastructure of connecting links operated with the support of a sophisticated logistic system. As an optimized symbiosis of mechanical and electrical modules, vehicles are evolving continuously with the integration of technological advances and are engineered to offer the best in comfort, safety, speed and economy. Regulations organize the flow of road transportation machines and help on their interactions, stipulating rules to avoid conflicts. But driving can become stressing on different conditions, leaving human drivers prone to misjudgments and creating accident conditions. Efforts to reduce traffic accidents that may cause injuries and even deaths range from re-education campaigns to new technologies. These topics have increasingly attracted the attention of researchers and industries to Image-based Intelligent Transportation Systems. This work presents a study on techniques for detecting and classifying traffic signs in images of complex traffic scenarios. The system for automatic visual recognition of signs is intended to be used as an aid for a human driver or as input to an autonomous vehicle. Based on the regulations for road signs, two approaches for image segmentation and selection of regions of interest were tested. The first one, a color thresholding in conjunction with Fourier Descriptors. Its performance was not satisfactory. However, using its principles, a new method of color filtering using Fuzzy Logic was developed which, together with an algorithm that selects stable regions in different shades of gray (MSER), the approach gained robustness to partial occlusion and to different lighting conditions. For classification, two short Convolutional Neural Networks are presented to recognize both Brazilian and German traffic signs. The proposal is to skip complex calculations or handmade features to filter false positives prior to recognition, making the confirmation (detection step) and the classification simultaneously. State-of-the-art methods for training and optimization improved the machine learning efficiency. In addition, this work provides a new dataset with traffic scenarios in different regions of Brazil, containing 2,112 images in WSXGA+ resolution. Qualitative analyzes are shown in the Brazilian dataset and a quantitative analysis with the German dataset presented competitive results with other methods: 94% accuracy in extraction and 99% accuracy in the classification.
Gustavsson, Vilhelm. "Machine Learning for a Network-based Intrusion Detection System : An application using Zeek and the CICIDS2017 dataset." Thesis, KTH, Hälsoinformatik och logistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-253273.
Full textIT-säkerhet är ett växande fält inom IT-sektorn. I takt med att allt fler saker ansluts till internet, ökar även angreppsytan och risken för IT-attacker. Ett Nätverksbaserat Intrångsdetekteringssystem (NIDS) kan användas för att upptäcka skadlig trafik i nätverk och maskininlärning har blivit ett allt vanligare sätt att förbättra denna förmåga. I det här examensarbetet används ett NIDS som heter Zeek för att extrahera parametrar baserade på tid och datastorlek från nätverkstrafik. Dessa parametrar analyseras sedan med maskininlärning i Scikit-Learn för att upptäcka skadlig trafik. För datasetet CICIDS2017 uppnåddes en Bayesian detection rate på 98.58% vilket är på ungefär samma nivå som resultat från tidigare arbeten med CICIDS2017 (utan Zeek). Algoritmerna som gav bäst resultat var K-Nearest Neighbors, Random Forest och Decision Tree.
Swaro, James E. "A Heuristic-Based Approach to Real-Time TCP State and Retransmission Analysis." Ohio University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1448030769.
Full textBarabas, Maroš. "Bezpečnostní analýza síťového provozu pomocí behaviorálních signatur." Doctoral thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2016. http://www.nusl.cz/ntk/nusl-412570.
Full textČíp, Pavel. "Detekce a rozpoznávání dopravních značek." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-217772.
Full textMazel, Johan. "Unsupervised network anomaly detection." Thesis, Toulouse, INSA, 2011. http://www.theses.fr/2011ISAT0024/document.
Full textAnomaly detection has become a vital component of any network in today’s Internet. Ranging from non-malicious unexpected events such as flash-crowds and failures, to network attacks such as denials-of-service and network scans, network traffic anomalies can have serious detrimental effects on the performance and integrity of the network. The continuous arising of new anomalies and attacks create a continuous challenge to cope with events that put the network integrity at risk. Moreover, the inner polymorphic nature of traffic caused, among other things, by a highly changing protocol landscape, complicates anomaly detection system's task. In fact, most network anomaly detection systems proposed so far employ knowledge-dependent techniques, using either misuse detection signature-based detection methods or anomaly detection relying on supervised-learning techniques. However, both approaches present major limitations: the former fails to detect and characterize unknown anomalies (letting the network unprotected for long periods) and the latter requires training over labeled normal traffic, which is a difficult and expensive stage that need to be updated on a regular basis to follow network traffic evolution. Such limitations impose a serious bottleneck to the previously presented problem.We introduce an unsupervised approach to detect and characterize network anomalies, without relying on signatures, statistical training, or labeled traffic, which represents a significant step towards the autonomy of networks. Unsupervised detection is accomplished by means of robust data-clustering techniques, combining Sub-Space clustering with Evidence Accumulation or Inter-Clustering Results Association, to blindly identify anomalies in traffic flows. Correlating the results of several unsupervised detections is also performed to improve detection robustness. The correlation results are further used along other anomaly characteristics to build an anomaly hierarchy in terms of dangerousness. Characterization is then achieved by building efficient filtering rules to describe a detected anomaly. The detection and characterization performances and sensitivities to parameters are evaluated over a substantial subset of the MAWI repository which contains real network traffic traces.Our work shows that unsupervised learning techniques allow anomaly detection systems to isolate anomalous traffic without any previous knowledge. We think that this contribution constitutes a great step towards autonomous network anomaly detection.This PhD thesis has been funded through the ECODE project by the European Commission under the Framework Programme 7. The goal of this project is to develop, implement, and validate experimentally a cognitive routing system that meet the challenges experienced by the Internet in terms of manageability and security, availability and accountability, as well as routing system scalability and quality. The concerned use case inside the ECODE project is network anomaly
Šišmiš, Lukáš. "Optimalizace IDS/IPS systému Suricata." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2021. http://www.nusl.cz/ntk/nusl-445503.
Full textKorczynski, Maciej. "Classification de flux applicatifs et détection d'intrusion dans le trafic Internet." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00858571.
Full textSedlo, Ondřej. "Vylepšení Adversariální Klasifikace v Behaviorální Analýze Síťové Komunikace Určené pro Detekci Cílených Útoků." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2020. http://www.nusl.cz/ntk/nusl-417204.
Full textHošták, Viliam Samuel. "Učení se automatů pro rychlou detekci anomálií v síťovém provozu." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2021. http://www.nusl.cz/ntk/nusl-449296.
Full textVopálenský, Radek. "Detekce, sledování a klasifikace automobilů." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2017. http://www.nusl.cz/ntk/nusl-413327.
Full textŠtourač, Jan. "Rozpoznávaní aplikací v síťovém provozu." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2014. http://www.nusl.cz/ntk/nusl-413325.
Full textVopálenský, Radek. "Detekce, sledování a klasifikace automobilů." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2018. http://www.nusl.cz/ntk/nusl-385899.
Full textAlkadi, Alaa. "Anomaly Detection in RFID Networks." UNF Digital Commons, 2017. https://digitalcommons.unf.edu/etd/768.
Full textAnbaroglu, B. "Spatio-temporal clustering for non-recurrent traffic congestion detection on urban road networks." Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1408826/.
Full textTeknős, Martin. "Rozšíření behaviorální analýzy síťové komunikace určené pro detekci útoků." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2015. http://www.nusl.cz/ntk/nusl-234931.
Full textSikora, Marek. "Detekce slow-rate DDoS útoků." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-317019.
Full text