Dissertations / Theses on the topic 'Network analysis and visualization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Network analysis and visualization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Köstinger, Harald. "ViNCent – Visualization of NetworkCentralities." Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-10793.
Full textYu, En. "Social Network Analysis Applied to Ontology 3D Visualization." Miami University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=miami1206497854.
Full textCatanese, Salvatore Amato. "New perspectives in criminal network analysis: multilayer networks, time evolution, and visualization." Doctoral thesis, Università di Catania, 2017. http://hdl.handle.net/10761/3793.
Full textEiesland, Jon Wostryck. "Communities in a large social network : visualization and analysis." Thesis, Norwegian University of Science and Technology, Department of Physics, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-6409.
Full textCommunities have been a hot topic in complex network research the last years. Several algorithms for detecting communities have been developed, and in this thesis we use the sequential clique percolation algorithm to detect communities in a large social network. Our network consists of 5.3 million mobile phone users, with mutual communication data aggregated over 18 weeks.
In this thesis we do a visual study of the communities, and we clearly see the nested community structure when we do clique percolation for dierent clique sizes. When we threshold the edge weights we see that the strongest edges are in the densest subcommunities and that the weakest edges keep the communities connected.
We also present numerical analysis of some selected structure and topology properties of the communities. Lastly we confirm, by numerical analysis of the available demographic data on the mobile phone users, that the communities are more conform with respect to zip code, age and sex compared to a reference network where the demographic attributes have been shuffled.
Samfunn har vært et hett emne innen forskning på komplekse nettverk de siste årene. Det har blitt utviklet flere algoritmer for å finne samfunn, og i denne oppgaven bruker vi sekvensiell klikkperkolasjon til å finne samfunn i et stort sosialt nettverk. Nettverket vårt består av 5.3 millioner mobiltelefonbrukere, med gjensidig kommunikasjonsdata aggregert over 18 uker.
I denne oppgaven gjør vi en visuell studie av samfunnene, og vi ser tydelig den vevde sammfunnsstrukturen når vi utfører klikkperkolasjon for ulike klikkstørrelser. Når vi setter terskler for lenkevektene ser vi at de sterkeste lenkene er i de tetteste undersamfunnene og at de svakeste lenkene holder samfunnene i kontakt med hverandre.
Vi presenterer også en numerisk analyse av noen utvalgte struktur- og topologiegenskaper hos samfunnene. Til slutt bekrefter vi, via numerisk analyse av den tilgjengelige demografiske informasjonen om mobiltelefonbrukerne, at samfunnene er mer konforme med tanke på postkode, alder og kjønn sammenlignet med et referansenettverk hvor de demografiske attributtene har blitt stokket om.
El-Shehaly, Mai Hassan. "A Visualization Framework for SiLK Data exploration and Scan Detection." Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/34606.
Full textMaster of Science
Kasemsri, Rawiroj Robert. "A Survey, Taxonomy, and Analysis of Network Security Visualization Techniques." Digital Archive @ GSU, 2006. http://digitalarchive.gsu.edu/cs_theses/17.
Full textPerer, Adam Nathaniel. "Integrating statistics and visualization to improve exploratory social network analysis." College Park, Md.: University of Maryland, 2008. http://hdl.handle.net/1903/8502.
Full textThesis research directed by: Dept. of Computer Science. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Freet, David Nathan. "A Security Visualization Analysis Methodology for Improving Network Intrusion Detection Efficiency." Thesis, Indiana State University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10261868.
Full textThe flood of raw data generated by intrusion detection and other network monitoring devices can be so overwhelming that it causes great difficulty in detecting patterns that might indicate malicious traffic. In order to more effectively monitor and process network and forensic data within a virtualized environment, Security Visualization (SecViz) provides software-based visual interfaces to analyze live and logged network data within the domains of network security, network and cloud forensics, attack prevention, compliance management, wireless security, secure coding, and penetration testing. Modern networks generate enormous amounts of data that is often stored in logs. Due to the lack of effective approaches to organizing and visualizing log data, most network monitoring tools focus at a high level on data throughput and efficiency, or dig too far down into the packet level to allow for useful analysis by network administrators. SecViz offers a simpler and more effective approach to analyzing the massive amounts of log data generated on a regular basis. Graphical representations make it possible to identify and detect malicious activity, and spot general trends and relationships among individual data points. The human brain can rapidly process visual information in a detailed and meaningful manner. By converting network security and forensic data into a human-readable picture, SecViz can address and solve complex data analysis challenges and significantly increase the efficiency by which data is processed by information security professionals.
This study utilizes the Snort intrusion detection system and SecViz tools to monitor and analyze various attack scenarios in a virtualized cloud computing environment. Real-time attacks are conducted in order to generate traffic and log data that can then be re-played in a number of software applications for analysis. A Java-based program is written to aggregate and display Snort data, and then incorporated into a custom Linux-based software environment along with select open-source SecViz tools. A methodology is developed to correlate Snort intrusion alerts with log data in order to create a visual picture that can significantly enhance the identification of malicious network activity and discrimination from normal traffic within a virtualized cloud-based network.
Anantachai, Arnond. "A New Mobile Network Simulation And Analysis System And The Use Of Network Visualizations Through An End-User Graphics Package." OpenSIUC, 2010. https://opensiuc.lib.siu.edu/theses/243.
Full textDalton, Andrew R. "Analysis, instrumentation, and visualization of embedded network systems a testbed-based approach /." Connect to this title online, 2008. http://etd.lib.clemson.edu/documents/1219849076/.
Full textNguyen, Neal Huynh. "Logging, Visualization, and Analysis of Network and Power Data of IoT Devices." DigitalCommons@CalPoly, 2018. https://digitalcommons.calpoly.edu/theses/1990.
Full textRibler, Randy L. "Visualizing Categorical Time Series Data with Applications to Computer and Communications Network Traces." Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/30314.
Full textPh. D.
Liu, Zhicheng. "Network-based visual analysis of tabular data." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43687.
Full textHarrison, Irving. "NEXT GENERATION DATA VISUALIZATION AND ANALYSIS FOR SATELLITE, NETWORK, AND GROUND STATION OPERATIONS." International Foundation for Telemetering, 1999. http://hdl.handle.net/10150/607303.
Full textRecent years have seen a sharp rise in the size of satellite constellations. The monitoring and analysis tools in use today, however, were developed for smaller constellations and are ill-equipped to handle the increased volume of telemetry data. A new technology that can accommodate vast quantities of data is 3-D visualization. Data is abstracted to show the degree to which it deviates from normal, allowing an analyst to absorb the status of thousands of parameters in a single glance. Trend alarms notify the user of dangerous trends before data exceeds normal limits. Used appropriately, 3-D visualization can extend the life of a satellite by ten to twenty percent.
Ottenby, Nore. "Focal Operations with Network Distance Based Neighbourhoods : Implementation, Application and Visualization." Thesis, KTH, Geoinformatik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-170018.
Full textProhaska, Steffen. "Skeleton-based visualization of massive voxel objects with network-like architecture." Phd thesis, Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2007/1488/.
Full textDie vorliegende Arbeit führt I/O-effiziente Algorithmen und Standard-Algorithmen zur Berechnung von Voxel-Skeletten aus großen Voxel-Objekten mit komplexer, netzwerkartiger Struktur und zur Umwandlung solcher Voxel-Skelette in stückweise-lineare Geometrie ein. Die vorgestellten Techniken werden zur Visualisierung und Analyse komplexer drei-dimensionaler Bilddaten, beispielsweise aus Biologie und Medizin, eingesetzt. Abschnitt 2.3.1 leistet mit der Diskussion von topologischem Thinning im Grid-Cell-Modell einen Beitrag zu den theoretischen Grundlagen von Thinning-Algorithmen. Im Grid-Cell-Modell wird ein Voxel-Objekt als Zellkomplex dargestellt, der aus den Ecken, Kanten, Flächen und den eingeschlossenen Volumina der Voxel gebildet wird. Topologisch unklare Situationen an Verzweigungen und blockierte Voxel-Kombinationen werden aufgelöst. Die Charakterisierung von Zellpaaren, die im Thinning-Prozess entfernt werden dürfen, ist einfacher als bekannte Charakterisierungen von so genannten "Simple Voxels". Eine wesentliche Schlussfolgerung ist, dass das Grid-Cell-Modell atomaren Voxeln überlegen ist, wenn Algorithmen detaillierte Kontrolle über Topologie benötigen. Abschnitt 2.3.2 präsentiert ein rauschunempfindliches Maß, das den geodätischen Abstand entlang der Oberfläche verwendet, um zweidimensionale Skelette zu berechnen, welche dünne, aber geometrisch bedeutsame, Strukturen des Objekts rauschunempfindlich abbilden. Das Maß wird im weiteren mit Thinning kombiniert, um die Erosion von Voxeln auf Linien zuzusteuern, die zentriert in plattenförmigen Strukturen liegen. Maße, die auf dem geodätischen Abstand aufbauen, scheinen sehr geeignet zu sein, um ein- und zwei-dimensionale Skelette bei vorhandenem Rauschen zu identifizieren. Eine theoretische Begründung für diese Beobachtung steht noch aus. In Abschnitt 6 werden die diskutierten Methoden zur Visualisierung von Knochenfeinstruktur eingesetzt. Abschnitt 3 beschreibt eine Methode, um Voxel-Skelette durch kontrollierte Retraktion in eine stückweise-lineare geometrische Darstellung umzuwandeln, die als Eingabe für Geometrieverarbeitung und effizientes Rendering von Voxel-Skeletten dient. Es zeigt sich, dass eine detaillierte Betrachtung der topologischen Eigenschaften eines Voxel-Skeletts einer Betrachtung von allgemeinen Voxel-Konfigurationen für die Umwandlung zu einer geometrischen Darstellung überlegen ist. Die diskutierte Methode bildet die Grundlage für die Anwendungen, die in Abschnitt 6 diskutiert werden. Abschnitt 5 führt einen I/O-effizienten Algorithmus für Thinning ein. Die vorgestellte Methode erweitert bekannte Algorithmen zur Berechung von Chamfer-Distanztransformationen und Thinning so, dass diese effizient ausführbar sind, wenn die Eingabedaten den verfügbaren Hauptspeicher übersteigen. Der Einfluss der Blockgrenzen auf die Algorithmen wurde analysiert, um global korrekte Ergebnisse sicherzustellen. Eine detaillierte Analyse ist einer naiven Zerlegung, die die Einflüsse von Blockgrenzen vernachlässigt, überlegen. In Abschnitt 6 wird, aufbauend auf den I/O-effizienten Algorithmen, ein Verfahren zur quantitativen Analyse von Mikrogefäßnetzwerken diskutiert.
Maushagen, Jan. "Visual Analysis of Publication Networks." Thesis, Linnéuniversitetet, Institutionen för datavetenskap (DV), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-27487.
Full textBlume, Hans Michael [Verfasser], and C. [Akademischer Betreuer] Weinhardt. "Behavior Identification in Markets - using Visualization and Network Analysis / Hans Michael Blume. Betreuer: C. Weinhardt." Karlsruhe : KIT-Bibliothek, 2012. http://d-nb.info/1020230096/34.
Full textMiller, Paul Michael. "Visualization for network forensic analyses extending the Forensic Log Investigator (FLI) /." [Ames, Iowa : Iowa State University], 2008.
Find full textxinjian, qi. "COMPUTATIONAL ANALYSIS, VISUALIZATION AND TEXT MINING OF METABOLIC NETWORKS." Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1378479338.
Full textZhang, Yinghua. "Stock Market Network Topology Analysis Based on a Minimum Spanning Tree Approach." Bowling Green State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1245347181.
Full textGarcía, Sara. "Visualization of Learning Paths as Networks of Topics." Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-100683.
Full textFung, David Cho Yau. "Visualization and analysis of gene expression in bio-molecular networks." Phd thesis, Faculty of Engineering and Information Technologies, 2010. http://hdl.handle.net/2123/9325.
Full textFabbri, Renato. "Topological stability and textual differentiation in human interaction networks: statistical analysis, visualization and linked data." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-11092017-154706/.
Full textEste trabalho relata propriedades topológicas estáveis (ou invariantes) e diferenciação textual em redes de interação humana, com referências derivadas de listas públicas de e-mail. A atividade ao longo do tempo e a topologia foram observadas em instantâneos ao longo de uma linha do tempo e em diferentes escalas. A análise mostra que a atividade é praticamente a mesma para todas as redes em escalas temporais de segundos a meses. As componentes principais dos participantes no espaço das métricas topológicas mantêm-se praticamente inalteradas quando diferentes conjuntos de mensagens são considerados. A atividade dos participantes segue o esperado perfil livre de escala, produzindo, assim, as classes de vértices dos hubs, dos intermediários e dos periféricos em comparação com o modelo Erdös-Rényi. Os tamanhos relativos destes três setores são essencialmente os mesmos para todas as listas de e-mail e ao longo do tempo. Normalmente, 3-12% dos vértices são hubs, 15-45% são intermediários e 44-81% são vértices periféricos. Os textos de cada um destes setores são considerados muito diferentes através de uma adaptação dos testes de Kolmogorov-Smirnov. Estas propriedades são consistentes com a literatura e podem ser gerais para redes de interação humana, o que tem implicações importantes para o estabelecimento de uma tipologia dos participantes com base em critérios quantitativos. De modo a guiar e apoiar esta pesquisa, também desenvolvemos um método de visualização para redes dinâmicas através de animações. Para facilitar a verificação e passos seguintes nas análises, fornecemos uma representação em dados ligados dos dados relacionados aos nossos resultados.
Renoust, Benjamin. "Analysis and Visualisation of Edge Entanglement in Multiplex Networks." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00942358.
Full textFenn, Edward, and Eric Fornling. "Mapping and identifying misplaced devices on a network by use of metadata." Thesis, Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14687.
Full textKontext. Placeringen av enheter i nätverk har idag blivit en säkerhetsfråga för de flesta företagen. Eftersom en felplacerad enhet kan äventyra ett helt nätverk, och i förlängning, ett företag så är det essentiellt att ha koll på vad som är placerat vart. Kunskap är nyckeln till framgång, och att ha kunskap om sin nätverksstruktur är avgörande för att göra nätverket säkert. Stora nätverk kan dock vara svåra att ha koll på om anställda kan lägga till eller ta bort enheter, och på så sätt göra det svårt för administratören att ständigt hålla sig uppdaterad om vad som finns vart. Mål. Den här studien fokuserar på skapandet av en analysmetod för att kartlägga ett nätverk baserat på metadata från nätverket. Analysmetoden ska sedan implementeras i ett verktyg som sedan automatiskt kartlägger nätverket utifrån den metadata som valts ut i analysmetoden. Motivationen och målet med den här studien är att skapa en metod som förbättrar nätverkskartläggning med syftet att identifiera felplacerade enheter, och att uppnå en större förståelse för den inverkan felplacerade enheter kan få för ett nätverk. Metod. Metoden för att analysera metadatan var att genom att för hand leta igenom den metadata som Outpost24 ABs sårbarhetsskanner samlade in när den letade efter sårbarheter i ett nätverk. Genom att analysera metadatan så kunde vi singla ut enskilda bitar som vi ansåg vara nödvändiga för att identifiera enhetens typ. Dessa attribut implementerades sedan i en sannolikhetsfunktion som avgjorde vilken typ en enhet hade, baserat på informationen i metadatan. Resultatet från denna sannolikhetsfunktion presenterades sedan visuellt som en graf. En algoritm som matade ut varningar om den hittade felkonfigurerade subnät kördes sedan mot resultaten från sannolikhetsfunktionen. Resultat. Den i den här rapporten föreslagna metoden är fastställt till att vara cirka 30 878 gånger snabbare än föregående metoder, i.e. att leta igenom metadatan för hand. Dock så är den föreslagna metoden inte lika exakt då den har en identifikationsgrad på 80-93% av enheterna på nätverket, och en korrekt identifikationsgrad på enhetstypen på 95-98% av de identifierade enheterna. Detta till skillnad från den föregående metoden som hade 80-93% respektive 100% identifikationsgrad. Den föreslagna metoden identifierade också 48.9% av alla subnät som felkonfigurerade. Sammanfattning. För att sammanfatta så bevisar den föreslagna metoden att det är möjligt att identifiera felplacerade enheter på ett nätverk utifrån en analys av nätverkets metadata. Den föreslagna metoden är dessutom avsevärt snabbare än föregående metoder, men behöver utvecklas mer för att nå samma identifikationsgrad som föregående metoder. Det här arbetet kan ses som ett proof-of-concept gällande identifikation av enheter baserat på metadata, och behöver därför utvecklas för att nå sin fulla potential.
Ekroth, Natalie, and Josefin Lennartsson. "Web-based Multicriteria Decision Analysis and Visualization for Reinvestments in Power Networks." Thesis, KTH, Geoinformatik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210696.
Full textConley, Thomas A. "Effective Programmatic Analysis of Network Flow Data for Security and Visualization using Higher-order Statistics and Domain Specific Embedded Languages." Ohio University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1336482912.
Full textPark, Do young. "Robust Detection, Visualization, Recognition, and Analysis of Cytoskeletal Structures in Fibrillar Scaffolds from 3-Dimensional Confocal Images." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1500620844897981.
Full textLaurent, Anabelle. "The analysis of data from on-farm research network : Statistical approaches to test the efficacy of management practices and data visualization." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASB022.
Full textAn on-farm research network is an organization of farmers that conducts agronomic experiments under local conditions. There is growing interest in on-farm research networks because they provide the infrastructure needed to test new products and management practices in farmers’ fields. Often, the results are usually presented as individual reports (i.e., a report summarizing the outcome for one trial), but this provides limited information difficult to generalize and does not allow presenting, in a synthetic way, all the results collected from the different trials. Moreover, there is an unexplored potential in detecting yield response variability patterns for better decision making. The overall objective of this thesis is to demonstrate the importance of identifying appropriate statistical methods for analyzing and visualizing on-farm research network data. Specifically, I focused on analyzing the on-farm research networks managed by the Iowa Soybean Association, and an adaptation was made with a French case-study. A data-analytics framework was developed to analyze multiple trials that use a common protocol and identify the conditions where an imposed treatment may or may not be effective. This framework used a random-effect model through a Bayesian approach and returned yield response estimates at the network and trial levels. The framework was implemented through a web-application for 51 different management practices on corn and soybean. The web-application includes dynamic data visualization features to enhance communication and information sharing, and is accessible to a broad audience to improve accessibility to on-farm research insights. A random-effects statistical model was used to compute prediction intervals describing a range of plausible yield response for a new (out-of-sample) trial, and compute the probability that the tested management practice will be ineffective in a new field. Depending on the level of between-trial variability, the prediction intervals were 2.2–12.1 times larger than confidence intervals for the estimated mean yield responses (i.e., at the network level) for all tested management practices. Using prediction intervals and the probability of ineffective treatment will prevent farmers from over-optimistic expectations that a significant effect at the network level will lead with high certainty to a yield gain on their farms. The data-analytic framework was adapted to a French on-farm research network focusing on the efficacy of biocontrol agent products against Botrytis cinerea, potassium bicarbonate and Aureobasidium pullulans, on organic vine. The results favored potassium bicarbonate as its efficacy on incidence at the network level is higher for diseased intensities between 0% and 10% than for Aureobasidium pullulans. For both biocontrol agents, the efficacy on incidence for a new trial is highly uncertain for intensity levels higher than 15%. Finally, this research investigated the impact of experimental plot scale (i.e., small-plot scale and field scale) on the effect of management practice on crop yield and identified the cause of potential discrepancies to inform on-farm decision-making better and adapt the extrapolation of the results. Taken together, this research represents the first major effort in consolidating results from on-farm research network and provides insight to make better farming management decisions
Amento, Brian. "User Interfaces for Topic Management of Web Sites." Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/29871.
Full textPh. D.
Perez, Sarah Isa Esther. "Exploring microbial community structure and resilience through visualization and analysis of microbial co-occurrence networks." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/53928.
Full textScience, Faculty of
Graduate
Baur, Michael [Verfasser], and D. [Akademischer Betreuer] Wagner. "visone - Software for the Analysis and Visualization of Social Networks / Michael Baur. Betreuer: D. Wagner." Karlsruhe : KIT-Bibliothek, 2008. http://d-nb.info/1013721632/34.
Full textZaidi, Faraz. "Analysis, structure and organization of complex networks." Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14112/document.
Full textNetwork science has emerged as a fundamental field of study to model many physicaland real world systems around us. The discovery of small world and scale free propertiesof these real world networks has revolutionized the way we study, analyze, model andprocess these networks. In this thesis, we are interested in the study of networks havingthese properties often termed as complex networks. In our opinion, research conducted inthis field can be grouped into four categories, Analysis, Structure, Processes-Organizationand Visualization. We address problems pertaining to each of these categories throughoutthis thesis. (...)
Pister, Alexis. "Visual Analytics for Historical Social Networks : Traceability, Exploration, and Analysis." Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG081.
Full textThis thesis aims at identifying theoretically and concretely how visual analytics can support historians in their social network analysis process. Historical social network analysis is a method to study social relationships between groups of actors (families, institutions, companies, etc.) through a reconstruction of relationships of the past from historical documents, such as marriage acts, migration forms, birth certificates, and censuses. The use of visualization and analytical methods lets social historians explore and describe the social structure shaping those groups while explaining sociological phenomena and individual behaviors through computed network measures. However, the inspection and encoding of the sources leading to a finalized network is intricate and often results in inconsistencies, errors, distortions, and traceability problems, and current visualization tools typically have usability and interpretability issues. For these reasons, social historians are not always able to make thorough historical conclusions: many studies consist of qualitative descriptions of network drawings highlighting the presence of motifs such as cliques, components, bridges, etc. The goal of this thesis is therefore to propose visual analytics tools integrated into the global social historians' workflow, with guided and easy-to-use analysis capabilities. From collaborations with historians, I formalize the workflow of historical network analysis starting at the acquisition of sources to the final visual analysis. By highlighting recurring pitfalls, I point out that tools supporting this process should satisfy traceability, simplicity, and document reality principles to ease bask and forth between the different steps, provide tools easy to manipulate, and not distort the content of sources with modifications and simplifications. To satisfy those properties, I propose to model historical sources into bipartite multivariate dynamic social networks with roles as they provide a good tradeoff of simplicity and expressiveness while modeling explicitly the documents, hence letting users encode, correct, and analyze their data with the same abstraction and tools. I then propose two interactive visual interfaces to manipulate, explore, and analyze this data model, with a focus on usability and interpretability. The first system ComBiNet allows an interactive exploration leveraging the structure, time, localization, and attributes of the data model with the help of coordinated views and a visual query system allowing users to isolate interesting groups and individuals, and compare their position, structures, and properties. It also lets them highlight erroneous and inconsistent annotations directly in the interface. The second system, PK-Clustering, is a concrete proposition to enhance the usability and effectiveness of clustering mechanisms in social network visual analytics systems. It consists in a mixed-initiative clustering interface that let social scientists create meaningful clusters with the help of their prior knowledge, algorithmic consensus, and interactive exploration of the network. Both systems have been designed with continuous feedback from social historians, and aim to increase the traceability, simplicity, and document reality of visual analytics supported historical social network research. I conclude with discussions on the potential merging of both tools, and more globally on research directions towards better integration of visual analytics systems on the whole workflow of social historians. Systems with a focus on those properties---traceability, simplicity, and document reality---can limit the introduction of bias while lowering the requirements for the use of quantitative methods for historians and social scientists which has always been a controversial discussion among practitioners
Kaewprag, Pacharmon Fuhry. "Visual Analysis of Bayesian Networks for Electronic Health Records." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1531778349031686.
Full textRoyer, Loic. "Unraveling the Structure and Assessing the Quality of Protein Interaction Networks with Power Graph Analysis." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-62562.
Full textLeichtnam, Laetitia. "Detecting and visualizing anomalies in heterogeneous network events : Modeling events as graph structures and detecting communities and novelties with machine learning." Thesis, CentraleSupélec, 2020. http://www.theses.fr/2020CSUP0011.
Full textThe general objective of this thesis is to evaluate the interest of graph structures in the field of security data analysis.We propose an end-to-end approach consisting in a unified view of the network data in the form of graphs, a community discovery system, an unsupervised anomaly detection system, and a visualization of the data in the form of graphs. The unified view is obtained using knowledge graphs to represent heterogeneous log files and network traffics. Community detection allows us to select sub-graphs representing events that are strongly related to an alert or an IoC and that are thus relevant for forensic analysis. Our anomaly-based intrusion detection system relies on novelty detection by an autoencoder and exhibits very good results on CICIDS 2017 and 2018 datasets. Finally, an immersive visualization of security data allows highlighting the relations between security elements and malicious events or IOCs. This gives the security analyst a good starting point to explore the data and reconstruct global attack scenarii
Dimanche, Vincent. "Compréhension fine du comportement des lignes des réseaux métro, RER ettramway pour la réalisation des études d’exploitabilité." Thesis, Reims, 2018. http://www.theses.fr/2018REIMS010.
Full textDense railway networks face significant saturation. And the balance between the theoretical offer and the growing demand imposes strong operability constraints. An imbalance will generate conflicting points such as bottlenecks with the effect of delays on the following trains. As the human factor influences the operation performance; taking it into account more accurately should improve understanding and modeling of railway lines to increase capacity without reducing passenger comfort. To fulfill this objective, we are working on an adapted visualization of the operating data and on their automated mining. These two solutions have been adapted and applied to the railway sector, particularly to the lines of rail networks operated by RATP. The "Visual Analytics" process, implemented in our work to meet these needs, encompasses the steps required to value the data, going from the preparation of the data to the expert analysis. This expert analysis is made through graphic representation and the use of data mining algorithms. Among these data mining algorithms, CorEx and Sieve allowed us to analyze operating data and then extract characteristics human behavior thanks to unsupervised learning based on a multivariate mutual information measure to. Finally, we propose an intuitive visualization of a large amount of data allowing their global integration and facilitating the overall diagnosis of the railway lines behavior
Nascimento, Cátia Souza do. "PANDORA : uma ferramenta para visualização incremental e análise de redes sociais acadêmicas." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2013. http://hdl.handle.net/10183/67851.
Full textThe analysis of social networks through visual tools allows to extract important information about each individual and their relationships. Through it we can understand how groups are organized. For the case of co-authorship networks, some conclusions about which researcher has greater prestige in the network or where the researcher has profile more like his can be obtained. A lot of tools have been developed for visualizing social networks. Some of them allow analyzes are made about the data that make up the networks, but most do not show the results of these analyzes on the graph itself, usually presenting them as textual information. This work was initially done a comparative study of various visual tools that show beyond social networks graphically. This tools generally do some kind of analysis on the network. In this work Pandora was developed, a visualization tool that allows incremental academic networks and interaction with the graph and calculate some metrics, such as centralities, assortativity and collaboration coefficient.
Janowski, Sebastian Jan [Verfasser]. "VANESA - A bioinformatics software application for the modeling, visualization, analysis, and simulation of biological networks in systems biology applications / Sebastian Jan Janowski." Bielefeld : Universitaetsbibliothek Bielefeld, 2013. http://d-nb.info/1036112020/34.
Full textFuhry, David P. "PLASMA-HD: Probing the LAttice Structure and MAkeup of High-dimensional Data." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1440431146.
Full textJusufi, Ilir. "Multivariate Networks : Visualization and Interaction Techniques." Doctoral thesis, Linnéuniversitetet, Institutionen för datavetenskap (DV), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-25497.
Full textRibeiro, Elvia Nunes. "ANÁLISE E VISUALIZAÇÃO DAS REDES SOCIAIS, USANDO O SOFTWARE R, APLICADA À EDUCAÇÃO A DISTÂNCIA." Pontifícia Universidade Católica de Goiás, 2017. http://tede2.pucgoias.edu.br:8080/handle/tede/3694.
Full textMade available in DSpace on 2017-06-01T12:20:54Z (GMT). No. of bitstreams: 1 ELVIA NUNES RIBEIRO.pdf: 12426525 bytes, checksum: d4499bc7cc8a0340d5075c19261a8f7e (MD5) Previous issue date: 2017-03-16
This research applies to the social network analysis metrics (SNA), information visualization (VI) and correlation analysis for development of diagnostics of the distance learning on social networks that occur in the virtual learning environment (AVA). The data were extracted directly from the database of the AVA, e-Proinfo. The use of R software version 3.3.1 was chosen for the implementation of the necessary scripts in this research. The R software proved to be a suitable and versatile choice for applications in networks, contemplating the options generally available in SNA specific tools and resources for handling, processing and implementation of new network solutions. The analysis of forum networks identified the intensity of individual and class participation. Non-parametric analysis applied found a high positive correlation between the grade of the student and his contributions to the forum, especially the centrality of output. The correlations of Spearman and Kendall were 0.7921 and 0.6261 respectively. The analysis of social networks, messaging and note tools and the establishment of contacts among the participants turned possible the identification of the level of their involvement in the course. This research contributes to knowledge management by highlighting social networks formed by communications data and course interactions. Access to social networks of a distance course enables the Manager to monitor the level of participation, exchanges of information and the construction of knowledge. This information is useful for the decision-making and can collaborate for educational development.
Esta pesquisa aplica as métricas de análise de redes sociais (ARS), visualização de informações (VI) e análise de correlação para realização de diagnósticos de um curso a distância, nas redes sociais que ocorrem no ambiente virtual de aprendizagem (AVA). Os dados foram extraídos diretamente do banco de dados do AVA, e-Proinfo. Optou-se pelo uso do software R, versão 3.3.1, para a implementação dos scripts necessários nesta pesquisa. O software R mostrou ser uma escolha adequada e versátil para aplicações em redes, contemplando as opções geralmente disponíveis nas ferramentas específicas de ARS e recursos para manipulação, tratamento e implementação de novas soluções de redes. As análises das redes de fórum permitiram identificar a intensidade das participações individuais e das turmas. As análises não paramétricas aplicadas constataram uma alta correlação positiva entre a nota do aluno e suas contribuições no fórum, principalmente, a centralidade de saída. As correlações de Spearman e Kendal foram de 0,7921 e 0,6261 respectivamente. As análises das redes sociais, das ferramentas de mensagem e de recados e o estabelecimento de contatos entre os participantes permitiram identificar o nível de envolvimento destes no curso. Esta pesquisa contribui com a gestão de conhecimento por evidenciar as redes sociais formadas pelos dados de comunicações e de interações do curso. O acesso às redes sociais de um curso a distância possibilita ao gestor acompanhar o nível de participação, as trocas de informações e a construção de conhecimento. Estas informações são úteis para as tomadas de decisões e podem colaborar para o desenvolvimento educacional.
Ling, Kwan Lai. "Visualization of ATM network data." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ28956.pdf.
Full textSun, Wenyi, and Chunmiao Yu. "Visualization of Lnu's Publication Network." Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-13893.
Full textRen, Haolin. "Visualizing media with interactive multiplex networks." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0036/document.
Full textNowadays, information follows complex paths: information propagation involving on-line editors, 24-hour news providers and social medias following entangled paths acting on information content and perception. This thesis studies the adaptation of classical graph measurements to multiplex graphs, to build visualizations from several graphical representations of the networks, and to combine them (synchronized multi-view visualizations, hybrid representations, etc.). Emphasis is placed on the modes of interaction allowing to take in hand the multiplex nature (multilayer) of the networks. These representations and interactive manipulations are also based on the calculation of indicators specific to multiplex networks. The work is based on two main datasets: one is a 12-year archive of the Japanese public daily broadcast NHK News 7, from 2001 to 2013. Another lists the participants in the French TV/radio shows between 2010 and 2015. Two visualization systems based on a Web interface have been developed for multiplex network analysis, which we call "Visual Cloud" and "Laputa". In the Visual Cloud, we formally define a notion of similarity between concepts and groups of concepts that we call co-occurrence possibility (CP). According to this definition, we propose a hierarchical classification algorithm. We aggregate the layers in a multiplex network of documents, and integrate that hierarchy into an interactive word cloud. Here we improve the traditional word cloud layout algorithms so as to preserve the constraints on the concept hierarchy. The Laputa system is intended for the complex analysis of dense and multidimensional temporal networks. To do this, it associates a graph with a segmentation. The segmentation by communities, by attributes, or by time slices, forms views of this graph. In order to associate these views with the global whole, we use Sankey diagrams to reveal the evolution of the communities (diagrams that we have increased with a semantic zoom). This thesis allows us to browse three aspects of the most interesting aspects of the data miming and BigData applied to multimedia archives: The Volume since our archives are immense and reach orders of magnitude that are usually not practicable for the visualization; Velocity, because of the temporal nature of our data (by definition). The Variety that is a corollary of the richness of multimedia data and of all that one may wish to want to investigate. What we can retain from this thesis is that we met each of these three challenges by taking an answer in the form of a multiplex network analysis. These structures are always at the heart of our work, whether in the criteria for filtering edges using the Simmelian backbone algorithm, or in the superposition of time slices in the complex networks, or much more directly in the combinations of visual and textual semantic indices for which we extract hierarchies allowing our visualization
Jin, Zhihua. "Visualization of Network Traffic to Detect Malicious Network Activity." Thesis, Norwegian University of Science and Technology, Department of Telematics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-8951.
Full textToday, enormous logging data monitoring the traffics of the Internet is generated everyday. However, the network administrators still have very limited insight into the logging data, mainly due to the lack of efficient analyzing approaches. Most of the existing network monitoring or analysis tools either mainly focus on the throughput of the network in order to assist network structure planning and optimization, which is too high level for security analysis, or dig to too low level into every packet, which is too inefficient in practice. Unfortunately, not all network traffics are legitimate. As a matter of fact, a lot of malicious traffics flow through the Internet all the time. Such malicious traffics can lead to various cyber-crimes, and exhaust considerable network bandwidth. The expression that what you do not see can hurt you perfectly suits the situation here. In order to help the network administrators to discover malicious activities in their network traffics, this thesis attempt to explore suitable visualization techniques to distinguish malicious traffics from massive background traffics by using visual patterns, to which the human visual perception system is sensitive and can thus processes efficiently. To achieve such goal, we first extract the visual patterns of malicious activities from known malicious traffics. Then, we look for the same visual patterns in the normal traffics. When the same visual pattern is found, we identify the relevant malicious activities. The tool used in our experimentation is designed and implemented according to the experiences learned from previous related works, with special regards to human visual perception theory. The result of our experimentation shows that some malicious activities which can not be easily identified in traditional analyzing approaches before, can be identified by our visualization system under certain conditions.
Sledz, Daniel A. Coomes Donald E. "A dynamic three-dimensional network visualization program for integration into cyberciege and other network visualization scenarios." Monterey, Calif. : Naval Postgraduate School, 2007. http://bosun.nps.edu/uhtbin/hyperion-image.exe/07Jun%5FSledz.pdf.
Full textThesis Advisor(s): Mathias Kölsch. "June 2007." Includes bibliographical references (p. 113-116). Also available in print.
Sledz, Daniel A. Coomes Donald E. "A dynamic three-dimensional network visualization program for integration into cybersiege and other network visualization scenarios." Monterey, Calif. : Naval Postgraduate School, 2007. http://handle.dtic.mil/100.2/ADA470113.
Full text"June 2007." Title from title page of PDF document (viewed on: Nov. 15, 2007). Includes bibliographical references (p. 113-116).