Academic literature on the topic 'Near-surface aquifer'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Near-surface aquifer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Near-surface aquifer"

1

Wu, Peipeng, Jean-Christophe Comte, Lijuan Zhang, Shuhong Wang, and Bin Chang. "Effect of Surface Water Level Fluctuations on the Performance of Near-Bank Managed Aquifer Recharge from Injection Wells." Water 13, no. 21 (2021): 3013. http://dx.doi.org/10.3390/w13213013.

Full text
Abstract:
Managed aquifer recharge operations are often conducted in near-bank areas to regulate water resources or reduce seawater intrusion. Yet little is known about the influence of surface water level fluctuations at different temporal scales on MAR performance. A generalized conceptual model was developed based on an investigation site in Western China as a basis to simulate the response surface water level fluctuations on the water table, artificially recharged water lens (formed by the artificially recharged water), groundwater flow paths and average travel times (which is an important control on how quickly contaminants are flushed out of aquifers), and the discharge of the artificially recharged aquifer during the surface water level fluctuation. The results showed a fluctuating groundwater table in the artificially recharged near-bank aquifer under the influence of surface water level fluctuations. The peak values of the increment of the groundwater table induced by artificial recharge decreased with the increase of the period and amplitude of surface water level fluctuation, but the trough values of the increment of water table increases with that. The penetration depth of surface water into the aquifer with a fluctuating surface water level leads to a decreasing increment of the groundwater table which follows a power law. The fluctuating surface water level leads to dynamic changes of artificially recharged water lens morphology and a thinner artificially recharged water lens. A mixing zone of recharged water and ambient water could be found in the artificially recharged near-bank area, which is expected to lead to modifications in the geochemical conditions in the artificially recharged near-bank aquifer. A longer period of surface water level fluctuation leads to a longer average travel time, but the larger penetration depth of surface water and amplitude lead to a shorter average travel time. The peak discharge of the near-bank aquifer was found to decrease with the period of surface water level fluctuation, but it increases with penetration depth and amplitude. This study is important in providing insights into the performance of near-bank managed aquifer recharge with respect to surface water level fluctuation.
APA, Harvard, Vancouver, ISO, and other styles
2

Sugiyanto, Didik, Ibnu Rusydy, Marwan Marwan, Dian Mutia Hidayati, and Asrillah Asrillah. "A PRELIMINARY STUDY ON AQUIFER IDENTIFICATION BASED ON GEO-ELECTRICAL DATA IN BANDA ACEH, INDONESIA." Jurnal Natural 18, no. 3 (2018): 122–26. http://dx.doi.org/10.24815/jn.v18i3.11204.

Full text
Abstract:
The aquifers exploration has been conducted at the western part of Banda Aceh, Indonesia. This research aims to explore the aquifer layer beneath the surface and to obtain the cross-section model of the aquifer. The Vertical Electrical Sounding (VES) method was applied to investigate the aquifer layer. The VES method worked as the current penetrated into the ground using of two electrodes and the potential response due to its current being measured by another two electrodes. Ten grid points of VES has performed in western part of Krueng Aceh of Banda Aceh using the ARES (Automatic Resistivity Meter). The Res1Dinv and curve matching computer software used in VES data processing and analysis. The result shows the resistivity value of aquifer in Banda Aceh city at the range of 1 – 12 Ωm for freshwater, and 0.1 – 0.6 for brackish water layer. The first aquifer (water table) found at a depth of 0.5 to 2 meters beneath the surface. The 2-meters water table mostly located near the coastal zone or downstream zone of Krueng Aceh basin and shallow depth of 0.5 meters on the upstream. More than one aquifer layers were found beneath the surface, they were separated by aquitard layer consisting of silt to clay layers.
APA, Harvard, Vancouver, ISO, and other styles
3

Wumu, Rizky Hizrah, Ahmad Zainuri, and Noviar Akase. "Karakteristik Akuifer Menggunakan Metode Geolistrik Resistivity Di Kecamatan Kota Tengah Kota Gorontalo." Jambura Geoscience Review 4, no. 1 (2022): 60–68. http://dx.doi.org/10.34312/jgeosrev.v4i1.12752.

Full text
Abstract:
Kota Tengah Subdistrict has the highest population density in Gorontalo City, with a population density of 6,755 people/km2. This high population density requires a large amount of water to meet the needs of the population, where one form of fulfillment is taken from groundwater. For this reason, it is necessary and important to know the characteristics of aquifers. This study aims to determine the characteristics of groundwater aquifers in the Kota Tengah Subdistrict. The method used is the resistivity geoelectric method to obtain aquifer characteristics in the form of material type (lithology), depth, and thickness of the aquifer. Based on the geoelectrical analysis in TS 01 there are 4 layers, namely topsoil, clay sand, sand, and clay; TS 02 contains topsoil, sand, and clay layers; TS 03 contains topsoil, sand, and clay. The study found that the lithology of the near-surface layer in the Kota Tengah subdistrict can be classified into aquifers and aquicludes. The aquifer layer is formed by sand-sized sedimentary deposits that have high permeability while the aquiclude is clay-sized which is impermeable. The aquifer layer was found starting from a depth of 0.57 m. The average thickness of the aquifer layer was 13.8 m which is interpreted as an unconfined aquifer. This study also found other deeper aquifer layers as confined aquifers that can not be further interpreted due to the limitations of the method used.
APA, Harvard, Vancouver, ISO, and other styles
4

Kocar, Benjamin D., Shawn G. Benner, and Scott Fendorf. "Deciphering and predicting spatial and temporal concentrations of arsenic within the Mekong Delta aquifer." Environmental Chemistry 11, no. 5 (2014): 579. http://dx.doi.org/10.1071/en13244.

Full text
Abstract:
Environmental context Himalayan derived arsenic contaminates groundwater across Asia, ranging from the deltas of Ganges-Brahmaputra of Bangladesh to the interior basins of the Yangtze and Yellow Rivers in China, where more than one hundred million people are drinking water with hazardous levels of the toxin. Our ability to predict the distribution and changes in arsenic concentration in aquifers of affected regions has been limited. Here we provide a dynamic model that captures arsenic migration and can be used to forecast changes in groundwater arsenic concentrations. Abstract Unravelling the complex, coupled processes responsible for the spatial distribution of arsenic within groundwaters of South and South-East Asia remains challenging, limiting the ability to predict the subsurface spatial distribution of arsenic. Previous work illustrates that Himalayan-derived, near-surface (0 to 12m) sediments contribute a substantial quantity of arsenic to groundwater, and that desorption from the soils and sediments is driven by the reduction of AsV and arsenic-bearing iron (hydr)oxides. However, the complexities of groundwater flow will ultimately dictate the distribution of arsenic within the aquifer, and these patterns will be influenced by inherent physical heterogeneity along with human alterations of the aquifer system. Accordingly, we present a unified biogeochemical and hydrologic description of arsenic release to the subsurface environment of an arsenic-afflicted aquifer in the Mekong Delta, Kandal Province, Cambodia, constructed from measured geochemical profiles and hydrologic parameters. Based on these measurements, we developed a simple yet dynamic reactive transport model to simulate one- and two-dimensional geochemical profiles of the near surface and aquifer environment to examine the effects of subsurface physical variation on the distribution of arsenic. Our results show that near-surface release (0–12m) contributes enough arsenic to the aquifer to account for observed field values and that the spatial distribution of arsenic within the aquifer is strongly affected by variations in biogeochemical and physical parameters. Furthermore, infiltrating dissolved organic carbon and ample buried particulate organic carbon ensures arsenic release from iron (hydr)oxides will occur for hundreds to thousands of years.
APA, Harvard, Vancouver, ISO, and other styles
5

Mažeika, Jonas, Tõnu Martma, Rimantas Petrošius, Vaidotė Jakimavičiūtė-Maselienė, and Žana Skuratovič. "Radiocarbon and Other Environmental Isotopes in the Groundwater of the Sites for a Planned New Nuclear Power Plant in Lithuania." Radiocarbon 55, no. 2 (2013): 951–62. http://dx.doi.org/10.1017/s0033822200058100.

Full text
Abstract:
The assessment of construction sites for the new Visaginas Nuclear Power Plant (Visaginas NPP), including groundwater characterization, took place over the last few years. For a better understanding of the groundwater system, studies on radiocarbon; tritium; stable isotopes of hydrogen, oxygen, and carbon; and helium content were carried out at the location of the new NPP, at the Western and Eastern sites, as well as in the near-surface repository (NSR) site. Two critical depth zones in the Quaternary aquifer system were characterized by different groundwater residence times and having slightly different stable isotope features and helium content. The first shallow interval of the Quaternary multi-aquifer system consists of an unconfined aquifer and semiconfined aquifer. The second depth interval of the system is related to the lower Quaternary confined aquifer. Groundwater residence time in the first flow system was mainly based on tritium data and ranges from 6 to 60 yr. These aquifers are the most important in terms of safety assessment and are considered as a potential radionuclide transfer pathway in safety assessment. Groundwater residence time in the lower Quaternary aquifers based on 14C data varies from modern to several thousand years and in some intervals up to 10,500 yr.
APA, Harvard, Vancouver, ISO, and other styles
6

HENRY, J. L., P. R. BULLOCK, T. J. HOGG, and L. D. LUBA. "GROUNDWATER DISCHARGE FROM GLACIAL AND BEDROCK AQUIFERS AS A SOIL SALINIZATION FACTOR IN SASKATCHEWAN." Canadian Journal of Soil Science 65, no. 4 (1985): 749–68. http://dx.doi.org/10.4141/cjss85-080.

Full text
Abstract:
The stratigraphy and hydrology of saline soils were investigated at 15 sites in Saskatchewan, Canada. At five sites (Series A) nests of piezometers were installed and at 10 sites (Series B) a single piezometer was installed in or near an aquifer. Piezometric surface data from the nests showed the potential for upward movement in all Series A sites. The electrical conductivity (EC) of water from Series A piezometers increased from the deepest to shallowest and there was a general increase in soil EC towards the soil surface. Hydraulic conductivity of strata was measured at three sites and varied from 1.6 × 10−7 to 3.2 × 10−4 cm∙sec−1. It was calculated that observed salt loads for the three sites could accumulate by upward movement from the aquifer in from 500 to 5300 yr. For Series B sites the approximate sodium percentage (ASP) of the soil (Y) was related to the ASP of the aquifer (X) by the equation:[Formula: see text]For Series A and Series B sites combined the EC (dS∙m−1) of the 1:1 suspension of the stratum immediately above the aquifer (Y) was related to the EC of the aquifer (X) by the equation:[Formula: see text]Key words: Soil salinity, aquifers, stratigraphy, salt profiles
APA, Harvard, Vancouver, ISO, and other styles
7

Darsono, Darsono, Ahmad Marzuki, Nuryani Nuryani, and G. Yuliyanto. "Detection of groundwater aquifers using geoelectrical resistivity method (case study : Plupuh Sub-district, Sragen District )." Journal of Physics: Conference Series 2498, no. 1 (2023): 012004. http://dx.doi.org/10.1088/1742-6596/2498/1/012004.

Full text
Abstract:
Abstract An aquifer is a layer below the ground surface that contains groundwater. Inside the earth there are unconfined aquifers and confined aquifers, where unconfined aquifers are located near the surface while confined aquifers are located very deep beneath the earth. This study aims to find the location, depth, and thickness of aquifers that have the potential to contain large amounts of groundwater. The instrument used in this research is a resistivity meter OYO Model 2119C Mc OHM-EL, with a Schlumberger configuration with a current electrode length of AB/2 to 350 meters. Data acquisition were carried out in the Plupuh sub-district, Sragen district as many as 5 sounding points, and data processing using IP2win software. Based on the interpretation of resistivity geoelectrical data, it can be concluded that the area has the potential to have a lot of groundwater content, for unconfined aquifers at the TS1 sounding point with a depth of 7.7 meters to 19.2 meters with a thickness of 11.5 meters. and TS4 with a depth of 15.4 meters to 30 meters with a layer thickness of 14.6 meters. This aquifer layer is dominated by sand layer lithology, while the confined aquifer layer is located around TS1 and TS2. The two sounding points are located in the east and northeast of the research area. TS1 was detected at a depth of 39.9 meters to 110 meters with a layer thickness of 60.1 meters and TS2 was at a depth of 40.2 meters to 66.5 meters and 80.2 meters to 139.7 meters with a thickness of 84.8 meters. This aquifer layer is dominated by the gravel sand layer in TS1 and the sand layer in TS2.
APA, Harvard, Vancouver, ISO, and other styles
8

Hinzman, Larry D., Matthew Wegner, and Michael R. Lilly. "Hydrologic Investigations of Groundwater and Surface-water Interactions In Subarctic Alaska." Hydrology Research 31, no. 4-5 (2000): 339–56. http://dx.doi.org/10.2166/nh.2000.0020.

Full text
Abstract:
Dynamic interactions between rivers and adjacent aquifers can significantly affect near-bank geochemistry and processes associated with natural attenuation of contaminants by mixing water or introducing oxygen or nutrients. During 1997 and 1998 in a study near Fairbanks, Alaska U.S.A, the hydrologic conditions in the Chena River and in the adjacent groundwater were monitored. The river stage, groundwater elevations, and the water chemistry and temperature in both river and groundwater were measured. In the spring of 1997, the groundwater gradient close to the Chena River reversed causing surface water to enter the aquifer. Changes in temperature, specific conductance and alkalinity were used to determine the extent of bank recharge. For approximately one week during spring snowmelt of 1997, surface-water influx from the Chena River occurred approximately between the depths of 5.33 m and 9.1 m below ground surface. The effects of bank recharge extended at least 6.1 m but not to 30.5 m from the banks of the Chena River into the aquifer. Bank recharge caused 64 to 68 per cent of the groundwater, 6.1 m from the bank at a depth of 6.78 m to be displaced by surface water influx. Peak flows during 1998 were not high enough to cause flow reversals.
APA, Harvard, Vancouver, ISO, and other styles
9

Mukherjee, S., E. A. Mohammad, and R. H. Worden. "Satellite data interpretation of causes and controls on groundwater-seawater flow directions, Merseyside, UK: implications for assessing saline intrusions." Hydrology and Earth System Sciences Discussions 2, no. 3 (2005): 887–916. http://dx.doi.org/10.5194/hessd-2-887-2005.

Full text
Abstract:
Abstract. Groundwater in the Triassic Sherwood Sandstone aquifer, Liverpool, UK, has locally elevated chloride concentrations (~4000 mg/l) in parts of the coastal region although there is freshwater right up to the coast line in other areas. The aquifer is cut my numerous faults with vertical displacements of as much 300 m. SPOT satellite data have been used for the Merseyside area of Liverpool. The satellite data revealed and confirmed the location of some of the main faults since the fault zones of the aquifer have low permeability (due to grain crushing, cataclasis, and clay smearing). Where fault zones outcrop at the surface, below the well-developed regolith, there is locally elevated soil water and thus anomalous vegetation patterns in comparison to unfaulted and highly porous aquifer. The ability to identify fault zones by this satellite-based method strongly suggests that they are at least partially sealing, sub-vertical features in the aquifer. Digitally enhanced and processed satellite data were used to define the relative proportions of sand and clay in the near-coastal (inter-tidal) part of the Mersey estuary. Sand-dominated sediment has higher pixel values in comparison with clay deposits in the near infrared spectral region (NIR). Where open and weathered fault rocks crop out at the surface near the intertidal zone, water movement in these potential surface water conduits is limited where the intertidal zone is clay-dominated since clay will plug the conduit. Where these weathered and open fault-rocks crop out against sand-dominated parts of the coastline, fresh water outflux into the seawater has been imaged using the satellite data. Furthermore, the high and low chloride concentration parts of the aquifer are separated by major, sub-vertical fault zones and have allowed a very steep water table gradient to remain in the aquifer.
APA, Harvard, Vancouver, ISO, and other styles
10

Peñafiel, Lilia, Francisco Javier Alcalá, and Javier Senent-Aparicio. "Usefulness of Compiled Geophysical Prospecting Surveys in Groundwater Research in the Metropolitan District of Quito in Northern Ecuador." Applied Sciences 11, no. 23 (2021): 11144. http://dx.doi.org/10.3390/app112311144.

Full text
Abstract:
As in other large Andean cities, the population in the Metropolitan District of Quito (MDQ) in northern Ecuador is growing, and groundwater is becoming essential to meet the increasing urban water demand. Quito’s Public Water Supply Company (EPMAPS) is promoting groundwater research for sustainable water supply, and geophysical prospecting surveys are used to define aquifer geometry and certain transient groundwater features. This paper examines the usefulness of existing geophysical prospecting surveys in groundwater research in the MDQ. A database was built using 23 representative geophysical prospecting surveys compiled from EPMAPS’ public repository, official geotechnical research reports, and the scientific literature. Fifteen EPMAPS-promoted surveys used near-surface electrical techniques (seven used electrical resistivity tomography and eight used vertical electrical sounding) to explore Holocene and Pleistocene sedimentary and volcano-sedimentary formations in the 25–500-m prospecting depth range, some of which form shallow aquifers used for water supply. Four other surveys used near-surface seismic techniques (refraction microtremor) for geotechnical research in civil works. These surveys have been reinterpreted to define shallow aquifer geometry. Finally, four surveys compiled from the scientific literature used electromagnetic techniques (magnetotelluric sounding and other very low-frequency methods) to explore Holocene to late Pliocene formations, some of which form thick regional aquifers catalogued as the larger freshwater reservoirs in the MDQ. However, no geophysical prospecting surveys exploring the complete saturated thickness of the Pliocene aquifers could be compiled. Geophysical prospecting surveys with greater penetration depth are proposed to bridge this research gap, which prevents the accurate assessment of the renewable groundwater fraction of the regional aquifers in the MDQ that can be exploited sustainably.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography