Academic literature on the topic 'Network traffic detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Network traffic detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Network traffic detection"
Praveena, Nutakki, Dr Ujwal A. Lanjewar, and Chilakalapudi Meher Babu. "VIABLE NETWORK INTRUSION DETECTION ON WIRELESS ADHOC NETWORKS." INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 5, no. 1 (June 23, 2013): 29–34. http://dx.doi.org/10.24297/ijct.v5i1.4383.
Full textPratomo, Baskoro A., Pete Burnap, and George Theodorakopoulos. "BLATTA: Early Exploit Detection on Network Traffic with Recurrent Neural Networks." Security and Communication Networks 2020 (August 4, 2020): 1–15. http://dx.doi.org/10.1155/2020/8826038.
Full textJiang, Ding De, Cheng Yao, Zheng Zheng Xu, Peng Zhang, Zhen Yuan, and Wen Da Qin. "An Continuous Wavelet Transform-Based Detection Approach to Traffic Anomalies." Applied Mechanics and Materials 130-134 (October 2011): 2098–102. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.2098.
Full textAnwer, M., S. M. Khan, M. U. Farooq, and W. Waseemullah. "Attack Detection in IoT using Machine Learning." Engineering, Technology & Applied Science Research 11, no. 3 (June 12, 2021): 7273–78. http://dx.doi.org/10.48084/etasr.4202.
Full textFotiadou, Konstantina, Terpsichori-Helen Velivassaki, Artemis Voulkidis, Dimitrios Skias, Sofia Tsekeridou, and Theodore Zahariadis. "Network Traffic Anomaly Detection via Deep Learning." Information 12, no. 5 (May 19, 2021): 215. http://dx.doi.org/10.3390/info12050215.
Full textLu, Jiazhong, Fengmao Lv, Zhongliu Zhuo, Xiaosong Zhang, Xiaolei Liu, Teng Hu, and Wei Deng. "Integrating Traffics with Network Device Logs for Anomaly Detection." Security and Communication Networks 2019 (June 13, 2019): 1–10. http://dx.doi.org/10.1155/2019/5695021.
Full textAli, Wasim Ahmed, Manasa K. N, Mohammed Aljunid, Malika Bendechache, and P. Sandhya. "Review of Current Machine Learning Approaches for Anomaly Detection in Network Traffic." Journal of Telecommunications and the Digital Economy 8, no. 4 (December 2, 2020): 64–95. http://dx.doi.org/10.18080/jtde.v8n4.307.
Full textBarrionuevo, Mercedes, Mariela Lopresti, Natalia Miranda, and Fabiana Piccoli. "Secure Computer Network: Strategies and Challengers in Big Data Era." Journal of Computer Science and Technology 18, no. 03 (December 12, 2018): e28. http://dx.doi.org/10.24215/16666038.18.e28.
Full textLalitha, K. V., and V. R. Josna. "Traffic Verification for Network Anomaly Detection in Sensor Networks." Procedia Technology 24 (2016): 1400–1405. http://dx.doi.org/10.1016/j.protcy.2016.05.161.
Full textMeimei Ding and Hui Tian. "PCA-based network Traffic anomaly detection." Tsinghua Science and Technology 21, no. 5 (October 2016): 500–509. http://dx.doi.org/10.1109/tst.2016.7590319.
Full textDissertations / Theses on the topic "Network traffic detection"
Brauckhoff, Daniela. "Network traffic anomaly detection and evaluation." Aachen Shaker, 2010. http://d-nb.info/1001177746/04.
Full textUdd, Robert. "Anomaly Detection in SCADA Network Traffic." Thesis, Linköpings universitet, Programvara och system, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122680.
Full textYellapragada, Ramani. "Probabilistic Model for Detecting Network Traffic Anomalies." Ohio University / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1088538020.
Full textZhang, Junjie. "Effective and scalable botnet detection in network traffic." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44837.
Full textVu, Hong Linh. "DNS Traffic Analysis for Network-based Malware Detection." Thesis, KTH, Kommunikationssystem, CoS, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-93842.
Full textBotnets betraktas som ett av de svåraste Internet-hoten idag. Botnets har använts vid många attacker mot multinationella organisationer och även nationella myndigheters och andra nationella Internet-tjänster. Allt eftersom mer effektiva detekterings - och skyddstekniker tas fram av säkerhetsforskare, har utvecklarna av botnets tagit fram nya tekniker för att undvika upptäckt. Därför är det inte förvånande att domännamnssystemet (Domain Name System, DNS) missbrukas av botnets för att undvika upptäckt, på grund av den viktiga roll domännamnssystemet har för Internets funktion - DNS ger en flexibel bindning mellan domännamn och IP-adresser. Domain-flux och fast-flux (även kallat IP-flux) är två relativt nya tekniker som används för att undvika spårning och svartlistning av IP-adresser av botnet-skyddsmekanismer genom att snabbt förändra bindningen mellan namn och IP-adresser som används av botnets. I denna rapport används passiv DNS-analys för att utveckla en anomali-baserad teknik för detektering av botnets som använder sig av domain-flux eller fast-flux. Tekniken baseras på skapandet av en uppslagnings-graf och en fel-graf från insamlad DNS-traffik och bryter ned dessa grafer i kluster som har stark korrelation mellan de ingående domänerna, maskinerna, och IP-adresserna. DNSrelaterade egenskaper extraheras för varje kluster och används som indata till en klassifficeringsmodul för identiffiering av domain-flux och fast-flux botnets i nätet. Utvärdering av metoden genom experiment på insamlade traffikspår visar att den föreslagna tekniken lyckas upptäcka domain-flux botnets i traffiken. Genom att fokusera på DNS-information kompletterar den föreslagna tekniken andra tekniker för detektering av botnets genom traffikanalys.
Gupta, Vikas. "File Detection in Network Traffic Using Approximate Matching." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for telematikk, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-22696.
Full textBrauckhoff, Daniela [Verfasser]. "Network Traffic Anomaly Detection and Evaluation / Daniela Brauckhoff." Aachen : Shaker, 2010. http://d-nb.info/1122546610/34.
Full textDandurand, Luc. "Detection of network infrastructure attacks using artificial traffic." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq44906.pdf.
Full textTaggart, Benjamin T. "Incorporating neural network traffic prediction into freeway incident detection." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=723.
Full textTitle from document title page. Document formatted into pages; contains viii, 55 p. : ill. (some col.) Vita. Includes abstract. Includes bibliographical references (p. 52-55).
Kakavelakis, Georgios. "A real-time system for abusive network traffic detection." Thesis, Monterey, California. Naval Postgraduate School, 2011. http://hdl.handle.net/10945/5754.
Full textAbusive network traffic--to include unsolicited e-mail, malware propagation, and denial-of-service attacks--remains a constant problem in the Internet. Despite extensive research in, and subsequent deployment of, abusive-traffic detection infrastructure, none of the available techniques addresses the problem effectively or completely. The fundamental failing of existing methods is that spammers and attack perpetrators rapidly adapt to and circumvent new mitigation techniques. Analyzing network traffic by exploiting transport-layer characteristics can help remedy this and provide effective detection of abusive traffic. Within this framework, we develop a real-time, online system that integrates transport layer characteristics into the existing SpamAssasin tool for detecting unsolicited commercial e-mail (spam). Specifically, we implement the previously proposed, but undeveloped, SpamFlow technique. We determine appropriate algorithms based on classification performance, training required, adaptability, and computational load. We evaluate system performance in a virtual test bed and live environment and present analytical results. Finally, we evaluate our system in the context of Spam Assassin's auto-learning mode, providing an effective method to train the system without explicit user interaction or feedback.
Books on the topic "Network traffic detection"
Bhuyan, Monowar H., Dhruba K. Bhattacharyya, and Jugal K. Kalita. Network Traffic Anomaly Detection and Prevention. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65188-0.
Full textThancanamootoo, S. Automatic detection of traffic incidents on a signal-controlled road network. Newcastle: University of Newcastle upon Tyne, Transport Operations Research Group, 1988.
Find full textBiersack, Ernst. Data Traffic Monitoring and Analysis: From Measurement, Classification, and Anomaly Detection to Quality of Experience. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textKalita, Jugal K., Monowar H. Bhuyan, and Dhruba K. Bhattacharyya. Network Traffic Anomaly Detection and Prevention: Concepts, Techniques, and Tools. Springer, 2018.
Find full textKalita, Jugal K., Monowar H. Bhuyan, and Dhruba K. Bhattacharyya. Network Traffic Anomaly Detection and Prevention: Concepts, Techniques, and Tools. Springer, 2017.
Find full textTari, Zahir, Adil Fahad, Abdulmohsen Almalawi, and Xun Yi. Network Classification for Traffic Management: Anomaly Detection, Feature Selection, Clustering and Classification. Institution of Engineering & Technology, 2020.
Find full textTari, Zahir, Adil Fahad, Abdulmohsen Almalawi, and Xun Yi. Network Classification for Traffic Management: Anomaly detection, feature selection, clustering and classification. Institution of Engineering and Technology, 2020. http://dx.doi.org/10.1049/pbpc032e.
Full textAghdam, Hamed Habibi, and Elnaz Jahani Heravi. Guide to Convolutional Neural Networks: A Practical Application to Traffic-Sign Detection and Classification. Springer, 2017.
Find full textAghdam, Hamed Habibi, and Elnaz Jahani Heravi. Guide to Convolutional Neural Networks: A Practical Application to Traffic-Sign Detection and Classification. Springer, 2018.
Find full textBiersack, Ernst, Christian Callegari, and Maja Matijasevic. Data Traffic Monitoring and Analysis: From Measurement, Classification, and Anomaly Detection to Quality of Experience. Springer, 2013.
Find full textBook chapters on the topic "Network traffic detection"
Liu, ChenHuan, QianKun Liu, ShanShan Hao, CongXiao Bao, and Xing Li. "IPv6-Darknet Network Traffic Detection." In Lecture Notes in Computer Science, 231–41. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78612-0_19.
Full textCui, Qian, Guy-Vincent Jourdan, Gregor V. Bochmann, and Iosif-Viorel Onut. "Proactive Detection of Phishing Kit Traffic." In Applied Cryptography and Network Security, 257–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78375-4_11.
Full textColuccia, Angelo, Alessandro D’Alconzo, and Fabio Ricciato. "Distribution-Based Anomaly Detection in Network Traffic." In Data Traffic Monitoring and Analysis, 202–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36784-7_9.
Full textBhuyan, Monowar H., Dhruba K. Bhattacharyya, and Jugal K. Kalita. "Network Traffic Anomaly Detection Techniques and Systems." In Computer Communications and Networks, 115–69. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65188-0_4.
Full textde la Puerta, José Gaviria, Iker Pastor-López, Borja Sanz, and Pablo G. Bringas. "Network Traffic Analysis for Android Malware Detection." In Lecture Notes in Computer Science, 468–79. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29859-3_40.
Full textMoussas, Vassilios C. "Adaptive Traffic Modelling for Network Anomaly Detection." In Springer Optimization and Its Applications, 333–51. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74325-7_17.
Full textBialas, Andrzej, Marcin Michalak, and Barbara Flisiuk. "Anomaly Detection in Network Traffic Security Assurance." In Advances in Intelligent Systems and Computing, 46–56. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19501-4_5.
Full textKang, Koohong. "Anomaly Detection of Hostile Traffic Based on Network Traffic Distributions." In Lecture Notes in Computer Science, 781–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-89524-4_77.
Full textMazel, Johan, Pedro Casas, and Philippe Owezarski. "Sub-Space Clustering and Evidence Accumulation for Unsupervised Network Anomaly Detection." In Traffic Monitoring and Analysis, 15–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20305-3_2.
Full textCho, Yoohee, Koohong Kang, Ikkyun Kim, and Kitae Jeong. "Baseline Traffic Modeling for Anomalous Traffic Detection on Network Transit Points." In Management Enabling the Future Internet for Changing Business and New Computing Services, 385–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04492-2_39.
Full textConference papers on the topic "Network traffic detection"
Si, Wen, Jianghai Li, Ronghong Qu, and Xiaojin Huang. "Anomaly Detection for Network Traffic of I&C Systems Based on Neural Network." In 2020 International Conference on Nuclear Engineering collocated with the ASME 2020 Power Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icone2020-16900.
Full textGuillot, Andreas, Romain Fontugne, Philipp Winter, Pascal Merindol, Alistair King, Alberto Dainotti, and Cristel Pelsser. "Chocolatine: Outage Detection for Internet Background Radiation." In 2019 Network Traffic Measurement and Analysis Conference (TMA). IEEE, 2019. http://dx.doi.org/10.23919/tma.2019.8784607.
Full textShah, Anant, Romain Fontugne, Emile Aben, Cristel Pelsser, and Randy Bush. "Disco: Fast, good, and cheap outage detection." In 2017 Network Traffic Measurement and Analysis Conference (TMA). IEEE, 2017. http://dx.doi.org/10.23919/tma.2017.8002902.
Full textSalvador, Paulo, and Antonio Nogueira. "Customer-side detection of Internet-scale traffic redirection." In 2014 16th International Telecommunications Network Strategy and Planning Symposium (Networks). IEEE, 2014. http://dx.doi.org/10.1109/netwks.2014.6958532.
Full textGoodall, John R. "Visualizing network traffic for intrusion detection." In the 6th ACM conference. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1142405.1142465.
Full textNikishova, Arina, Irina Ananina, and Evgeny Ananin. "Network traffic clustering for intrusion detection." In IV International research conference "Information technologies in Science, Management, Social sphere and Medicine" (ITSMSSM 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/itsmssm-17.2017.53.
Full textMichalak, Marcin, Łukasz Wawrowski, Marek Sikora, Rafał Kurianowicz, Artur Kozłowski, and Andrzej Białas. "Outlier Detection in Network Traffic Monitoring." In 10th International Conference on Pattern Recognition Applications and Methods. SCITEPRESS - Science and Technology Publications, 2021. http://dx.doi.org/10.5220/0010238205230530.
Full textDe Lucia, Michael, Paul E. Maxwell, Nathaniel D. Bastian, Ananthram Swami, Brian Jalaian, and Nandi Leslie. "Machine learning raw network traffic detection." In Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications III, edited by Tien Pham, Latasha Solomon, and Myron E. Hohil. SPIE, 2021. http://dx.doi.org/10.1117/12.2586114.
Full textPrasse, Paul, Lukas Machlica, Tomas Pevny, Jiri Havelka, and Tobias Scheffer. "Malware Detection by Analysing Network Traffic with Neural Networks." In 2017 IEEE Security and Privacy Workshops (SPW). IEEE, 2017. http://dx.doi.org/10.1109/spw.2017.8.
Full textChapaneri, Radhika, and Seema Shah. "Detection of Malicious Network Traffic using Convolutional Neural Networks." In 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). IEEE, 2019. http://dx.doi.org/10.1109/icccnt45670.2019.8944814.
Full textReports on the topic "Network traffic detection"
Bardhan, Shuvo, Mitsuhiro Hatada, James Filliben, Douglas Montgomery, and Alexander Jia. An Evaluation Design for Comparing Netflow Based Network Anomaly Detection Systems Using Synthetic Malicious Traffic. National Institute of Standards and Technology, March 2021. http://dx.doi.org/10.6028/nist.tn.2142.
Full textAlbrecht, Jochen, Andreas Petutschnig, Laxmi Ramasubramanian, Bernd Resch, and Aleisha Wright. Comparing Twitter and LODES Data for Detecting Commuter Mobility Patterns. Mineta Transportation Institute, May 2021. http://dx.doi.org/10.31979/mti.2021.2037.
Full text