Academic literature on the topic 'Nemo'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nemo.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nemo"

1

Corn, A. "Nemo." Literary Imagination 9, no. 3 (May 26, 2007): 273. http://dx.doi.org/10.1093/litimag/imm006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Plagge, Mark, Christopher D. Carothers, Elsa Gonsiorowski, and Neil Mcglohon. "NeMo." ACM Transactions on Modeling and Computer Simulation 28, no. 4 (October 13, 2018): 1–25. http://dx.doi.org/10.1145/3186317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hsieh, Cheng-Yu, Jieyu Zhang, and Alexander Ratner. "Nemo." Proceedings of the VLDB Endowment 15, no. 13 (September 2022): 4093–105. http://dx.doi.org/10.14778/3565838.3565859.

Full text
Abstract:
Weak Supervision (WS) techniques allow users to efficiently create large training datasets by programmatically labeling data with heuristic sources of supervision. While the success of WS relies heavily on the provided labeling heuristics, the process of how these heuristics are created in practice has remained under-explored. In this work, we formalize the development process of labeling heuristics as an interactive procedure, built around the existing workflow where users draw ideas from a selected set of development data for designing the heuristic sources. With the formalism, shown in Figure 1, we study two core problems of (1) how to strategically select the development data to guide users in efficiently creating informative heuristics, and (2) how to exploit the information within the development process to contextualize and better learn from the resultant heuristics. Building upon two novel methodologies that effectively tackle the respective problems considered, we present Nemo, an end-to-end interactive system that improves the overall productivity of WS learning pipeline by an average 20% (and up to 47% in one task) compared to the prevailing WS approach.
APA, Harvard, Vancouver, ISO, and other styles
4

Bates, Jane. "Nemo complex." Nursing Standard 21, no. 19 (January 17, 2007): 27. http://dx.doi.org/10.7748/ns.21.19.27.s35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Renouard, Jean-Philippe. "merci nemo." Vacarme 24, no. 3 (2003): 72. http://dx.doi.org/10.3917/vaca.024.0072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hay, Ronald T. "Modifiying NEMO." Nature Cell Biology 6, no. 2 (February 2004): 89–91. http://dx.doi.org/10.1038/ncb0204-89.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Smallridge, Rachel. "Understanding NEMO." Nature Reviews Molecular Cell Biology 7, no. 6 (May 17, 2006): 384–85. http://dx.doi.org/10.1038/nrm1944.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Koylass, Nicholas Robert, Elizabeth A. DeRiso, Andrea L. Szymczak-Workman, Angela Montecalvo, Joanne M. Murphy, Maria Cristina Seminario, Lawrence P. Kane, and Stephen C. Bunnell. "Recruitment of NEMO/IKKγ to TCR microclusters during T cell activation." Journal of Immunology 202, no. 1_Supplement (May 1, 2019): 184.1. http://dx.doi.org/10.4049/jimmunol.202.supp.184.1.

Full text
Abstract:
Abstract The IκB kinase (IKK) complex mediates the activation of canonical NFκB isoforms following T cell receptor (TCR) ligation. This complex consists of the kinases IKKα and IKKβ and an essential adaptor subunit, the NFκB essential modulator protein (NEMO). Most models suggest that the IKK complex is activated within oligomeric Carma1/Bcl10/Malt1 (CBM) signalosomes. However, we observed that NEMO enters TCR microclusters before CBM complexes are assembled, within ~70 seconds of TCR engagement. NEMO also entered mobile vesicles and in larger membrane-bounded structures (hereafter ‘macroclusters’). The recruitment of NEMO into TCR microclusters is prevented by Src kinase inhibitors and by the catalytic inactivation of ZAP-70, but occurs in the absence of either SLP-76 or Carma1. Further, NEMO fails to co-localize with TCR-induced CBM polymers. Thus, the recruitment of NEMO to the TCR occurs via a CBM-independent mechanism. The deletion the zinc-finger (ZnF) domain of NEMO disables NFκB signaling and eliminates NEMO from microclusters, while preserving NEMO macroclusters. Since the ZnF domain interacts with polyubiquitin chains, we generated point mutations impacting the ubiquitin-binding site in the ZnF domain and two independent sites within the NEMO ubiquitin-binding ‘NUB’ domain. These mutations impair the ability of NEMO to capture K63-linked and/or linear polymers, hinder NFκB signaling, and eliminate NEMO from microclusters without disrupting NEMO macroclusters. These findings suggest that NEMO is rapidly recruited to polyubiquitin chains associated with the TCR, rather than the CBM complex, and that the CBM complex augments IKK-dependent NFκB signaling via a distinct, recruitment-independent mechanism.
APA, Harvard, Vancouver, ISO, and other styles
9

Medunjanin, Senad, Maximilian Putzier, Till Nöthen, Sönke Weinert, Thilo Kähne, Blerim Luani, Werner Zuschratter, and Ruediger C. Braun-Dullaeus. "DNA-PK: gatekeeper for IKKγ/NEMO nucleocytoplasmic shuttling in genotoxic stress-induced NF-kappaB activation." Cellular and Molecular Life Sciences 77, no. 20 (January 13, 2020): 4133–42. http://dx.doi.org/10.1007/s00018-019-03411-y.

Full text
Abstract:
Abstract The transcription factors of the nuclear factor κB (NF-κB) family play a pivotal role in the cellular response to DNA damage. Genotoxic stress-induced activation of NF-κB differs from the classical canonical pathway by shuttling of the NF-κB Essential Modifier (IKKγ/NEMO) subunit through the nucleus. Here, we show that DNA-dependent protein kinase (DNA-PK), an enzyme involved in DNA double-strand break (DSB) repair, triggers the phosphorylation of NEMO by genotoxic stress, thereby enabling shuttling of NEMO through the nucleus with subsequent NF-κB activation. We identified serine 43 of NEMO as a DNA-PK phosphorylation site and point mutation of this serine to alanine led to a complete block of NF-κB activation by ionizing radiation (IR). Blockade of DNA-PK by a specific shRNA or by DNA-PKcs-deficient cells abrogated NEMO entry into the nucleus, as well. Accordingly, SUMOylation of NEMO, a prerequisite of nuclear NEMO, was abolished. Based on these observations, we propose a model in which NEMO phosphorylation by DNA-PK provides the first step in the nucleocytoplasmic trafficking of NEMO.
APA, Harvard, Vancouver, ISO, and other styles
10

Goel, Simran, Rosario Oliva, Sadasivam Jeganathan, Verian Bader, Laura J. Krause, Simon Kriegler, Isabelle D. Stender, et al. "Linear ubiquitination induces NEMO phase separation to activate NF-κB signaling." Life Science Alliance 6, no. 4 (January 31, 2023): e202201607. http://dx.doi.org/10.26508/lsa.202201607.

Full text
Abstract:
The NF-κB essential modulator NEMO is the core regulatory component of the inhibitor of κB kinase complex, which is a critical checkpoint in canonical NF-κB signaling downstream of innate and adaptive immune receptors. In response to various stimuli, such as TNF or IL-1β, NEMO binds to linear or M1-linked ubiquitin chains generated by LUBAC, promoting its oligomerization and subsequent activation of the associated kinases. Here we show that M1-ubiquitin chains induce phase separation of NEMO and the formation of NEMO assemblies in cells after exposure to IL-1β. Phase separation is promoted by both binding of NEMO to linear ubiquitin chains and covalent linkage of M1-ubiquitin to NEMO and is essential but not sufficient for its phase separation. Supporting the functional relevance of NEMO phase separation in signaling, a pathogenic NEMO mutant, which is impaired in both binding and linkage to linear ubiquitin chains, does not undergo phase separation and is defective in mediating IL-1β–induced NF-κB activation.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Nemo"

1

Tintó, Prims Oriol. "NEMO: computational challenges in ocean simulation." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/669877.

Full text
Abstract:
Els oceans juguen un paper molt important modulant la temperatura de la Terra absorbint, emmagatzemant i transportant l'energia que ens arriba del sol. Entendre millor la dinàmica dels oceans pot ajudar a millorar les prediccions meteorològiques i a comprendre millor el clima, qüestions d'especial rellevància per la societat. Utilitzant ordinadors ha sigut possible resoldre numèricament les equacions que descriuen la dinàmica dels oceans, i millorant com els models oceànics exploten els recursos computacionals, podem reduir el cost de les simulacions alhora que fem possibles nous desenvolupaments que milloraràn la qualitat científica dels models. Enfrontant els reptes computacionals de la simulació oceànica podem contribuir en camps que tenen un impacte directe en la societat mentre reduïm el cost dels experiments. Per ser un dels principals models oceànics, la tesis s'ha centrat en el model NEMO. Per tal de millorar el rendiment dels models oceànics, un dels objectius inicials va ser entendre millor el seu comportament computacional. Per aconseguir-ho, es va proposar una metodologia d'anàlisis, posant especial atenció en les comunicacions entre processos. Utilitzada amb NEMO, va ajudar a resaltar diverses ineficiències en la implementació que, un cop sol·lucionades, van portar a una millora del 46-49% en la velocitat màxima del model, tot millorant la seva escalabilitat. Aquest resultat ilustra que aquest tipus d'anàlisis poden ajudar als desenvolupadors dels models a adaptar-los tot mostrant l'origen dels problemes que pateixen. Un altre dels problemes detectats va ser que l'impacte d'escollir una descomposició de domini concreta estava molt subestimat, ja que en certes circumstàncies el model triava una descomposició sub-optima. Tenint en compte els factors que fan que una descomposició concreta afecti el rendiment del model, es va proposar un mètode per fer una selecció òptima. Els resultats mostren que parant atenció a la descomposició no només es poden estalviar recursos sinó que la velocitat màxima del model també se'n beneficia, arribant al 41% de millora en alguns casos. Després dels èxits aconseguits en la primera part de la tesis, arribant a doblar la velocitat màxima del model, l'atenció es va posar sobre els algoritmes de precisió mixta. Idealment, un ús adequat de la precisió numèrica ha de permetre millorar el rendiment d'un model sense perjudicar-ne els resultats. Per tal d'aconseguir-ho en models oceànics, es va desenvolupar un mètode que permet determinar quina és la precisió necessària en cada una de las variables d'un codi informàtic. Utilitzat amb NEMO i ROMS va resultar que en ambdós models la major part de les variables pot utilitzar sense problema menys precisió que els 64-bits habituals, mostrant que potencialment els models oceànics es poden beneficiar molt d'una reducció de la precisió numèrica. Finalment, durant el desenvolupament de la tesi es va observar que degut a la no-linealitat dels models oceànics, determinar si un canvi en el codi informàtic perjudica la qualitat dels resultats esdevé molt complicat. Per solucionar-ho, es va presentar un mètode per verificar els resultats de models no-lineals. Encara que les contribucions que donen forma a aquesta tesis han sigut diverses, conjuntament han ajudat a identificar i combatre els reptes computacionals que afecten els models oceànics. Aquestes contribucions no només han resultat en quatre publicacions sinó que també han resultat en la contribució al codi informàtic de NEMO i del consorci EC-Earth. Per tant, els resultat de la recerca realitzada ja estan tenint un impacte positiu en la comunitat, ajudant als usuaris dels models a estalviar recursos i temps. A més a més, aquestes contribucions no només han ajudat a millorar significativament el rendiment computacional de NEMO sinó que han sobrepassat l'objectiu inicial de la tesis i poden ser transferibles a altres models computacionals.
The ocean plays a very important role in modulating the temperature of the Earth through absorbing, storing and transporting the energy that arrives from the sun. Better understanding the dynamics of the ocean can help us to better predict the weather and to better comprehend the climate, two topics of special relevance for society. Ocean models had become an extremely useful tools, as they became a framework upon with it was possible to build knowledge. Using computers it became possible to numerically solve the fluid equations of the ocean and by improving how ocean models exploit the computational resources, we can reduce the cost of simulation whilst enabling new developments that will increase its skill. By facing the computational challenges of ocean simulation we can contribute to topics that have a direct impact on society whilst helping to reduce the cost of our experiments. Being the major European ocean model and one of the main state-of-the-art ocean models worldwide, this thesis has focused on the Nucleus NEMO. To find a way to improve the computational performance of ocean models, one of the initial goals was to better understand their computational behaviour. To do so, an analysis methodology was proposed, paying special attention to inter-process communication. Used with NEMO, the methodology helped to highlight several implementation inefficiencies, whose optimization led to a 46-49\% gain in the maximum model throughput, increasing the scalability of the model. This result illustrated that this kind of analysis can significantly help model developers to adapt their code highlighting where the problems really are. Another of the issues detected was that the impact of the domain decomposition was alarmingly underestimated, since in certain circumstances the model's algorithm was selecting a sub-optimal decomposition. Taking into account the factors that make a specific decomposition impact the performance, a method to select an optimal decomposition was proposed. The results showed that that by a wise selection of the domain decomposition it was possible not only to save resources but also to increase the maximum model throughput by a 41\% in some cases. After the successes achieved during the first part of the thesis, that allowed an increase of the maximum throughput of the model by a factor of more than two, the attention focused on mixed-precision algorithms. Ideally, a proper usage of numerical precision would allow to improve the computational performance without sacrificing accuracy. In order to achieve that in ocean models, a method to find out the precision required for each one of the real variables in a code was presented. The method was used with NEMO and with the Regional Ocean Modelling System showing that in both models most of the variables could use less than the standard 64-bit without problems. Last but not least, it was found that being ocean models nonlinear it was not straightforward to determine whether a change made into the code was deteriorating the accuracy of the model or not. In order to solve this problem a method to verify the accuracy of a non-linear model was presented. Although the different contributions that gave form to this thesis have been diverse, they helped to identify and tackle computational challenges that affect computational ocean models. These contributions resulted in four peer-reviewed publications and many outreach activities. Moreover, the research outcomes have reached NEMO and EC-Earth consortium codes, having already helped model users to save resources and time. These contributions not only have significantly improved the computational performance of the NEMO model but have surpassed the original scope of the thesis and would be easily transferable to other computational models.
APA, Harvard, Vancouver, ISO, and other styles
2

Drew, Devin Lee. "Biophysical Characterization of NEMO and IKK₂." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2006. http://wwwlib.umi.com/cr/ucsd/fullcit?p3239883.

Full text
Abstract:
Thesis (Ph. D.)--University of California, San Diego, 2007.
Title from first page of PDF file (viewed January 12, 2007). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 110-121).
APA, Harvard, Vancouver, ISO, and other styles
3

Schaefer, Torsten. "Der Nemo-Tenetur-Grundsatz im Steuerstrafverfahren." Marburg Tectum-Verl, 2006. http://deposit.d-nb.de/cgi-bin/dokserv?id=3013137&prov=M&dok_var=1&dok_ext=htm.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schaefer, Torsten. "Der Nemo-Tenetur-Grundsatz im Steuerstrafverfahren /." Marburg : Tectum, 2007. http://deposit.d-nb.de/cgi-bin/dokserv?id=3013137&prov=M&dok_var=1&dok_ext=htm.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Westfall, David W. "Why Nemo matters : altruism in American animation." Thesis, Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kölbel, Ralf. "Selbstbelastungsfreiheiten : der nemo-tenetur-Satz im materiellen Strafrecht /." Berlin : Duncker & Humblot, 2006. http://www.gbv.de/dms/spk/sbb/recht/toc/512358303.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kaul, Annie. "The role of NEMO and autophagy in signalling." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Queck, Nadine. "Die Geltung des nemo-tenetur-Grundsatzes zugunsten von Unternehmen /." Berlin : Duncker & Humblot, 2005. http://www.gbv.de/dms/spk/sbb/recht/toc/501087141.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kölbel, Ralf [Verfasser]. "Selbstbelastungsfreiheiten. : Der nemo-tenetur-Satz im materiellen Strafrecht. / Ralf Kölbel." Berlin : Duncker & Humblot, 2011. http://d-nb.info/1238353339/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Augier, C. "Expérience NEMO 3 - Avantages et limitationsProspective pour la physique double bêta." Habilitation à diriger des recherches, Université Paris Sud - Paris XI, 2005. http://tel.archives-ouvertes.fr/tel-00011894.

Full text
Abstract:
Après une introduction à ce mémoire d'habilitation au chapitre 1, je rappelle l'état des lieux de nos connaissances en physique du neutrino au chapitre 2.
Je détaille ensuite dans le chapitre 3 les choix effectués pour la conception et la réalisation du détecteur NEMO 3, consacré aux études des processus de double désintaégration bêta. Les performances complètes du détecteur sont aussi rappelées, tant en terme d'identification des fonds, que pour l'ensemble des processus bêta bêta, ainsi que les moyens utilisés par la collaboration pour réduire d'un facteur dix le bruit de fond dû à la présence de radon dans le détecteur, le rendant ainsi négligeable. Ce chapitre, correspondant au "Technical Report" de l'expérience NEMO 3, est écrit en anglais et forme un ensemble complet destiné aux collaborateurs de l'expérience NEMO.
Je termine ce mémoire avec le chapitre 4, par une prospective à dix ans sur les futurs projets expérimentaux en physique de la double désintégration bêta, en insistant d'une part sur le projet SuperNEMO et le programme de R&D à réaliser en France au cours des trois prochaines années, et d'autre part sur la comparaison avec les expériences qui me semblent les plus prometteuses, comme GERDA ou CUORE, avec notamment l'étude de l'effet ds éléments de matrice nucléaires sur la mesure de la masse effective du neutrino.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Nemo"

1

Sauwer, Monika. Nemo. Amsterdam: Contact, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vangelisti, Paul. Nemo. Los Angeles: Sun & Moon Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

(Firm), Random House. Nemo. New York: Random House Children's Books, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Saxon, Victoria. Finding Nemo. New York: Random House, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Herman, Gail. Finding Nemo. New York: Random House, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hamilton, Tisha. Finding Nemo. Pleasantville, N.Y: Reader's Digest Children's Books, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brooke, Susan Rich. Finding Nemo. Lincolnwood, Ill: Publications International, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Milligan, Peter. Johnny Nemo. London: Deadline, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

), Disney Enterprises (1996, and Pixar (Firm), eds. Finding Nemo. Bath: Parragon, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Disney Enterprises. Pixar Animation Studios. Finding Nemo. Bath: Parragon, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Nemo"

1

Jones, Geoffrey P., Maya Srinivasan, Gemma F. Galbraith, Michael L. Berumen, and Serge Planes. "Saving Nemo." In Evolution, Development and Ecology of Anemonefishes, 285–98. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003125365-30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hanson, Eric P. "NEMO Disease Spectrum Including NEMO-Deleted Exon 5 Autoinflammatory Syndrome (NDAS) and NEMO-Delta C-Terminus (NEMO-DCT)." In Encyclopedia of Medical Immunology, 493–96. New York, NY: Springer New York, 2020. http://dx.doi.org/10.1007/978-1-4614-8678-7_119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hanson, Eric P. "NEMO disease spectrum including NEMO-deleted exon 5 autoinflammatory syndrome (NDAS) and NEMO-Delta C-terminus (NEMO-DCT)." In Encyclopedia of Medical Immunology, 1–4. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4614-9209-2_119-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wokart, Norbert. "In Arcadia nemo." In Ent-Täuschungen, 89–102. Stuttgart: J.B. Metzler, 1991. http://dx.doi.org/10.1007/978-3-476-03369-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Riccobene, G. "NEMO: NEutrino Mediterranean Observatory." In Astrophysical Sources of High Energy Particles and Radiation, 355–61. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0560-9_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Arciero, Giampiero, Guido Bondolfi, and Viridiana Mazzola. "“Nemo psychologus nisi physiologus”." In The Foundations of Phenomenological Psychotherapy, 53–70. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78087-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

canemaker, john. "little nemo on broadway." In winsor mccay, 148–61. [Revised edition]. | Boca Raton : Taylor & Francis, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/b22526-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Okada, Kouji, Ryuji Wakikawa, and Jun Murai. "MANET and NEMO Converged Communication." In Technologies for Advanced Heterogeneous Networks II, 235–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11930181_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cascella, Michele. "The NEMO-3 and SuperNEMO Experiments." In Springer Proceedings in Physics, 208–12. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1316-5_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kronauer, Brigitte. "Little Nemo von Winsor Mc Cay." In Mein Jahrhundertbuch, 76–78. Stuttgart: J.B. Metzler, 2000. http://dx.doi.org/10.1007/978-3-476-02728-3_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nemo"

1

Lob, Sebastian, Jörg Cassens, Michael Herczeg, and Jan Stoddart. "NEMO." In the First International Conference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1963564.1963607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhou, Ruogu, and Guoliang Xing. "Nemo." In the 12th international conference. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2461381.2461401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Hsin-Yu, and Zhi-Da Lin. "NEMO." In the 2006 international symposium. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1123008.1123022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mohamedin, Mohamed, Sebastiano Peluso, Masoomeh Javidi Kishi, Ahmed Hassan, and Roberto Palmieri. "Nemo." In ICPP 2018: 47th International Conference on Parallel Processing. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3225058.3225123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Plagge, Mark, Christopher D. Carothers, and Elsa Gonsiorowski. "NeMo." In SIGSIM-PADS '16: SIGSIM Principles of Advanced Discrete Simulation. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2901378.2901392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yeo, Hyunho, Chan Ju Chong, Youngmok Jung, Juncheol Ye, and Dongsu Han. "NEMO." In MobiCom '20: The 26th Annual International Conference on Mobile Computing and Networking. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3372224.3419185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lin, Jun-Wei, Reyhaneh Jabbarvand, Joshua Garcia, and Sam Malek. "Nemo." In ICSE '18: 40th International Conference on Software Engineering. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3180155.3180174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pourshirazi, Bahareh, and Zhichun Zhu. "NEMO." In MEMSYS 2017: The International Symposium on Memory Systems, 2017. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3132402.3132445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Liangyue, How Jing, Hanghang Tong, Jaewon Yang, Qi He, and Bee-Chung Chen. "NEMO." In the 26th International Conference. New York, New York, USA: ACM Press, 2017. http://dx.doi.org/10.1145/3041021.3054200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

McCarthy, Ben, Matthew Jakeman, Chris Edwards, and Pascal Thubert. "Protocols to efficiently support nested NEMO (NEMO+)." In the 3rd international workshop. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1403007.1403018.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Nemo"

1

Hurley, Mike. Naval EarthMap Observer (NEMO) Program. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada622759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Devarapalli, V., R. Wakikawa, A. Petrescu, and P. Thubert. Network Mobility (NEMO) Basic Support Protocol. RFC Editor, January 2005. http://dx.doi.org/10.17487/rfc3963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gundavelli, S., G. Keeni, K. Koide, and K. Nagami. Network Mobility (NEMO) Management Information Base. RFC Editor, April 2009. http://dx.doi.org/10.17487/rfc5488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Leung, K., G. Dommety, V. Narayanan, and A. Petrescu. Network Mobility (NEMO) Extensions for Mobile IPv4. RFC Editor, April 2008. http://dx.doi.org/10.17487/rfc5177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Droms, R., P. Thubert, F. Dupont, W. Haddad, and C. Bernardos. DHCPv6 Prefix Delegation for Network Mobility (NEMO). RFC Editor, July 2011. http://dx.doi.org/10.17487/rfc6276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rene, Schubert. Computing the Meridional Overturning Circulation from NEMO Output. GEOMAR, November 2021. http://dx.doi.org/10.3289/sw_3_2021.

Full text
Abstract:
With this script, the Meridional Overturning Circulation (MOC) can be computed from NEMO ocean-model output for the whole globe or the Atlantic (AMOC), Indic (IMOC) and Pacific (PMOC) subbasins. The MOC is computable in z- and sigma coordinates. Moreover, for nested configurations, it is possible to combine data from both host and nest grids. Finally, it is possible to take into account of that the ORCA model grid is curvilinear north of 20°N: it is possible to compute the northward velocity component from the velocity field in x- and y- directions and to sum up the meridional flux over latitudional bands instead of in x-direction. When both steps are applied, the resulting MOC shows however strong variability in meridional direction. It needs to be clarified, whether this is realistic or not. The software is provided in the form of the jupyter notebook "MOC.ipynb" which includes more informations on the possibilites of the computations and an extensive appendix section with comparisons to computations with cdftools, as well as with details on the computation of the MOC including nest data and taking the curvilinearity of the grid into account. Necessary python modules are listed at the beginning of the document.
APA, Harvard, Vancouver, ISO, and other styles
7

Ortensi, Javier, Vincent Laboure, Sebastian Schunert, and Ryan Stewart. Neutronics Enhanced Meshing Operations (NEMO) Users Manual Version 1.0. Office of Scientific and Technical Information (OSTI), December 2020. http://dx.doi.org/10.2172/2432540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tsirtsis, G., H. Soliman, N. Montavont, G. Giaretta, and K. Kuladinithi. Flow Bindings in Mobile IPv6 and Network Mobility (NEMO) Basic Support. RFC Editor, January 2011. http://dx.doi.org/10.17487/rfc6089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nagami, K., S. Uda, N. Ogashiwa, H. Esaki, R. Wakikawa, and H. Ohnishi. Multi-homing for small scale fixed network Using Mobile IP and NEMO. RFC Editor, June 2007. http://dx.doi.org/10.17487/rfc4908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Young, Christian, Kurtis Bartlett, Karl Smith, and Jonathan Barney. Neutron Detection Efficiency Measurements of the Domino Detector for the NEMO Experiment. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1812626.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography