Journal articles on the topic 'Negative parity'

To see the other types of publications on this topic, follow the link: Negative parity.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Negative parity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Buck, B., A. C. Merchant, and S. M. Perez. "Negative parity bands in238U." Journal of Physics G: Nuclear and Particle Physics 34, no. 9 (July 31, 2007): 1985–91. http://dx.doi.org/10.1088/0954-3899/34/9/010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Frank X., and Derek B. Leinweber. "Negative-parity baryon spectroscopy." Nuclear Physics B - Proceedings Supplements 73, no. 1-3 (March 1999): 258–60. http://dx.doi.org/10.1016/s0920-5632(99)85041-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cottle, P. D., S. M. Aziz, J. D. Fox, K. W. Kemper, and S. L. Tabor. "Negative-parity excitations inNd144." Physical Review C 40, no. 5 (November 1, 1989): 2028–34. http://dx.doi.org/10.1103/physrevc.40.2028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Saha, A., T. Bhattacharjee, D. Curien, I. Dedes, K. Mazurek, S. R. Banerjee, S. Rajbanshi, et al. "Excited negative parity bands in160Yb." Physica Scripta 93, no. 3 (January 29, 2018): 034001. http://dx.doi.org/10.1088/1402-4896/aaa1fa.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jentschel, M., L. Sengele, D. Curien, J. Dudek, and F. Haas. "The negative parity bands in156Gd." Physica Scripta 89, no. 5 (April 29, 2014): 054017. http://dx.doi.org/10.1088/0031-8949/89/5/054017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fotiades, N., J. A. Cizewski, C. J. Lister, C. N. Davids, R. V. F. Janssens, D. Seweryniak, M. P. Carpenter, et al. "Deformed negative-parity excitations in71As." Physical Review C 59, no. 5 (May 1, 1999): 2919–22. http://dx.doi.org/10.1103/physrevc.59.2919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stancu, Fl, and P. Stassart. "Negative parity non-strange baryons." Physics Letters B 269, no. 3-4 (October 1991): 243–46. http://dx.doi.org/10.1016/0370-2693(91)90163-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Manley, D. M., B. L. Berman, W. Bertozzi, T. N. Buti, J. M. Finn, F. W. Hersman, C. E. Hyde-Wright, et al. "Electroexcitation of negative-parity states inO18." Physical Review C 43, no. 5 (May 1, 1991): 2147–61. http://dx.doi.org/10.1103/physrevc.43.2147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ganev, H. G. "Negative parity states in the IVBM." Journal of Physics: Conference Series 533 (September 10, 2014): 012015. http://dx.doi.org/10.1088/1742-6596/533/1/012015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wiedenhöver, I., C. Kerskens, M. Eschenauer, S. Albers, and P. von Brentano. "Analogous negative parity spectra of125Xe and127Xe." Zeitschrift für Physik A Hadrons and Nuclei 350, no. 4 (December 1995): 287–88. http://dx.doi.org/10.1007/bf01291185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Petrovici, A., K. W. Schmid, and Amand Faessler. "Structure of negative-parity states in68Ge." Zeitschrift f�r Physik A Hadrons and Nuclei 347, no. 1 (March 1993): 15–20. http://dx.doi.org/10.1007/bf01301271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

CHATURVEDI, L., B. R. S. BABU, J. H. HAMILTON, A. V. RAMAYYA, W. C. MA, S. J. ZHU, J. KORMICKI, et al. "NEGATIVE PARITY STATES IN 68Ge: EXPERIMENT AND THEORY." International Journal of Modern Physics E 05, no. 03 (September 1996): 565–74. http://dx.doi.org/10.1142/s021830139600030x.

Full text
Abstract:
High spin negative parity states have been studied in 68 Ge via in-beam γ-ray spectroscopy at HHIRF. Several close-lying 7−, 9−, and 11− states are observed with a 13− to tentatively 17− cascade feeding them. Numerous E1 crossing transitions between the negative and positive parity levels are observed, along with possible M1 connecting transitions between the low lying negative parity bands. Previous microscopic calculations of the shape coexisting positive parity levels have been extended to the negative parity levels. The calculations used the EXCITED VAMPIR model based on complex HFB transformations with neutron-proton correlations and parity mixing in the mean field. The complex decay pattern and multiple high spin negative parity bands can be explained by a variable strength of mixing of the different deformed configurations which are bunched in small excitation intervals.
APA, Harvard, Vancouver, ISO, and other styles
13

Torilov, S., S. Thummerer, W. von Oertzen, Tz Kokalova, G. de Angelis, H. G. Bohlen, A. Tumino, et al. "Spectroscopy of 40Ca and negative-parity bands." European Physical Journal A 19, no. 3 (March 2004): 307–17. http://dx.doi.org/10.1140/epja/i2003-10126-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Zighelboim, R. S., S. G. Buccino, F. E. Durham, J. Döring, P. D. Cottle, J. W. Holcomb, T. D. Johnson, S. L. Tabor, and P. C. Womble. "Negative-parity structures and lifetime measurements inAs71." Physical Review C 50, no. 2 (August 1, 1994): 716–27. http://dx.doi.org/10.1103/physrevc.50.716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zhang, X. Q., J. H. Hamilton, A. V. Ramayya, L. K. Peker, J. K. Hwang, E. F. Jones, J. Komicki, et al. "Identification of new negative-parity levels in152,154Nd." Physical Review C 57, no. 4 (April 1, 1998): 2040–42. http://dx.doi.org/10.1103/physrevc.57.2040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

GERASYUTA, S. M., and V. I. KOCHKIN. "NEGATIVE PARITY TETRAQUARKS WITH THE OPEN CHARM." International Journal of Modern Physics E 20, no. 10 (October 2011): 2153–66. http://dx.doi.org/10.1142/s0218301311020204.

Full text
Abstract:
The relativistic four-quark equations are found in the framework of coupled-channel formalism. The dynamical mixing of the meson–meson states with the four-quark states is considered. The four-quark amplitudes of the negative parity tetraquarks including the quarks of three flavors (u, d, s) and the charmed quark are constructed. The poles of these amplitudes determine the masses of tetraquarks. The mass values of low-lying tetraquarks with the spin-parity JP = 0-, 1-, 2-, 3- are calculated.
APA, Harvard, Vancouver, ISO, and other styles
17

Pakvasa, S., and S. F. Tuan. "Λs(1405) and negative parity baryon states." Physics Letters B 459, no. 1-3 (July 1999): 301–5. http://dx.doi.org/10.1016/s0370-2693(99)00622-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

He, Jun, and Yu-Bing Dong. "Negative parity resonances in an extended GBE." Nuclear Physics A 725 (September 2003): 201–10. http://dx.doi.org/10.1016/s0375-9474(03)01604-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Schimmer, M., S. Albers, A. Dewald, A. Gelberg, R. Wirowski, and P. von Brentano. "On negative-parity intruder bands in 114Sn." Nuclear Physics A 539, no. 3 (March 1992): 527–46. http://dx.doi.org/10.1016/0375-9474(92)90292-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Aliev, T. M., and M. Savcı. "Octet negative parity to octet positive parity electromagnetic transitions in light cone QCD." Journal of Physics G: Nuclear and Particle Physics 41, no. 7 (May 22, 2014): 075007. http://dx.doi.org/10.1088/0954-3899/41/7/075007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Cole, B. J. "Shell-model calculations for negative-parity states of45Ca." Journal of Physics G: Nuclear Physics 11, no. 8 (August 1985): 961–68. http://dx.doi.org/10.1088/0305-4616/11/8/012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Reidemeister, G., and F. Michel. "Negative-parity inversion doublet α-cluster band inO18." Physical Review C 47, no. 5 (May 1, 1993): R1846—R1849. http://dx.doi.org/10.1103/physrevc.47.r1846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Jewell, J. K., O. J. Tekyi-Mensah, P. D. Cottle, J. Döring, P. V. Green, J. W. Holcomb, G. D. Johns, et al. "Negative-parity states near the yrast line inNd144." Physical Review C 52, no. 3 (September 1, 1995): 1295–301. http://dx.doi.org/10.1103/physrevc.52.1295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Jido, D. "Chiral symmetry for positive and negative parity nucleons." Nuclear Physics A 670, no. 1-4 (May 2000): 96–99. http://dx.doi.org/10.1016/s0375-9474(00)00078-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Jido, D., Y. Nemoto, M. Oka, and A. Hosaka. "Chiral symmetry for positive and negative parity nucleons." Nuclear Physics A 671, no. 1-4 (May 2000): 471–80. http://dx.doi.org/10.1016/s0375-9474(99)00844-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Nemoto, Y., N. Nakajima, H. Matsufuru, and H. Suganuma. "Negative-parity baryons in quenched anisotropic lattice QCD." Nuclear Physics A 721 (June 2003): C879—C882. http://dx.doi.org/10.1016/s0375-9474(03)01233-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Jido, D., M. Oka, and A. Hosaka. "Negative parity baryons in the QCD sum rule." Nuclear Physics A 629, no. 1-2 (February 1998): 156–59. http://dx.doi.org/10.1016/s0375-9474(97)00680-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wessling, Margaret E. "Negative-parity heavy pentaquark states in 1/Nc." Physics Letters B 603, no. 3-4 (December 2004): 152–58. http://dx.doi.org/10.1016/j.physletb.2004.10.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Raduta, A. A., and C. M. Raduta. "Positive and negative parity dipole bands in 226Ra." Nuclear Physics A 768, no. 3-4 (April 2006): 170–78. http://dx.doi.org/10.1016/j.nuclphysa.2006.01.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Dixon, W. R., D. W. O. Rogers, R. S. Storey, and A. A. Pilt. "Comment on ‘‘Negative-parity alpha clusters in’19." Physical Review C 32, no. 6 (December 1, 1985): 2205–6. http://dx.doi.org/10.1103/physrevc.32.2205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

PAPENBROCK, THOMAS, and HANS A. WEIDENMÜLLER. "PREPONDERANCE OF GROUND STATES WITH POSITIVE PARITY." International Journal of Modern Physics E 17, supp01 (December 2008): 286–91. http://dx.doi.org/10.1142/s0218301308011926.

Full text
Abstract:
We investigate analytically and numerically a random-matrix model for m fermions occupying ℓ1 single-particle states with positive parity and ℓ2 single-particle states with negative parity and interacting through random two-body forces that conserve parity. The single-particle states are completely degenerate and carry no further quantum numbers. We compare spectra of many-body states with positive and with negative parity. We show that in the dilute limit defined by 1 « m « ℓ1, ℓ2, ground states with positive and with negative parity occur with equal probability. Differences in the ground-state probabilities are, thus, a finite-size effect and are mainly due to different dimensions of the Hilbert spaces of either parity.
APA, Harvard, Vancouver, ISO, and other styles
32

Shneidman, T. M., R. V. Jolos, R. Krücken, A. Aprahamian, D. Cline, J. R. Cooper, M. Cromaz, et al. "E2 transitions between positive- and negative-parity states of the ground-state alternating-parity bands." European Physical Journal A 25, no. 3 (September 2005): 387–96. http://dx.doi.org/10.1140/epja/i2005-10134-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Cole, B. J. "The structure of low-lying negative-parity states of45Sc." Journal of Physics G: Nuclear Physics 11, no. 8 (August 1985): 953–59. http://dx.doi.org/10.1088/0305-4616/11/8/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Stefanova, E. A., K. P. Lieb, I. Stefanescu, G. De Angelis, D. Curien, J. Eberth, E. Farnea, et al. "Observation of negative-parity high-spin states of 68As." European Physical Journal A 24, no. 1 (January 21, 2005): 1–4. http://dx.doi.org/10.1140/epja/i2004-10126-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hosaka, Atsushi, Daisuke Jido, and Makoto Oka. "Chiral Symmetry Aspects of Positive and Negative Parity Baryons." Progress of Theoretical Physics Supplement 149 (2003): 203–14. http://dx.doi.org/10.1143/ptps.149.203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Inoue, Takashi. "A Pentaquark Model of the Negative Parity Λ(1405)." Progress of Theoretical Physics Supplement 168 (2007): 119–22. http://dx.doi.org/10.1143/ptps.168.119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Döring, J., G. D. Johns, R. A. Kaye, M. A. Riley, S. L. Tabor, P. C. Womble, and J. X. Saladin. "Proton and neutron alignments in negative-parity bands ofKr76." Physical Review C 52, no. 5 (November 1, 1995): R2284—R2288. http://dx.doi.org/10.1103/physrevc.52.r2284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Jacobsen, Brian, and Wai Lee. "Risk-Parity Optimality Even with Negative Sharpe Ratio Assets." Journal of Portfolio Management 46, no. 6 (March 20, 2020): 110–19. http://dx.doi.org/10.3905/jpm.2020.1.151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Raduta, A. A., Al H. Raduta, and Amand Faessler. "Positive and negative parity bands in pear-shaped nuclei." Journal of Physics G: Nuclear and Particle Physics 23, no. 7 (July 1, 1997): L49—L55. http://dx.doi.org/10.1088/0954-3899/23/7/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Aiello, M., M. M. Giannini, and E. Santopinto. "Electromagnetic transition form factors of negative parity nucleon resonances." Journal of Physics G: Nuclear and Particle Physics 24, no. 4 (April 1, 1998): 753–62. http://dx.doi.org/10.1088/0954-3899/24/4/007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Jido, D., N. Kodama, and M. Oka. "Negative-parity nucleon resonance in the QCD sum rule." Physical Review D 54, no. 7 (October 1, 1996): 4532–36. http://dx.doi.org/10.1103/physrevd.54.4532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Bukovský, Antonín, and Jiří Presl. "Possible involvement of maternal alloreactivity in negative parity effects." Behavioral and Brain Sciences 8, no. 3 (September 1985): 445–46. http://dx.doi.org/10.1017/s0140525x00001096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Aliev, T. M., S. Bilmis, and M. Savci. "Are the new excited Ωc baryons negative parity states?" Modern Physics Letters A 35, no. 01 (September 23, 2019): 1950344. http://dx.doi.org/10.1142/s0217732319503449.

Full text
Abstract:
We calculate the mass and residue of the newly observed [Formula: see text] and [Formula: see text] states with quantum numbers [Formula: see text] and [Formula: see text] within QCD sum rules. The calculation is carried out by using the general form for interpolating current for [Formula: see text] baryon. Our predictions on masses are in good agreement with the experimental results.
APA, Harvard, Vancouver, ISO, and other styles
44

Nadirbekov, M. S., N. Minkov, M. Strecker, and W. Scheid. "Application of the triaxial quadrupole–octupole rotor to the ground and negative-parity levels of actinide nuclei." International Journal of Modern Physics E 25, no. 03 (March 2016): 1650022. http://dx.doi.org/10.1142/s0218301316500221.

Full text
Abstract:
In this work, we examine the possibility to describe yrast positive- and negative-parity excitations of deformed even–even nuclei through a collective rotation model in which the nuclear surface is characterized by triaxial quadrupole and octupole deformations. The nuclear moments of inertia are expressed as sums of quadrupole and octupole parts. By assuming an adiabatic separation of rotation and vibration degrees of freedom, we suppose that the structure of the positive- and negative-parity bands may be determined by the triaxial-rigid-rotor motion of the nucleus. By diagonalizing the Hamiltonian in a symmetrized rotor basis with embedded parity, we obtain a model description for the yrast positive- and negative-parity bands in several actinide nuclei. We show that the energy displacement between the opposite-parity sequences can be explained as the result of the quadrupole–octupole triaxiality.
APA, Harvard, Vancouver, ISO, and other styles
45

Aliev, T. M., S. Bilmis, and M. Savci. "Strong Coupling Constants of Negative Parity Heavy Baryons with π and K Mesons." Advances in High Energy Physics 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/2493140.

Full text
Abstract:
The strong coupling constants of negative parity heavy baryons belonging to sextet and antitriplet representations of SUf(3) with light π and K mesons are estimated within the light cone QCD sum rules. It is observed that each class of the sextet-sextet, sextet-antitriplet, and antitriplet-antitriplet transitions can be described by only one corresponding function. The pollution arising from the positive to positive, positive to negative, and negative to positive parity baryons transitions is eliminated by constructing sum rules for different Lorentz structures. The obtained coupling constants are compared with the ones for the positive parity heavy baryons.
APA, Harvard, Vancouver, ISO, and other styles
46

Qasim, Hussein N., and Falih H. Al-Khudair. "Structure of the low-lying positive and negative parity states in even–even 144−154Nd isotopes." International Journal of Modern Physics E 28, no. 12 (December 2019): 1950107. http://dx.doi.org/10.1142/s0218301319501076.

Full text
Abstract:
The low-lying positive and negative parity states of even–even [Formula: see text]Nd isotopes are studied using the interacting boson model (IBM). The negative parity states are involved within the IBM model by adding a single angular momentum ([Formula: see text]) boson with intrinsic negative parity [Formula: see text]-boson to [Formula: see text] and [Formula: see text]-bosons model space. For these nuclei, the potential energy surfaces [Formula: see text], transition probability [Formula: see text], [Formula: see text] and [Formula: see text] are calculated. Phase transition from the [Formula: see text] limit to the [Formula: see text] limit is observed in the chain and the critical point has been determined for [Formula: see text]Nd isotope. It is found that the calculated positive and negative parity energy spectra of Nd-isotopes agree well with the experimental data.
APA, Harvard, Vancouver, ISO, and other styles
47

Fabre, Ludovic, and Patrick Lemaire. "How Emotions Modulate Arithmetic Performance." Experimental Psychology 66, no. 5 (September 2019): 368–76. http://dx.doi.org/10.1027/1618-3169/a000460.

Full text
Abstract:
Abstract. The goal of the present study was to test whether and how emotions influence arithmetic performance. Participants had to verify arithmetic problems. True problems were either easier or harder problems. False problems were parity-match or parity-mismatch problems. The odd/even status of proposed and correct answers was the same in parity-match problems (e.g., 19 × 7 = 131) and different in parity-mismatch problems (e.g., 17 × 9 = 152). Before each problem, participants saw a positive (e.g., smiling baby), negative (e.g., mutilations), or neutral pictures (e.g., neutral face) selected from International Affective Picture System (IAPS). They had to decide whether each picture includes a person or not before verifying each arithmetic problem. Results showed different effects of emotion on true- and false problem verification. Participants’ performance on true problems showed decreased problem-difficulty after processing negative pictures and increased difficulty effects after processing positive pictures. On false problems, we found smaller parity-violation effects after negative pictures (i.e., decreased performance on parity-mismatch problems), together with larger parity-violation effects after positive pictures (i.e., decreased performance on parity-match problems). These findings suggest that emotions influence arithmetic performance via which strategy is used and how each strategy is executed on each problem. They have important implications for understanding the role of emotions on arithmetic performance, and more generally on how emotions influence cognition.
APA, Harvard, Vancouver, ISO, and other styles
48

BHARTI, ARUN, SURAM SINGH, and S. K. KHOSA. "MICROSCOPIC STUDY OF NEGATIVE PARITY YRAST STATES IN NEUTRON-DEFICIENT 119–127Ba ISOTOPES." International Journal of Modern Physics E 20, no. 05 (May 2011): 1183–201. http://dx.doi.org/10.1142/s0218301311018344.

Full text
Abstract:
The negative parity yrast bands of neutron-deficient 119–127 Ba nuclei are studied by using the Projected Shell Model approach. Energy levels, transition energies and B(M1)/B(E2) ratios are calculated and compared with the available experimental data. The calculations reproduce the band head spins of negative parity yrast bands and indicate the multi-quasiparticle structure for these bands.
APA, Harvard, Vancouver, ISO, and other styles
49

Khatoni, T., and H. Sabri. "Statistical fluctuations of negative parity levels in even mass nuclei." Physics Letters B 823 (December 2021): 136780. http://dx.doi.org/10.1016/j.physletb.2021.136780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Chuu, Der-San, S. T. Hsieh, and H. C. Chiang. "Negative parity states and octupole collectivity of even Ge isotopes." Physical Review C 47, no. 1 (January 1, 1993): 183–87. http://dx.doi.org/10.1103/physrevc.47.183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography