Academic literature on the topic 'Near-field microscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Near-field microscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Near-field microscopy"

1

Chornii, V. "New materials for luminescent scanning near-field microscopy." Functional materials 20, no. 3 (September 25, 2013): 402–6. http://dx.doi.org/10.15407/fm20.03.402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Courjon, D., and C. Bainier. "Near field microscopy and near field optics." Reports on Progress in Physics 57, no. 10 (October 1, 1994): 989–1028. http://dx.doi.org/10.1088/0034-4885/57/10/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vobornik, Dušan, and Slavenka Vobornik. "Scanning Near-Field Optical Microscopy." Bosnian Journal of Basic Medical Sciences 8, no. 1 (February 20, 2008): 63–71. http://dx.doi.org/10.17305/bjbms.2008.3000.

Full text
Abstract:
An average human eye can see details down to 0,07 mm in size. The ability to see smaller details of the matter is correlated with the development of the science and the comprehension of the nature. Today’s science needs eyes for the nano-world. Examples are easily found in biology and medical sciences. There is a great need to determine shape, size, chemical composition, molecular structure and dynamic properties of nano-structures. To do this, microscopes with high spatial, spectral and temporal resolution are required. Scanning Near-field Optical Microscopy (SNOM) is a new step in the evolution of microscopy. The conventional, lens-based microscopes have their resolution limited by diffraction. SNOM is not subject to this limitation and can offer up to 70 times better resolution.
APA, Harvard, Vancouver, ISO, and other styles
4

Labardi, M., P. G. Gucciardi, and M. Allegrini. "Near-field optical microscopy." La Rivista del Nuovo Cimento 23, no. 4 (April 2000): 1–35. http://dx.doi.org/10.1007/bf03548884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Anderson, Neil, Achim Hartschuh, and Lukas Novotny. "Near-field Raman microscopy." Materials Today 8, no. 5 (May 2005): 50–54. http://dx.doi.org/10.1016/s1369-7021(05)00846-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gadomsky, O. N., V. S. Gorelik, and A. S. Kadochkin. "Laser near-field microscopy." Journal of Russian Laser Research 27, no. 3 (May 2006): 225–300. http://dx.doi.org/10.1007/s10946-006-0011-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hirsekorn, S., U. Rabe, and W. Arnold. "Near-Field Acoustic Microscopy." Europhysics News 27, no. 3 (1996): 93–96. http://dx.doi.org/10.1051/epn/19962703093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

KAWATA, SATOSHI, TARO ICHIMURA, NORIHIKO HAYAZAWA, YASUSHI INOUYE, and MAMORU HASHIMOTO. "TIP-ENHANCED NEAR-FIELD CARS MICROSCOPY." Journal of Nonlinear Optical Physics & Materials 13, no. 03n04 (December 2004): 593–99. http://dx.doi.org/10.1142/s0218863504002341.

Full text
Abstract:
We apply the field enhancement effect due to plasmon polariton excitation on a metallic nanostructure in order to improve the diffraction limited spatial resolution of coherent anti-Stokes Raman scattering (CARS) microscopy. A cantilever probe tip coated with a 25 nm-thick gold film is utilized as a near-field light source to locally excite the CARS polarizations near the tip. Our CARS microscope has effectively enhanced the CARS signals and realized vibrational imaging of single-wall carbon nanotubes (SWNTs) beyond the spatial resolution of far-field CARS microscopy.
APA, Harvard, Vancouver, ISO, and other styles
9

OKAZAKI, Satoshi, and Toshihiko NAGAMURA. "Near-field Scanning Optical Microscopy." Journal of the Japan Society for Precision Engineering 57, no. 7 (1991): 1155–58. http://dx.doi.org/10.2493/jjspe.57.1155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vincent, Tom. "Scanning near-field infrared microscopy." Nature Reviews Physics 3, no. 8 (June 1, 2021): 537. http://dx.doi.org/10.1038/s42254-021-00337-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Near-field microscopy"

1

Szelc, Jedrzej. "THz imaging and microscopy : a multiplexed near-field TeraHertz microscope." Thesis, University of Southampton, 2011. https://eprints.soton.ac.uk/209643/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

von, Ribbeck Hans-Georg. "THz Near-Field Microscopy and Spectroscopy." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-163917.

Full text
Abstract:
Imaging with THz radiation at nanoscale resolution is highly desirable for specific material investigations that cannot be obtained in other parts of the electromagnetic spectrum. Nevertheless, classical free-space focusing of THz waves is limited to a >100 μm spatial resolution, due to the diffraction limit. However, the scattering- type scanning near-field optical microscopy (s-SNOM) promises to break this diffraction barrier. In this work, the realization of s-SNOM and spectroscopy for the THz spectral region from 30–300 μm (1–10 THz) is presented. This has been accomplished by using two inherently different radiation sources at distinct experimental setups: A femtosecond laser driven photoconductive antenna, emitting pulsed broadband THz radiation from 0.2–2 THz and a free-electron laser (FEL) as narrow-band high-intensity source, tunable from 1.3–10 THz. With the photoconductive antenna system, it was demonstrated for the first time that near-field spectroscopy using broadband THz-pulses, is achievable. Hereby, Terahertz time-domain spectroscopy with a mechanical delay stage (THz-TDS) was realized to obtain spectroscopic s-SNOM information, with an additional asynchronous optical sampling (ASOPS) option for rapid far-field measurements. The near-field spectral capabilities of the microscope are demonstrated with measurements on gold and on variably doped silicon samples. Here it was shown that the spectral response follows the theoretical prediction according to the Drude and the dipole model. While the broadband THz-TDS based s-SNOM in principle allows for the parallel recording of the full spectral response, the weak average power of the THz source ultimately limits the technique to optically investigate selected sample locations only. Therefore, for true THz near-field imaging, a FEL as a high-intensity narrow- band but highly-tunable THz source in combination with the s-SNOM technique, has been explored. Here, the characteristic near-field signatures at wavelengths from 35–230 μm are shown. Moreover, the realization of material sensitive THz near-field imaging is demonstrated by optically resolving, a structured gold rod with a reso- lution of up to 60 nm at 98 μm wavelength. Not only can the gold be distinguished from the silica substrate but moreover parts of the structure have been identified to be residual resin from the fabrication process. Furthermore, in order to explore the resolution capabilities of the technique, the near-fields of patterned gold nano- structures (Fischer pattern) were imaged with a 50 nm resolution at wavelengths up to 230 μm (1.2 THz). Finally, the imaging of a topography-independent optical material contrast of embedded organic structures, at exemplary 150 μm wavelength is shown, thereby demonstrating that the recorded near-field signal alone allows us to identify materials on the nanometer scale. The ability to measure spectroscopic images by THz-s-SNOM, will be of benefit to fundamental research into nanoscale composites, nano-structured conductivity phenomena and metamaterials, and furthermore will enable applications in the chemical and electronics industries
Die Bildgebung mit THz Strahlung im Nanobereich ist höchst wünschenswert für genaue Materialuntersuchungen, welche nicht in anderen Spektralbereichen durchgeführt werden kann. Aufgrund des Beugungslimits ist kann jedoch mit klassischen Methoden keine bessere Auflösung als etwa 100 μm für THz-Strahlung erreicht werden. Die Methode der Streulicht-Nahfeldmikroskopie (s-SNOM) verspricht jedoch dieses Beugungslimit zu durchbrechen. In der vorliegenden Arbeit wird die Realisierung der Nahfeld-Mikroskopie und Spektroskopie im THz-Spektralbereich von 30–1500 μm (0.2–10 THz) präsentiert. Dies wurde mittels zweier grundsätzlich unterschiedlichen Strahlungsquellen an separaten Experimentaufbauten erreicht: Einer photoleitenden Antenne welche gepulste breitbandige THz-Strahlung von 0.2–2 THz emittiert, sowie einem Freie- Elektronen Laser (FEL) als schmalbandige hochleistungs Quelle, durchstimmbar von 1.3–10 THz. Mit dem photoleitenden Antennensystem konnte zum ersten mal demonstriert werden, dass mit breitbandigen THz-Pulsen Nahfeldspektroskopie möglich ist. Dazu wurde die übliche THz-Time-Domain-Spektroskopie (THz-TDS) zur Erhaltung der spektroskopischen s-SNOM Informationen, sowie asynchrones optisches Abtasten (ASOPS) für schnelle Fernfeld Spektroskopie eingesetzt. Die nahfeldspektroskopischen Fähigkeiten des Mikroskops wurden anhand von Messungen an Gold sowie unterschiedlich dotierten Siliziumproben demonstriert. Dabei konnte gezeigt werden, dass die spektrale Antwort den theoretischen Voraussagen des Drude- sowie Dipol Modells folgt. Während das breitband THz-TDS basierte s-SNOM spektroskopische Nahfelduntersuchungen zulässt, limitiert jedoch die schwache Ausgangsleistung der THz-quelle diese Technik insofern, dass praktisch nur Punktspektroskopie an ausgesuchten Probenstellen möglich ist. Für echte nanoskopische Nahfeldbildgebung wurde daher ein FEL als durchstimmbare hochleistungs THz-Quelle in Kombination mit der s-SNOM-Technik erforscht. Hierzu wurden die charakteristischen Nahfeld-Signaturen bei Wellenlängen von 35–230 μm untersucht, gefolgt von die Verwirklichung materialsensitiver THz Nahfeldbildgebung gezeigt an Goldstreifen mit bis zu 60 nm Auflösung. Dabei kann nicht nur das Gold von dem Glassubstrat unterschieden werden, sondern auch Ablagerungen als Überreste des Fabrikationsprozesses identifiziert werden. Um die Grenzen der Auflösungsmöglichkeiten dieser Technik zu sondieren, wurden weiterhin die Nahfelder von gemusterten Gold-Nanostrukturen (Fischer-Pattern) bei Wellenlängen bis zu 230 μm (1.2 THz) abgebildet. Hierbei wurde eine Auflösung von 50 nm festgestellt. Schliesslich konnte der topographieunabhängige Materialkontrast von eingebetteten organischen Strukturen, exemplarisch bei 150 μm Wellenlänge, gezeigt werden. Die Fähigkeit, spektroskopische Aufnahmen mittels der THZ-s-SNOM Technik zu erzeugen, wird der Grundlagenforschung und in der Nanotechnologie zu Gute kommen, und weiterhin Anwendungen in der Chemischen- und Halbleiterindustrie ermöglichen
APA, Harvard, Vancouver, ISO, and other styles
3

Leong, Siang Huei. "Apertureless scanning near-field optical microscopy." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Neacsu, Corneliu Catalin. "Tip-enhanced near-field optical microscopy." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2011. http://dx.doi.org/10.18452/16284.

Full text
Abstract:
Die vorliegende Arbeit beschreibt neue Entwicklungen im Verständnis und in der Umsetzung der optischen Nahfeldmikroskopie (scattering - type scanning near-field optical microscopy, s-SNOM) für die lineare und nichtlineare optische Bildgebung mit ultrahoher Auslösung und Empfindlichkeit. Die fundamentalen Mechanismen, die der Feldverstärkung am Ende von ultrascharfen metallischen Spitzen zugrunde liegen, werden systematisch behandelt. Die plasmonischen Eigenschaften der Spitze wurden erstmalig beobachtet, und ihre Bedeutung für die optische Kopplung zwischen Spitze und Probe sowie für die sich ergebende Einengung des Nahfeldes wird diskutiert. Ein aperturloses Nahfeldmikroskop für die spitzenverstärkte Ramanspektroskopie (tip-enhanced Raman spectroscopy, TERS) wurde entwickelt. Die Grundlagen der TERS und die wesentliche Rolle des plasmonischen Verhaltens der Spitze sowie die klare Unterscheidung von Nahfeld-Ramansignatur und Fernfeld-Abbildungsartefakten werden beschrieben. Nahfeld Raman Verstärkungsfaktoren von bis zu 10 wurden erreicht, was einer Feldverstärkung von bis zu 130 entspricht und Raman-Messungen bis auf Einzel-Molekül-Niveau ermöglichte. Die optische Frequenzverdopplung (second harmonic generation, SHG) an einzelnen Spitzen wurde untersucht. Aufgrund ihrer teilweise asymmetrischen Nanostruktur erlauben die Spitzen eine klare Unterscheidung von lokalen Oberflächen und nichtlokalen Volumenbeiträgen zur nichtlinearen Polarisation sowie die Analyse ihrer Polarisations- und Emissions-Auswahlregeln. Die spitzenverstärkte Frequenzverdopplungs-Spektroskopie und die räumlich hoch aufgelöste Abbildung auf Basis des dielektrischen Kontrasts werden demonstriert. Mit Hilfe einer phasen-sensitiven, Selbst-homodyn-Frequenzverdopplungs-s-SNOM-Abbildungsmethode kann die Oberflächen-Struktur der intrinsischen 180-Domänen im hexagonal multiferroischen YMnO aufgelöst werden.
This thesis describes the implementation of scattering-type near-field optical microscopy (s-SNOM) for linear and nonlinear optical imaging. The technique allows for optical spectroscopy with ultrahigh spatial resolution. New results on the microscopic understanding of the imaging mechanism and the employment of s-SNOM for structure determination at solid surfaces are presented. The method relies on the use of metallic probe tips with apex radii of only few nanometers. The local-field enhancement and its dependence on material properties are investigated. The plasmonic character of Au tips is identified and its importance for the optical tip-sample coupling and subsequent near-field confinement are discussed. The experimental results offer valuable criteria in terms of tip-material and structural parameters for the choice of suitable tips required in s-SNOM. An near-field optical microscope is developed for tip-enhanced Raman spectroscopy (TERS) studies. The principles of TERS and the role of the tip plasmonic behavior together with clear distinction of near-field Raman signature from far-field imaging artifacts are described. TERS results of monolayer and submonolayer molecular coverage on smooth Au surfaces are presented. Second harmonic generation (SHG) from individual tips is investigated. As a partially asymmetric nanostructure, the tip allows for the clear distinction of local surface and nonlocal bulk contributions to the nonlinear polarization and the analysis of their polarization and emission selection rules. Tip-enhanced SH microscopy and dielectric contrast imaging with high spatial resolution are demonstrated. SHG couples directly to the ferroelectric ordering in materials and in combination with scanning probe microscopy can give access to the morphology of mesoscopic ferroelectric domains. Using a phase sensitive self-homodyne SHG s-SNOM imaging method, the surface topology of 180 intrinsic domains in hexagonal multiferroic YMnO is resolved.
APA, Harvard, Vancouver, ISO, and other styles
5

LeBlanc, Philip R. "Dual-wavelength scanning near-field optical microscopy." Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82911.

Full text
Abstract:
A dual-wavelength Scanning Near-Field Optical Microscope was developed in order to investigate near-field contrast mechanisms as well as biological samples in air. Using a helium-cadmium laser, light of wavelengths 442 and 325 nanometers is coupled into a single mode optical fiber. The end of the probe is tapered to a sub-wavelength aperture, typically 50 nanometers, and positioned in the near-field of the sample. Light from the aperture is transmitted through the sample and detected in a confocal arrangement by two photomultiplier tubes. The microscope has a lateral topographic resolution of 10 nanometers, a vertical resolution of 0.1 nanometer and an optical resolution of 30 nanometers. Two alternate methods of producing the fiber probes, heating and pulling, or acid etching, are compared and the metal coating layer defining the aperture is discussed. So-called "shear-force" interactions between the tip and sample are used as the feedback mechanism during raster scanning of the sample. An optical and topographic sample standard was developed to calibrate the microscope and extract the ultimate resolution of the instrument. The novel use of two wavelengths enables the authentication of true near-field images, as predicted by various models, as well as the identification of scanning artifacts and the deconvolution of often highly complicated relationships between the topographical and optical images. Most importantly, the use of two wavelengths provides information on the chemical composition of the sample. Areas of a polystyrene film are detected by a significant change in the relative transmission of the two wavelengths with a resolution of 30 nanometers. As a biological application, a preliminary investigation of the composition of Black Spruce wood cell fibers was performed. Comparisons of the two optical channels reveal the expected lignin distributions in the cell wall.
APA, Harvard, Vancouver, ISO, and other styles
6

Rea, Nigel P. "Interference and laser feedback optical microscopy." Thesis, University of Oxford, 1995. http://ora.ox.ac.uk/objects/uuid:989c9fca-947d-490c-9f34-38065a7c57d9.

Full text
Abstract:
This thesis concerns the development of simple, compact scanning optical microscopes which can obtain confocal and interference images. The effects of feeding the reflected signal back into the laser cavity of a confocal microscope are investigated and exploited. Monomode optical fibres are used to perform the spatial filtering required for confocal microscopy and, later, as the source of reference beams for interferometry. The theory describing the basic operation of the microscopes is developed. The optical systems are modelled using scalar diffraction theory and the effects of optical feedback into the laser cavity are described, with the practical implications emphasised. A fully reciprocal arrangement of the microscope is developed, in which a single mode optical fibre both launches the signal towards the object and then collects the reflected signal. The fibre is shown to exhibit the spatial filtering properties required for the source and detector in a confocal microscope. It is shown that a semiconductor laser can be used as a detector of the amplitude of the object signal. This is first demonstrated by directing the microscope signal back into the laser cavity and measuring the variation of the optical intensity in the cavity itself. Comparable results are obtained when the variation of the junction voltage across the cavity is measured. It is also shown that the optical fibre is redundant in this system, since the lasing mode of the cavity itself is sufficiently small to adequately spatially filter the reflected signal. When a Helium-Neon laser is used as the source of illumination the effect of the feedback on the laser is seen to be very different, resulting in interferometry. It is shown that high frequency modulation techniques can be used to obtain both confocal images and surface profiles from the same system. This is first demonstrated using an optical feedback scheme in which the modulation of the optical path length of the object beam is controlled electrooptically. In an alternative scheme the images are obtained by calculation, rather than by using a control loop system. In this case the modulation is achieved mechanically. The theoretical limits for the resolutions of the systems described are discussed. It is shown that the lateral resolution of the surface profile systems is inherently non-linear with feature height. Finally, a semiconductor laser based microscope is developed which can obtain confocal images and surface profiles independently. The dependence of the wavelength on the injection current is exploited as a convenient means of introducing a phase shift into the feedback signal by which profilometry can be achieved. All the systems are described theoretically and demonstrated experimentally.
APA, Harvard, Vancouver, ISO, and other styles
7

Thoma, Arne [Verfasser]. "Apertureless Scanning Terahertz Near Field Microscopy / Arne Thoma." München : Verlag Dr. Hut, 2011. http://d-nb.info/1011442043/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lessard, Guillaume Quake Stephen R. "Apertureless near-field optical microscopy for fluorescence imaging /." Diss., Pasadena, Calif. : California Institute of Technology, 2003. http://resolver.caltech.edu/CaltechETD:etd-05302003-145931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hadjipanayi, Maria. "Scanning near-field optical microscopy of semiconducting nano-structures." Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schneider, Susanne Christine. "Scattering Scanning Near-Field Optical Microscopy on Anisotropic Dielectrics." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1192105974322-82865.

Full text
Abstract:
Near-field optical microscopy allows the nondestructive examination of surfaces with a spatial resolution far below the diffraction limit of Abbe. In fact, the resolution of this kind of microscope is not at all dependent on the wavelength, but is typically in the range of 10 to 100 nanometers. On this scale, many materials are anisotropic, even though they might appear isotropic on the macroscopic length scale. In the present work, the previously never studied interaction between a scattering-type near-field probe and an anisotropic sample is examined theoretically as well as experimentally. In the theoretical part of the work, the analytical dipole model, which is well known for isotropic samples, is extended to anisotropic samples. On isotropic samples one observes an optical contrast between different materials, whereas on anisotropic samples one expects an additional contrast between areas with different orientations of the same dielectric tensor. The calculations show that this anisotropy contrast is strong enough to be observed if the sample is excited close to a polariton resonance. The experimental setup allows the optical examination in the visible and in the infrared wavelength regimes. For the latter, a free-electron laser was used as a precisely tunable light source for resonant excitation. The basic atomic force microscope provides a unique combination of different scanning probe microscopy methods that are indispensable in order to avoid artifacts in the measurement of the near-field signal and the resulting anisotropy contrast. Basic studies of the anisotropy contrast were performed on the ferroelectric single crystals barium titanate and lithium niobate. On lithium niobate, we examined the spectral dependence of the near-field signal close to the phonon resonance of the sample as well as its dependence on the tip-sample distance, the polarization of the incident light, and the orientation of the sample. On barium titanate, analogous measurements were performed and, additionally, areas with different types of domains were imaged and the near-field optical contrast due to the anisotropy of the sample was directly measured. The experimental results of the work agree with the theoretical predictions. A near-field optical contrast due to the anisotropy of the sample can be measured and allows areas with different orientations of the dielectric tensor to be distinguished optically. The contrast results from variations of the dielectric tensor components both parallel and perpendicular to the sample surface. The presented method allows the optical examination of anisotropies of a sample with ultrahigh resolution, and promises applications in many fields of research, such as materials science, information technology, biology, and nanooptics
Die optische Nahfeldmikroskopie ermöglicht die zerstörungsfreie optische Unter- suchung von Oberflächen mit einer räumlichen Auflösung weit unterhalb des klas- sischen Beugungslimits von Abbe. Die Auflösung dieser Art von Mikroskopie ist unabhängig von der verwendeten Wellenlänge und liegt typischerweise im Bereich von 10-100 Nanometern. Auf dieser Längenskala zeigen viele Materialien optisch anisotropes Verhalten, auch wenn sie makroskopisch isotrop erscheinen. In der vorliegenden Arbeit wird die bisher noch nicht bestimmte Wechselwirkung einer streuenden Nahfeldsonde mit einer anisotropen Probe sowohl theoretisch als auch experimentell untersucht. Im theoretischen Teil wird das für isotrope Proben bekannte analytische Dipol- modell auf anisotrope Materialien erweitert. Während fÄur isotrope Proben ein reiner Materialkontrast beobachtet wird, ist auf anisotropen Proben zusätzlich ein Kontrast zwischen Bereichen mit unterschiedlicher Orientierung des Dielektrizitätstensors zu erwarten. Die Berechnungen zeigen, dass dieser Anisotropiekontrast messbar ist, wenn die Probe nahe einer Polaritonresonanz angeregt wird. Der verwendete experimentelle Aufbau ermöglicht die optische Untersuchung von Materialien im sichtbaren sowie im infraroten Wellenlängenbereich, wobei zur re- sonanten Anregung ein Freie-Elektronen-Laser verwendet wurde. Das dem Nahfeld- mikroskop zugrunde liegende Rasterkraftmikroskop bietet eine einzigartige Kombi- nation verschiedener Rastersondenmikroskopie-Methoden und ermöglicht neben der Untersuchung von komplementären Probeneigenschaften auch die Unterdrückung von mechanisch und elektrisch induzierten Fehlkontrasten im optischen Signal. An den ferroelektrischen Einkristallen Lithiumniobat und Bariumtitanat wurde der anisotrope Nahfeldkontrast im infraroten WellenlÄangenbereich untersucht. An eindomÄanigem Lithiumniobat wurden das spektrale Verhalten des Nahfeldsignals sowie dessen charakteristische Abhängigkeit von Polarisation, Abstand und Proben- orientierung grundlegend untersucht. Auf Bariumtitanat, einem mehrdomänigen Kristall, wurden analoge Messungen durchgeführt und zusätzlich Gebiete mit ver- schiedenen Domänensorten abgebildet, wobei ein direkter nachfeldoptischer Kon- trast aufgrund der Anisotropie der Probe nachgewiesen werden konnte. Die experimentellen Ergebnisse dieser Arbeit stimmen mit den theoretischen Vorhersagen überein. Ein durch die optische Anisotropie der Probe induzierter Nahfeldkontrast ist messbar und erlaubt die optische Unterscheidung von Gebie- ten mit unterschiedlicher Orientierung des Dielektriziätstensors, wobei eine Än- derung desselben sowohl parallel als auch senkrecht zur Probenoberfläche messbar ist. Diese Methode erlaubt die hochauflösende optische Untersuchung von lokalen Anisotropien, was in zahlreichen Gebieten der Materialwissenschaft, Speichertech- nik, Biologie und Nanooptik von Interesse ist
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Near-field microscopy"

1

NATO Advanced Research Workshop on Near Field Optics (1992 Arc-et-Senans, France). Near field optics. Dordrecht: Kluwer Academic, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Paesler, Michael A. Near-field optics: Theory, instrumentation, and applications. New York: Wiley, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fillard, J. P. Near field optics and nanoscopy. Singapore: World Scientific, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

V, Zayats A., and Richards David Prof, eds. Nano-optics and near-field optical microscopy. Boston: Artech House, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

1950-, Nieto-Vesperinas M., García N, North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Research Workshop on Near Field Optics: Recent Progress and Perspectives (1995 : Miraflores de la Sierra, Spain), eds. Optics at the nanometer scale: Imaging and storing with photonic near fields. Dordrecht: Kluwer Academic, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

1890-1957, Synge Edward Hutchinson, ed. Hutchie: The life and works of Edward Hutchinson Synge (1890-1957). Pöllauberg, Austria: Living Edition, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Aaron, Lewis, Wickramasinghe H. Kumar, Al-Shamery Katharina H, and Society of Photo-optical Instrumentation Engineers., eds. Controlling and using light in nanometric domains: 2-3 August 2001, San Diego, USA. Bellingham, Wash., USA: SPIE, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

David, Richards, Zayats A. V, and Royal Society (Great Britain), eds. Nano-optics and near-field microscopy: Papers of a theme issue. London: Royal Society, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Xing, Zhu, and Ohtsu Motoichi, eds. Near-field optics: Principles and applications : the second Asia-Pacific Workshop on Near Field Optics, Beijing, China, October 20-23, 1999. Singapore: World Scientific, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ohtsu, Motoichi. Progress in Nano-Electro-Optics I: Basics and Theory of Near-Field Optics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Near-field microscopy"

1

McGurn, Arthur. "Near Field Microscopy." In Springer Series in Optical Sciences, 445–59. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77072-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gimzewski, J. K., R. Berndt, R. R. Schlittler, A. W. McKinnon, M. E. Welland, T. M. H. Wong, Ph Dumas, et al. "Optical Spectroscopy and Microscopy Using Scanning Tunneling Microscopy." In Near Field Optics, 333–40. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1978-8_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fischer, U. Ch. "Scanning Near Field Optical Microscopy." In Scanning Microscopy, 76–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84810-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Narushima, Tetsuya. "Scanning Near-Field Optical Microscopy/Near-Field Scanning Optical Microscopy." In Compendium of Surface and Interface Analysis, 577–82. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6156-1_93.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Korpel, Adrian, Scott Samson, and Kurt Feldbush. "Progress in Vibrating Stylus Near Field Microscopy." In Near Field Optics, 399–406. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1978-8_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Paulson, C. A., and D. W. Van Der Weide. "Near-Field High-Frequency Probing." In Scanning Probe Microscopy, 315–45. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-28668-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fischer, U. C. "Scanning Near-Field Optical Microscopy." In Scanning Probe Microscopy, 161–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03606-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Labeke, D., and D. Barchiesi. "Theoretical Problems in Scanning Near-Field Optical Microscopy." In Near Field Optics, 157–78. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1978-8_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Malmqvist, Lars, and Hans M. Hertz. "Scanned Probe Optical Microscopy using a Non-Intrusive Probe." In Near Field Optics, 141–46. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1978-8_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Keller, O., S. Bozhevolnyi, and M. Xiao. "On the Resolution Limit of Near-Field Optical Microscopy." In Near Field Optics, 229–37. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1978-8_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Near-field microscopy"

1

Wegscheider, S., A. Georgi, V. Sandoghdar, G. Krausch, and J. Mlynek. "Scanning near-field optical lithography." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/cleo_europe.1996.cfa4.

Full text
Abstract:
The resolution of various scanning probe microscopy methods can be applied to the fabrication of nanostructures. Various methods of local material modification based on different microscopic mechanisms have been proposed, examples of which are : material transfer between a scanning tunneling microscope (STM) tip and a substrate, local oxidation of silicon using atomic force microscope (AFM). Scanning near-field optical microscopy (SNOM) is also an attractive candidate for nanofabrication. Here the optical spot size in the near-field is given by the resolution of the SNOM which in turn is determined by the details of the tip geometry and is typically between 50 and 100 nanometers.
APA, Harvard, Vancouver, ISO, and other styles
2

Isaacson, M., J. Cline, and H. Barshatzky. "Near-Field-Optical Microscopy." In Scanned probe microscopy. AIP, 1991. http://dx.doi.org/10.1063/1.41417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jiang, Ruei-Han. "Near-free Background Near-Field Plasmonic Probe." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Planken, P. C. M., C. W. E. M. van Rijmenam, and N. C. J. van der Valk. "Terahertz near-field microscopy." In Optical Terahertz Science and Technology. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/otst.2005.tuc1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Hou-Tong, Gyu Cheon Cho, and Roland Kersting. "Terahertz near-field microscopy." In Optics East, edited by M. Saif Islam and Achyut K. Dutta. SPIE, 2004. http://dx.doi.org/10.1117/12.571300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Davis, Christopher C. "FIBER NEAR-FIELD MICROSCOPY." In Optical Fiber Sensors. Washington, D.C.: OSA, 1997. http://dx.doi.org/10.1364/ofs.1997.otua3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Courjon, D. "Near Field Optical Microscopy." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/cleo_europe.1996.tutc.

Full text
Abstract:
Near field microscopy is about ten years old. Unlike Scanning Tunneling Microscopy, its progress has been slow and somewhat erratic. Today, we can consider that this new tool is mature enough to be used in a few routine surface characterization procedures.
APA, Harvard, Vancouver, ISO, and other styles
8

Le Gac, Gaelle, Adel Rahmani, Christian Seassal, Emmanuel Picard, Emmanuel Hadji, and Segolene Callard. "Active near-field optical microscopy." In 2008 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2008. http://dx.doi.org/10.1109/cleo.2008.4552001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, John X. J., Kazunori Hoshino, and Ashwini Gopal. "Near-field scanning nanophotonic microscopy." In 2008 IEEE/LEOS Internationall Conference on Optical MEMs and Nanophotonics. IEEE, 2008. http://dx.doi.org/10.1109/omems.2008.4607888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Semin, David J., W. Patrick Ambrose, Peter M. Goodwin, Joel R. Wendt, and Richard A. Keller. "Near-field optical microscopy nanoarray." In Photonics West '97, edited by Terry A. Michalske and Mark A. Wendman. SPIE, 1997. http://dx.doi.org/10.1117/12.271219.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Near-field microscopy"

1

Jackson, Howard E., and Joseph T. Boyd. Near Field Microscopy and Spectroscopy of Photonic Nanostructures. Fort Belvoir, VA: Defense Technical Information Center, December 2001. http://dx.doi.org/10.21236/ada398439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nakakura, Craig Y., and Aaron Michael Katzenmeyer. Novel Applications of Near-Field Scanning Optical Microscopy (NSOM). Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1475250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hallen, Hans D. Spatial & Temporal Resolution in Near-Field Optical Microscopy. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada358134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yan, M., J. McWhirter, T. Huser, and W. Siekhaus. Defect studies of optical materials using near-field scanning optical microscopy and spectroscopy. Office of Scientific and Technical Information (OSTI), January 2001. http://dx.doi.org/10.2172/15004114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brockman, Theodore. Shear-Force Acoustic Near-Field Microscopy and Its Implementation in the Study of Confined Mesoscopic Fluids. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Barbara, Paul F. Ultrafast Near-Field Scanning Optical Microscopy (NSOM) of Emerging Display Technology Media: Solid State Electronic Structure and Dynamics,. Fort Belvoir, VA: Defense Technical Information Center, May 1995. http://dx.doi.org/10.21236/ada294879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nowak, Derek. The Design of a Novel Tip Enhanced Near-field Scanning Probe Microscope for Ultra-High Resolution Optical Imaging. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pesis, Edna, Elizabeth J. Mitcham, Susan E. Ebeler, and Amnon Lers. Application of Pre-storage Short Anaerobiosis to Alleviate Superficial Scald and Bitter Pit in Granny Smith Apples. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7593394.bard.

Full text
Abstract:
There is increased demand for high quality fruit produced and marketed with reduced chemical inputs to minimize toxic effects on human health and the environment. Granny Smith (GS) apple quality is reduced by two major physiological disorders, superficial scald and bitter pit (BP). These disorders cause great loss to apple growers worldwide. Superficial scald is commonly controlled by chemical treatments, mainly the antioxidant diphenylamine (DPA) and/or the ethylene action inhibitor, 1-methylcyclopropene (1–MCP). Both chemicals are ineffective in controlling bitter pit incidence. We proposed to investigate the beneficial use of non-chemical, abiotic stress with low O2 (LO2) applied for 10d at 20°C on GS apple fruit. During the project we expanded the treatment to more apple cultivars, Golden Delicious (GD) and Starking Delicious (SD) and another pome fruit, the pear. Apple and pear have similar physiological disorders that develop during cold storage and we examined if the LO2 treatment would also be effective on pear. Application of 0.5% LO2 atmosphere for 10d at 20°C or 500ppb 1-MCP at 20°C prior to cold storage at 0°C, was effective in reducing superficial scald in GS apple. Moreover, LO2 pretreatment was also effective in reducing bitter pit (BP) development in California GS and Israeli GD and SD apples The BP symptoms in GS from California were much more prominent, so the effect of LO2 was more dramatic than the effect on the Israeli cvs. GD and SD, nevertheless the LO2 treatment showed the same trend in all cultivars in reducing BP. The LO2 and 1-MCP -treated fruit exhibited lower levels of ethylene, - farnesene and its oxidation product, 6-methyl-5-hepten-2-one (MHO), as determined by SPME/GC-MS analysis. In addition, LO2 pretreatment applied to California Bartlett or Israeli Spadona pears was effective in reducing superficial scald, senescent scald and internal breakdown after 4 m of cold storage at 0°C. For GS apple, low-temperature storage resulted in oxidative stress and chilling injury, caused by increased production of superoxide anions which in turn led to the generation of other dangerous reactive oxygen species (ROS). Using confocal laser-scanning microscopy and H2O2 measurements of apple peel, we observed ROS accumulation in control fruit, while negligible amounts were found in LO2 and 1-MCP treated fruit. Gene-expression levels of ROS-scavenging enzymes were induced by the various pretreatments: catalase was induced by LO2 treatment, whereas Mn superoxide dismutase was induced by 1-MCP treatment. We assume that LO2 and 1-MCP pretreated fruit remained healthier due to reduced production of ethylene and reactive oxygen substances, such as MHO, during cold storage. The LO2-treated apple exhibited greener peel and firmer fruit after 6 m of cold storage, and the fruit had high crispiness leading to high taste preference. In both pear cultivars, the LO2 treatment led to a reduction in internal breakdown and browning around the seed cavity. We tested the LO2 pre-storage treatment on a semi-commercial scale that would be applicable to a small organic grower by sealing the fruit within the plastic field bins. The treatment was most effective with a continuous flow of nitrogen through the bins; however, a single 6 hour flush of nitrogen was also fairly effective. In addition, we determined that it was very important to have the oxygen levels below 0.5% for approximately 10 days to achieve good scald control, not counting the time required to reduce the oxygen concentration. Our LO2 technology has been proven in this project to be effective in reducing several physiological disorders developed in pome fruit during cold storage. We hope that our non-chemical treatment which is friendly to the environment will be used in the near future for the organic apple and pear industry. The next step should be an analysis of the cost-benefits and commercial feasibility.
APA, Harvard, Vancouver, ISO, and other styles
9

Litaor, Iggy, James Ippolito, Iris Zohar, and Michael Massey. Phosphorus capture recycling and utilization for sustainable agriculture using Al/organic composite water treatment residuals. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600037.bard.

Full text
Abstract:
Objectives: 1) develop a thorough understanding of the sorption mechanisms of Pi and Po onto the Al/O- WTR; 2) determine the breakthrough range of the composite Al/O-WTR during P capturing from agro- wastewaters; and 3) critically evaluate the performance of the composite Al/O-WTR as a fertilizer using selected plants grown in lysimeters and test-field studies. Instead of lysimeters we used pots (Israel) and one- liter cone-tainers (USA). We conducted one field study but in spite of major pretreatments the soils still exhibited high enough P from previous experiments so no differences between control and P additions were noticeable. Due to time constrains the field study was discontinued. Background: Phosphorous, a non-renewable resource, has been applied extensively in fields to increase crop yield, yet consequently has increased the potential of waterway eutrophication. Our proposal impetus is the need to develop an innovative method of P capturing, recycling and reuse that will sustain agricultural productivity while concurrently reducing the level of P discharge from and to agricultural settings. Major Conclusions & Achievements: An innovative approach was developed for P removal from soil leachate, dairy wastewater (Israel), and swine effluents (USA) using Al-based water treatment residuals (Al- WTR) to create an organic-Al-WTR composite (Al/O-WTR), potentially capable of serving as a P fertilizer source. The Al-WTR removed 95% inorganic-P, 80% to 99.9% organic P, and over 60% dissolved organic carbon from the agro-industrial waste streams. Organic C accumulation on particles surfaces possibly enhanced weak P bonding and facilitated P desorption. Analysis by scanning electron microscope (SEM- EDS), indicated that P was sparsely sorbed on both calcic and Al (hydr)oxide surfaces. Sorption of P onto WW-Al/O-WTR was reversible due to weak Ca-P and Al-P bonds induced by the slight alkaline nature and in the presence of organic moieties. Synchrotron-based microfocused X-ray fluorescence (micro-XRF) spectrometry, bulk P K-edge X-ray absorption near edge structure spectroscopy (XANES), and P K-edge micro-XANES spectroscopy indicated that adsorption was the primary P retention mechanism in the Al- WTR materials. However, distinct apatite- or octocalciumphosphatelike P grains were also observed. Synchrotron micro-XRF mapping further suggested that exposure of the aggregate exteriors to wastewater caused P to diffuse into the porous Al-WTR aggregates. Organic P species were not explicitly identified via P K-edge XANES despite high organic matter content, suggesting that organic P may have been predominantly associated with mineral surfaces. In screen houses experiments (Israel) we showed that the highest additions of Al/O-WTR (5 and 7 g kg⁻¹) produced the highest lettuce (Lactuca sativa L. var. longifolial) yield. Lettuce yield and P concentration were similar across treatments, indicating that Al/O- WTR can provide sufficient P to perform similarly to common fertilizers. A greenhouse study (USA) was utilized to compare increasing rates of swine wastewater derived Al/O-WTR and inorganic P fertilizer (both applied at 33.6, 67.3, and 134.5 kg P₂O₅ ha⁻¹) to supply plant-available P to spring wheat (TriticumaestivumL.) in either sandy loam or sandy clay loam soil. Spring wheat straw and grain P uptake were comparable across all treatments in the sandy loam, while Al/O-WTR application to the sandy clay loam reduced straw and grain P uptake. The Al/O-WTR did not affect soil organic P concentrations, but did increase phosphatase activity in both soils; this suggests that Al/O-WTR application stimulated microorganisms and enhance the extent to which microbial communities can mineralize Al/O-WTR-bound organic P. Implications: Overall, results suggest that creating a new P fertilizer from Al-WTR and agro-industrial waste sources may be a feasible alternative to mining inorganic P fertilizer sources, while protecting the environment from unnecessary waste disposal.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography