Journal articles on the topic 'Network-hardening'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Network-hardening.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhao, Chao, Huiqiang Wang, Junyu Lin, Hongwu Lv, and Yushu Zhang. "A Generation Method of Network Security Hardening Strategy Based on Attack Graphs." International Journal of Web Services Research 12, no. 1 (2015): 45–61. http://dx.doi.org/10.4018/ijwsr.2015010104.
Full textPan, Zhong Feng, Gui Cheng Wang, Chong Lue Hua, and Hong Jie Pei. "Research and Development of LM Neural Network Prediction System for Grind-Hardening." Key Engineering Materials 416 (September 2009): 248–52. http://dx.doi.org/10.4028/www.scientific.net/kem.416.248.
Full textManzanares, Antonio Izquierdo. "Hardening Network Infrastructure: Not Suitable for Everyone." IEEE Distributed Systems Online 8, no. 10 (2007): 4. http://dx.doi.org/10.1109/mdso.2007.4384584.
Full textWang, Lingyu, Steven Noel, and Sushil Jajodia. "Minimum-cost network hardening using attack graphs." Computer Communications 29, no. 18 (2006): 3812–24. http://dx.doi.org/10.1016/j.comcom.2006.06.018.
Full textBorbor, Daniel, Lingyu Wang, Sushil Jajodia, and Anoop Singhal. "Surviving unpatchable vulnerabilities through heterogeneous network hardening options." Journal of Computer Security 26, no. 6 (2018): 761–89. http://dx.doi.org/10.3233/jcs-171106.
Full textMyung, David, Wongun Koh, Jungmin Ko, et al. "Biomimetic strain hardening in interpenetrating polymer network hydrogels." Polymer 48, no. 18 (2007): 5376–87. http://dx.doi.org/10.1016/j.polymer.2007.06.070.
Full textWu, Xiao Ling, and Fei Ren. "Research on the Prediction Model of Laser Surface Hardening Index on Cylinder Liner Based on RBF." Advanced Materials Research 148-149 (October 2010): 215–18. http://dx.doi.org/10.4028/www.scientific.net/amr.148-149.215.
Full textYang, Tung Sheng, and Huai Shiun Lu. "Predictions of Springback of Strain-Hardening Material in U-Shaped Bending Process." Key Engineering Materials 419-420 (October 2009): 481–84. http://dx.doi.org/10.4028/www.scientific.net/kem.419-420.481.
Full textZhang, Hong, Zhaoguang Ma, Da Kang, and Min Yang. "A Beam Hardening Artifact Correction Method for CT Images Based on VGG Feature Extraction Networks." Sensors 25, no. 7 (2025): 2088. https://doi.org/10.3390/s25072088.
Full textLiang, Ruijun, Zhiqiang Wang, Shuying Yang, and Weifang Chen. "Study on hardness prediction and parameter optimization for carburizing and quenching: an approach based on FEM, ANN and GA." Materials Research Express 8, no. 11 (2021): 116501. http://dx.doi.org/10.1088/2053-1591/ac3279.
Full textLambiase, F., A. M. Di Ilio, and A. Paoletti. "Prediction of Laser Hardening by Means of Neural Network." Procedia CIRP 12 (2013): 181–86. http://dx.doi.org/10.1016/j.procir.2013.09.032.
Full textBouzid, Mehdi, and Emanuela Del Gado. "Network Topology in Soft Gels: Hardening and Softening Materials." Langmuir 34, no. 3 (2017): 773–81. http://dx.doi.org/10.1021/acs.langmuir.7b02944.
Full textWang, Chunyan, Guicheng Wang, and Chungen Shen. "Analysis and Prediction of Grind-Hardening Surface Roughness Based on Response Surface Methodology-BP Neural Network." Applied Sciences 12, no. 24 (2022): 12680. http://dx.doi.org/10.3390/app122412680.
Full textNimpaiboon, Adun, Sureerut Amnuaypornsri, and Jitladda T. Sakdapipanich. "OBSTRUCTION OF STORAGE HARDENING IN NR BY USING POLAR CHEMICALS." Rubber Chemistry and Technology 89, no. 2 (2016): 358–68. http://dx.doi.org/10.5254/rct.16.84825.
Full textTan, Zhaoqiang, Zijun Qin, Qing Zhang, Yong Liu, and Feng Liu. "Prediction and Process Analysis of Tensile Properties of Sinter-Hardened Alloy Steel by Artificial Neural Network." Metals 12, no. 3 (2022): 381. http://dx.doi.org/10.3390/met12030381.
Full textKemp, R., G. A. Cottrell, H. K. D. H. Bhadeshia, G. R. Odette, T. Yamamoto, and H. Kishimoto. "Neural-network analysis of irradiation hardening in low-activation steels." Journal of Nuclear Materials 348, no. 3 (2006): 311–28. http://dx.doi.org/10.1016/j.jnucmat.2005.09.022.
Full textRahmat Novrianda Dasmen and Muhammad Reihan Pratama. "Implementation of Hardening for Optimization of Wireless Local Area Network Security." PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic 13, no. 1 (2025): 1–10. https://doi.org/10.33558/piksel.v13i1.9957.
Full textVeretelnik, Oleg, Mykola M. Tkachuk, Serhii Kravchenko, et al. "RESEARCH AND EXPERIMENTAL STUDIES OF STRESS-STRAIN STATE OF DISCRETE-CONTINUAL HARDENED MACHINE PARTS." Bulletin of the National Technical University «KhPI» Series: Engineering and CAD, no. 2 (December 30, 2021): 5–21. http://dx.doi.org/10.20998/2079-0775.2021.2.03.
Full textWeiss, Stephanie, Regina Seidl, Waltraud Kessler, Rudolf W. Kessler, Edith M. Zikulnig-Rusch, and Andreas Kandelbauer. "Unravelling the Phases of Melamine Formaldehyde Resin Cure by Infrared Spectroscopy (FTIR) and Multivariate Curve Resolution (MCR)." Polymers 12, no. 11 (2020): 2569. http://dx.doi.org/10.3390/polym12112569.
Full textWaheed, Faisal, and Maaruf Ali. "Hardening CISCO Devices based on Cryptography and Security Protocols - Part II: Implementation and Evaluation." Annals of Emerging Technologies in Computing 2, no. 4 (2018): 11–27. http://dx.doi.org/10.33166/aetic.2018.04.002.
Full textБиблик, Ирина Валентиновна. "НЕЙРОСЕТЕВАЯ МОДЕЛЬ ДЛЯ ОЦЕНКИ ВЛИЯНИЯ КАЧЕСТВА ПОВЕРХНОСТНОГО СЛОЯ НА УСТАЛОСТНУЮ ПРОЧНОСТЬ ДЕТАЛЕЙ ГТД". Aerospace technic and technology, № 8 (31 серпня 2019): 85–89. http://dx.doi.org/10.32620/aktt.2019.8.13.
Full textChen, Xin, Yudong Xie, Liangzhou Huo, et al. "Implementation of Highly Reliable Convolutional Neural Network with Low Overhead on Field-Programmable Gate Array." Electronics 13, no. 5 (2024): 879. http://dx.doi.org/10.3390/electronics13050879.
Full textGuan, Chun Ping, and Hong Ping Jin. "Determination of Residual Stress and Strain-Hardening Exponent Using Artificial Neural Networks." Advanced Materials Research 472-475 (February 2012): 332–35. http://dx.doi.org/10.4028/www.scientific.net/amr.472-475.332.
Full textKundu, Arkadeep, and Soumya K. Ghosh. "A multi-objective search strategy to select optimal network hardening measures." International Journal of Decision Support Systems 1, no. 1 (2015): 130. http://dx.doi.org/10.1504/ijdss.2015.067283.
Full textJun-chun, MA, WANG Yong-jun, SUN Ji-yin, and CHEN Shan. "A Minimum Cost of Network Hardening Model Based on Attack Graphs." Procedia Engineering 15 (2011): 3227–33. http://dx.doi.org/10.1016/j.proeng.2011.08.606.
Full textTheocaris, Pericles S., and P. D. Panagiotopoulos. "Generalised hardening plasticity approximated via anisotropic elasticity: A neural network approach." Computer Methods in Applied Mechanics and Engineering 125, no. 1-4 (1995): 123–39. http://dx.doi.org/10.1016/0045-7825(94)00769-j.
Full textPaidy, Pavan. "Hardening AWS Infrastructure after Capital One: IAM, S3, and Network Security." JOURNAL OF RECENT TRENDS IN COMPUTER SCIENCE AND ENGINEERING 7, no. 2 (2019): 126–41. https://doi.org/10.70589/jrtcse.2019.2.10.
Full textXu, Wei Feng, Jin He Liu, Dao Lun Chen, Guo Hong Luan, and Jun Shan Yao. "Tensile Properties and Strain Hardening Behavior of a Friction Stir Welded AA2219 Al Alloy." Advanced Materials Research 291-294 (July 2011): 833–40. http://dx.doi.org/10.4028/www.scientific.net/amr.291-294.833.
Full textYang, Tung Sheng, S. Q. Lee, J. Y. Li, and C. Y. Liu. "Prediction of Surface Parameters for Strain Hardening Material of Asperity Flattening in Metal Forming." Materials Science Forum 697-698 (September 2011): 470–73. http://dx.doi.org/10.4028/www.scientific.net/msf.697-698.470.
Full textConrad, Nathaniel, Tynan Kennedy, Deborah K. Fygenson, and Omar A. Saleh. "Increasing valence pushes DNA nanostar networks to the isostatic point." Proceedings of the National Academy of Sciences 116, no. 15 (2019): 7238–43. http://dx.doi.org/10.1073/pnas.1819683116.
Full textWibowo, Dega Surono, Hepatika Zidny Ilmadina, Ardi Susanto Ardi, and Fariq Fadillah Gusti Insani. "Apache web server security with security hardening." Journal of Soft Computing Exploration 4, no. 4 (2023): 213–21. http://dx.doi.org/10.52465/joscex.v4i4.230.
Full textGuo, Zhongzhong, Shangqi Yu, Jiazhi Fu, Kai Ma, and Rui Zhang. "Screening and functional prediction of differentially expressed genes in walnut endocarp during hardening period based on deep neural network under agricultural internet of things." PLOS ONE 17, no. 2 (2022): e0263755. http://dx.doi.org/10.1371/journal.pone.0263755.
Full textHsieh, Ming-Chang, Yu-Hao Tsao, Yu-Jane Sheng, and Heng-Kwong Tsao. "Microstructural Dynamics of Polymer Melts during Stretching: Radial Size Distribution." Polymers 15, no. 9 (2023): 2067. http://dx.doi.org/10.3390/polym15092067.
Full textVidal, Leonhard Maria, Thekla Alpers, and Thomas Becker. "Structure Strengthening Phenomena of Gluten Matrices under Different Stress Types." Polymers 15, no. 23 (2023): 4491. http://dx.doi.org/10.3390/polym15234491.
Full textMishra, Akshansh, Vijaykumar S Jatti, Nitin K Khedkar, Rahul B. Dhabale, and Ashwini V Jatti. "Computer Vision Algorithm for the detection of fracture cracks in Oil Hardening Non-Shrinking (OHNS) die steel after machining process." Frattura ed Integrità Strutturale 17, no. 63 (2022): 234–45. http://dx.doi.org/10.3221/igf-esis.63.18.
Full textBabič, M., P. Wangyao, B. Šter, D. Marinković, and Cristiano Fragassa. "Modelling the surface roughness of steel after laser hardening by using 2D visibility network, convolutional neural networks and genetic programming." FME Transactions 50, no. 3 (2022): 393–402. http://dx.doi.org/10.5937/fme2203393b.
Full textYang, Tung Sheng, and Tsung Hsien Yang. "Predictions of Maximum Forging Load and Effective Stress for Strain-Hardening Material of near Net-Shape Helical Gear Forging." Applied Mechanics and Materials 284-287 (January 2013): 894–97. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.894.
Full textŁazarska, Małgorzata, Zbigniew Ranachowski, Janusz Musiał, Tomasz Tański, and Qingshan Jiang. "Identification of Phase Transformations in Alloy and Non-Alloy Steel During Austempering Using Acoustic Emission and Neural Network." Materials 18, no. 10 (2025): 2198. https://doi.org/10.3390/ma18102198.
Full textZrník, Jozef, Sergey V. Dobatkin, and Ondrej Stejskal. "Deformation Behaviour and Ultrafine Grained Structure Development in Steels with Different Carbon Content Subjected to Severe Plastic Deformation." Key Engineering Materials 345-346 (August 2007): 45–48. http://dx.doi.org/10.4028/www.scientific.net/kem.345-346.45.
Full textLi, Fang, Yunxiang Long, Daxi Guo, et al. "Ion Irradiation Defects and Hardening in FeCrAl Alloy." Metals 12, no. 10 (2022): 1645. http://dx.doi.org/10.3390/met12101645.
Full textLi, Changhong, Chenbo Yin, and Xingtian Xu. "Hybrid optimization assisted deep convolutional neural network for hardening prediction in steel." Journal of King Saud University - Science 33, no. 6 (2021): 101453. http://dx.doi.org/10.1016/j.jksus.2021.101453.
Full textLiu, Gu, Liu-ying Wang, Gui-ming Chen, and Shao-chun Hua. "Parameters Optimization of Plasma Hardening Process Using Genetic Algorithm and Neural Network." Journal of Iron and Steel Research International 18, no. 12 (2011): 57–64. http://dx.doi.org/10.1016/s1006-706x(12)60010-7.
Full textCai, Yulong, Ming Cai, Yanlai Wu, et al. "Evaluation and Mitigation of Weight-Related Single Event Upsets in a Convolutional Neural Network." Electronics 13, no. 7 (2024): 1296. http://dx.doi.org/10.3390/electronics13071296.
Full textWaheed, Faisal, and Maaruf Ali. "Hardening CISCO Devices based on Cryptography and Security Protocols - Part One: Background Theory." Annals of Emerging Technologies in Computing 2, no. 3 (2018): 27–44. http://dx.doi.org/10.33166/aetic.2018.03.004.
Full textSalvador, Daniel, Yoseli Acosta, Anna Zamora, and Manuel Castillo. "Rennet-Induced Casein Micelle Aggregation Models: A Review." Foods 11, no. 9 (2022): 1243. http://dx.doi.org/10.3390/foods11091243.
Full textSalvador, Daniel, Yoseli Acosta, Anna Zamora, and Manuel Castillo. "Rennet-Induced Casein Micelle Aggregation Models: A Review." Foods 11, no. 9 (2022): 1243. http://dx.doi.org/10.3390/foods11091243.
Full textMoraes, Izabel Cristina Freitas, and Loic Hilliou. "Viscoelastic Reversibility of Carrageenan Hydrogels under Large Amplitude Oscillatory Shear: Hybrid Carrageenans versus Blends." Gels 10, no. 8 (2024): 524. http://dx.doi.org/10.3390/gels10080524.
Full textGeng, Jing, Yifan Yang, Sailong Zhang, Li Fan, Yunwei Cao, and Bo Shi. "Shear band network induced relaxation, hardening and uniform plastic deformation in metallic glass." Journal of Alloys and Compounds 1010 (January 2025): 177946. https://doi.org/10.1016/j.jallcom.2024.177946.
Full textIGARASHI, Hideki, and Yoji SHIBUTANI. "405 Strain-hardening with Self-organization of Dislocation Network Patterned by Cellular Automata." Proceedings of Conference of Kansai Branch 2001.76 (2001): _4–9_—_4–10_. http://dx.doi.org/10.1299/jsmekansai.2001.76._4-9_.
Full textOKIHARA, Koji, and Atsushi SAKUMA. "203 Representation of Hardening Coefficient by Neural Network learning Cyclic Stress-Strain Response." Proceedings of Conference of Chugoku-Shikoku Branch 2001.39 (2001): 45–46. http://dx.doi.org/10.1299/jsmecs.2001.39.45.
Full text