Academic literature on the topic 'Near Zero Index'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Near Zero Index.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Near Zero Index"

1

La Spada, Luigi, and Lucio Vegni. "Near-zero-index wires." Optics Express 25, no. 20 (September 18, 2017): 23699. http://dx.doi.org/10.1364/oe.25.023699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Konstantinidis, K., and A. P. Feresidis. "Broadband near-zero index metamaterials." Journal of Optics 17, no. 10 (August 25, 2015): 105104. http://dx.doi.org/10.1088/2040-8978/17/10/105104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liberal, Iñigo, and Nader Engheta. "Near-zero refractive index photonics." Nature Photonics 11, no. 3 (March 2017): 149–58. http://dx.doi.org/10.1038/nphoton.2017.13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Palm, Kevin J., Tao Gong, Calum Shelden, Ece Deniz, Lisa J. Krayer, Marina S. Leite, and Jeremy N. Munday. "Achieving Scalable Near‐Zero‐Index Materials." Advanced Photonics Research 3, no. 9 (September 2022): 2270028. http://dx.doi.org/10.1002/adpr.202270028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liberal, Iñigo, and Nader Engheta. "Erratum: Near-zero refractive index photonics." Nature Photonics 11, no. 4 (April 2017): 264. http://dx.doi.org/10.1038/nphoton.2017.38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kinsey, Nathaniel, Clayton DeVault, Alexandra Boltasseva, and Vladimir M. Shalaev. "Near-zero-index materials for photonics." Nature Reviews Materials 4, no. 12 (September 26, 2019): 742–60. http://dx.doi.org/10.1038/s41578-019-0133-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Zhu, Ziyu Wang, and Zongfu Yu. "Photon management with index-near-zero materials." Applied Physics Letters 109, no. 5 (August 2016): 051101. http://dx.doi.org/10.1063/1.4960150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Krayer, Lisa J., Jongbum Kim, Joseph L. Garrett, and Jeremy N. Munday. "Optoelectronic Devices on Index-near-Zero Substrates." ACS Photonics 6, no. 9 (July 15, 2019): 2238–44. http://dx.doi.org/10.1021/acsphotonics.9b00449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Torres, Víctor, Víctor Pacheco-Peña, Pablo Rodríguez-Ulibarri, Miguel Navarro-Cía, Miguel Beruete, Mario Sorolla, and Nader Engheta. "Terahertz epsilon-near-zero graded-index lens." Optics Express 21, no. 7 (April 5, 2013): 9156. http://dx.doi.org/10.1364/oe.21.009156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Liberal, Iñigo, and Nader Engheta. "The rise of near-zero-index technologies." Science 358, no. 6370 (December 21, 2017): 1540–41. http://dx.doi.org/10.1126/science.aaq0459.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Near Zero Index"

1

Patel, Neil Arakaki Dean Yasuo. "Theory, simulation, fabrication and testing of double negative and epsilon near zero metamaterials for microwave applications : a thesis /." [San Luis Obispo, Calif. : California Polytechnic State University], 2008. http://digitalcommons.calpoly.edu/theses/7/.

Full text
Abstract:
Thesis (M.S.)--California Polytechnic State University, 2008.
"June 2008." "In partial fulfillment of the requirements for the degree [of] Master of Science in Electrical Engineering." "Presented to the faculty of California Polytechnic State University, San Luis Obispo." Major professor: Dean Arakaki, Ph.D. Includes bibliographical references (leaves 146-148). Also available online and on microfiche (2 sheets).
APA, Harvard, Vancouver, ISO, and other styles
2

Lima, Larissa Cristiane Paiva de Sousa. "Design and experimental characterization of a metamaterial-assisted monopole antenna." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/18/18155/tde-12112014-080528/.

Full text
Abstract:
In recent years a new class of materials, the metamaterials, has emerged in the scientific community. The use of these materials makes possible to achieve unique electromagnetic properties, such as the negative refractive index. Today there exist several applications that take advantage of these special properties, such as sensors, antennas and invisibility cloaks, aiming at improving their intrinsic characteristics. Based on these considerations, this project aims at developing metamaterials structures to control the radiation properties of antennas in the microwave range, such as gain and directivity. More specifically, it was also chosen chiral metamaterials, mainly due to the phenomenon of electromagnetic field rotation which opens the possibility to control efficiently the radiation properties of antennas. In addition, chiral metamaterials, which have proved to be a more attractive alternative to obtain negative or zero refractive index, enable a greater degree of freedom in the design of different structures. This work encompasses all different phases of the structure design, namely: project, computational modeling, fabrication, and characterization of the proposed structures. We show improvements for the gain that in some cases reaches more than the double of the conventional monopole antenna gain and for the return loss parameter, which reaches minimum values. We also could maintain good efficiency and improve the input impedance matching. Finally, it is worth mentioning that this new technology also has the great potential to be applied in the telecommunication devices, particularly to improve communications based on antennas.
Nos últimos anos uma nova classe de materiais, os metamateriais, emergiu na comunidade científica. O uso desses materiais torna possível alcançar propriedades eletromagnéticas singulares, como o índice de refração negativo. Hoje existem vastas aplicações que usufruem destas propriedades especiais, como os sensores, mantas de invisibilidade e antenas, onde se procura o aperfeiçoamento de suas características intrínsecas. Com base nestas considerações, este projeto buscou desenvolver estruturas metamateriais para controle das propriedades de radiação de antenas na faixa de micro-ondas, tais como diretividade e ganho. Mais especificamente, foram utilizados os metamateriais quirais, principalmente devido ao fenômeno de rotação do campo eletromagnético que abre a possibilidade de controle mais eficiente das propriedades de radiação de antenas. Além disso, os metamateriais quirais, por se mostrarem uma alternativa mais atraente para se obter meios com índice de refração zero ou negativo, possibilitam um maior grau de liberdade no projeto de diferentes estruturas. Este trabalho contempla, ainda, todas as etapas de projeto de tais estruturas, quais sejam: projeto, modelagem computacional, fabricação, e caracterização das estruturas. Mostramos melhorias para o ganho que, em alguns casos, chega a mais do que o dobro do ganho da antena monopolo convencional e para o parâmetro de perda de retorno, que atinge valores mínimos. Nós também mantivemos uma boa eficiência e melhoramos o casamento de impedância de entrada. Finalmente, vale salientar que essa nova tecnologia também apresenta grande potencial de ser aplicada em dispositivos de telecomunicações, com o intuito de aprimorar a comunicação baseada em antenas.
APA, Harvard, Vancouver, ISO, and other styles
3

Malléjac, Matthieu. "Metamaterials with extreme properties for the control of acoustic waves." Thesis, Le Mans, 2020. http://cyberdoc-int.univ-lemans.fr/Theses/2020/2020LEMA1024.pdf.

Full text
Abstract:
Les métamatériaux à indice nul, pour lesquels au moins un des paramètres effectifs s’annule (densité ou compressibilité dynamique pour l’acoustique), ont fait l’objet d’une attention considérable au cours de ces dernières années. Ces matériaux ont la particularité d’induire une augmentation remarquable de la longueur d’onde effective, offrant ainsi de nombreuses possibilités d’application, incluant entre autres la propagation sans changement de phase, la dissimulation acoustique de diffuseurs, le contrôle de la directivité, etc. Ce travail de doctorat se concentre particulièrement sur le régime de densité effective quasi-nulle dans des métamatériaux acoustiques constitués de plaques fines dans l’air. Grâce à une étude approfondie d’un arrangement périodique de fines plaques élastiques encastrées dans un guide d’onde, nous avons pu explorer analytiquement, numériquement et expérimentalement certains des effets ci-dessus. Une attention particulière est portée sur les pertes inhérentes à ce type de système et à leurs conséquences sur les comportements attendus. Nous débutons par l’étude numérique et l’observation expérimentale d’une propagation sans changement de phase à travers le métamatériau, à une fréquence située dans une bande interdite du système fini. Nous transposons ensuite le concept de dopage photonique à l’acoustique. L’ajout dans le système d’une impureté, ici un résonateur de Helmholtz bien choisi, permet de transformer le régime de densité nulle en un régime où la densité et la compressibilité sont simultanément quasi-nulles. Ainsi, la propagation sans changement de phase est accompagnée d’une transmission unitaire, due à l’accord d’impédance du système avec l’air environnant. Nous étudions enfin la possibilité de réaliser une dissimulation ou un masquage acoustique d’un objet en utilisant l’extension de la longueur d’onde acoustique, offerte par la densité nulle
Zero-index metamaterials, for which at least one of the effective parameters (density or dynamic compressibility for acoustics) vanishes, have received considerable attention in recent years. These materials have the particularity of inducing a considerable increase in the effective wavelength, thus offering numerous application possibilities, including, among others, propagation without phase change, acoustic hiding of diffusers, directivity control, etc. This PhD work focuses particularly on the near-zero effective density regime in acoustic metamaterials made of thin plates in air. Through an in-depth study of a periodic arrangement of thin elastic plates embedded in a waveguide, we have been able to explore analytically, numerically and experimentally some of the above effects. Particular attention is paid to the losses inherent to this type of system and their consequences on the expected behavior. We begin by studying numerically and experimentally observing a phase-change-free propagation through the metamaterial at a frequency in a stopband of the finite system. We then transpose the concept of photonic doping to acoustics. The addition of an impurity, here a well-chosen Helmholtz resonator, to the system allows to transform the regime of zero density into one where density and compressibility are simultaneously near zero. Thus, propagation without phase change is accompanied by a unitary transmission, due to the impedance matching of the system with the surrounding air. Finally, we study the possibility of performing acoustic hiding or masking of an object using the acoustic wavelength stretching offered by the zero density
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Near Zero Index"

1

Khandelwal, Shweta. "Malnutrition and COVID-19 in India." In Health Dimensions of COVID-19 in India and Beyond, 171–201. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7385-6_9.

Full text
Abstract:
AbstractWhile the world is battling the new coronavirus known as SARS-COV-2, public health and nutrition services in India are getting disrupted and derailed. It is pertinent not to overlook the existing gaps in our journey towards attaining the holistic sustainable development goals (SDGs). In fact, it is now well-established that comorbidities, especially malnutrition, diabetes, cardiovascular diseases, and other respiratory or kidney problems exacerbate the pathogenesis of COVID-19 because of an already compromised immune system. The whole world is off track in achieving SDG 2, known as Zero Hunger, by 2030. At the current pace, approximately 17 countries including India will fail to even reach low hunger by 2030. India ranks 104 out of 117 countries as per the used metric, the global hunger index. Furthermore, these projections do not account for the impact of the COVID-19 pandemic, which may worsen hunger and undernutrition in the near term and affect countries’ trajectories into the future.The author underscores the serious adverse impacts of COVID-19 on public health, nutrition, and food security in India and other low- and middle-income countries. Estimates show that 135 million persons were hungry before the pandemic. By the end of 2020, the number will likely increase to 265 million. India carries a heavy burden of multiple forms of malnutrition including undernutrition, hunger, micronutrient deficiencies as well as overweight, and obesity. India’s public health and nutritional policies must urgently address these problems. Measures taken by the government during the pandemic to counter its negative impact on the nutrition of women, children, migrant labor, and other vulnerable populations are enumerated. The response of the international community to tackle COVID-19 related nutritional challenges and India’s policy measures for ensuring nutrition and food security are discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

"Index." In Combined Cycle Systems for Near-Zero Emission Power Generation, 329–38. Elsevier, 2012. http://dx.doi.org/10.1533/9780857096180.backmatter.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Index." In Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification, 1034–58. Elsevier, 2013. http://dx.doi.org/10.1533/9780857098801.backmatter.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Shiyang, Jialin Zhou, Ying Han, Xinning Yu, Huajin Chen, and Zhifang Lin. "Manipulating Electromagnetic Waves with Zero Index Materials." In Wave Propagation Concepts for Near-Future Telecommunication Systems. InTech, 2017. http://dx.doi.org/10.5772/66663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shen, Ming, and Linxu Ru. "Nonlinear Plasmonics Near the Dirac Point in Negative-Zero-Positive Index Metamaterials–Optical Simulations of Electron in Graphene." In Graphene Simulation. InTech, 2011. http://dx.doi.org/10.5772/21764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Christina Josephine Malathi, Andrews. "Study on Miniaturization of Antenna Using Metamaterials." In Metamaterials - History, Current State, Applications, and Perspectives [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.106222.

Full text
Abstract:
Metamaterials (MTMs) are artificially built materials intended to give its properties from the internal structure, rather than the chemical composition found in natural materials. Electric permittivity (ε) and magnetic permeability (μ) are the two basic parameters which describe the electromagnetic property of a material or medium. Permittivity describes how a material is affected when it is placed in electric field. And permeability describes how a material is affected in presence of magnetic field. Metamaterials may have either negative permittivity or permeability or both may be negative simultaneously. The concept of metamaterials has additionally been utilized to design different kinds of patches with upgraded performance, such as improved gain and enhanced efficiency. Also, it has been utilized for the scaling down of patches. Two parameters are utilized in the collected works for antennas using metamaterials. We can adjust the refractive index of the metamaterial to positive, near-zero or negative values. Utilization of epsilon negative, MNG (μ - Mu negative) or DNG (double negative) are called metamaterial- based antennas and the use of metamaterial unit cell for example complementary split ring resonator, split ring resonator and so on are alluded as metamaterial inspired antennas. The design of complementary split ring resonator and its equivalent circuit will be discussed in this work. CSRR (complementary split ring resonator) provides both isolation enhancement and miniaturization for MIMO antenna.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Near Zero Index"

1

Xingping Wang, Yuanming Feng, Sujuan Chen, Zeyu Zhao, and Chongxi Zhou. "Beam combination using near-zero index metamaterials." In 2010 IEEE 3rd International Nanoelectronics Conference (INEC). IEEE, 2010. http://dx.doi.org/10.1109/inec.2010.5424583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Zhu, and Zongfu Yu. "Photon Management using Index-Near-Zero Materials." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cleo_at.2016.aw1k.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Soemphol, C., and N. Wongkasem. "Design of near-zero refractive index metamaterials using ε and μ near-zero media." In 2012 International Workshop on Metamaterials (Meta2012). IEEE, 2012. http://dx.doi.org/10.1109/meta.2012.6464933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mao, Yu Wei, and Yong Jin Zhou. "Microfluidic sensor based on near-zero-index media." In 2020 9th Asia-Pacific Conference on Antennas and Propagation (APCAP). IEEE, 2020. http://dx.doi.org/10.1109/apcap50217.2020.9245981.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liberal, Iñigo, Michaël Lobet, Yue Li, and Nader Engheta. "Inhibited Optical Turbulence in Near-Zero-Index Media." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/cleo_qels.2021.fm1m.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhou, Yong Jin, and Yu Wei Mao. "Humidity sensor based on near zero index media." In 2021 13th Global Symposium on Millimeter-Waves & Terahertz (GSMM). IEEE, 2021. http://dx.doi.org/10.1109/gsmm53250.2021.9511890.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schweizer, Heinz, Liwei Fu, Thomas Weiss, Sergei Tikhodeev, and Harald Giessen. "Index-near-zero properties of metallic meander structures." In 11th European Quantum Electronics Conference (CLEO/EQEC). IEEE, 2009. http://dx.doi.org/10.1109/cleoe-eqec.2009.5191731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhi Hao Jiang, Seokho Yun, Qian Xu, D. H. Werner, Zhiwen Liu, and T. S. Mayer. "Experimental verification of a zero-index near-infrared metamaterial." In 2011 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting. IEEE, 2011. http://dx.doi.org/10.1109/aps.2011.5996495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Turpin, Jeremiah P., and Douglas H. Werner. "Active transmitarray antenna based on near-zero-index metalens." In 2014 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2014. http://dx.doi.org/10.1109/aps.2014.6904944.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Singh, Namrata, Rohit Jain, and Shobha Sundar Ram. "Multiple slot array with near zero refractive index substrate." In 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2015. http://dx.doi.org/10.1109/aps.2015.7305263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography