Journal articles on the topic 'Near-cognate tRNA'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 43 journal articles for your research on the topic 'Near-cognate tRNA.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Nguyen, Ha An, S. Sunita, and Christine M. Dunham. "Disruption of evolutionarily correlated tRNA elements impairs accurate decoding." Proceedings of the National Academy of Sciences 117, no. 28 (June 29, 2020): 16333–38. http://dx.doi.org/10.1073/pnas.2004170117.
Full textBlanchet, Sandra, David Cornu, Isabelle Hatin, Henri Grosjean, Pierre Bertin, and Olivier Namy. "Deciphering the reading of the genetic code by near-cognate tRNA." Proceedings of the National Academy of Sciences 115, no. 12 (March 5, 2018): 3018–23. http://dx.doi.org/10.1073/pnas.1715578115.
Full textVimaladithan, A., and P. J. Farabaugh. "Special peptidyl-tRNA molecules can promote translational frameshifting without slippage." Molecular and Cellular Biology 14, no. 12 (December 1994): 8107–16. http://dx.doi.org/10.1128/mcb.14.12.8107.
Full textVimaladithan, A., and P. J. Farabaugh. "Special peptidyl-tRNA molecules can promote translational frameshifting without slippage." Molecular and Cellular Biology 14, no. 12 (December 1994): 8107–16. http://dx.doi.org/10.1128/mcb.14.12.8107-8116.1994.
Full textIeong, Ka-Weng, Gabriele Indrisiunaite, Arjun Prabhakar, Joseph D. Puglisi, and Måns Ehrenberg. "N 6-Methyladenosines in mRNAs reduce the accuracy of codon reading by transfer RNAs and peptide release factors." Nucleic Acids Research 49, no. 5 (February 9, 2021): 2684–99. http://dx.doi.org/10.1093/nar/gkab033.
Full textO’Connor, Michael. "tRNA imbalance promotes −1 frameshifting via near-cognate decoding." Journal of Molecular Biology 279, no. 4 (June 1998): 727–36. http://dx.doi.org/10.1006/jmbi.1998.1832.
Full textWohlgemuth, Ingo, Corinna Pohl, Joerg Mittelstaet, Andrey L. Konevega, and Marina V. Rodnina. "Evolutionary optimization of speed and accuracy of decoding on the ribosome." Philosophical Transactions of the Royal Society B: Biological Sciences 366, no. 1580 (October 27, 2011): 2979–86. http://dx.doi.org/10.1098/rstb.2011.0138.
Full textPernod, Ketty, Laure Schaeffer, Johana Chicher, Eveline Hok, Christian Rick, Renaud Geslain, Gilbert Eriani, Eric Westhof, Michael Ryckelynck, and Franck Martin. "The nature of the purine at position 34 in tRNAs of 4-codon boxes is correlated with nucleotides at positions 32 and 38 to maintain decoding fidelity." Nucleic Acids Research 48, no. 11 (April 8, 2020): 6170–83. http://dx.doi.org/10.1093/nar/gkaa221.
Full textMittelstaet, Joerg, Andrey L. Konevega, and Marina V. Rodnina. "Distortion of tRNA upon Near-cognate Codon Recognition on the Ribosome." Journal of Biological Chemistry 286, no. 10 (January 6, 2011): 8158–64. http://dx.doi.org/10.1074/jbc.m110.210021.
Full textRoy, Bijoyita, Westley J. Friesen, Yuki Tomizawa, John D. Leszyk, Jin Zhuo, Briana Johnson, Jumana Dakka, et al. "Ataluren stimulates ribosomal selection of near-cognate tRNAs to promote nonsense suppression." Proceedings of the National Academy of Sciences 113, no. 44 (October 4, 2016): 12508–13. http://dx.doi.org/10.1073/pnas.1605336113.
Full textZhang, Jingji, Ka-Weng Ieong, Magnus Johansson, and Måns Ehrenberg. "Accuracy of initial codon selection by aminoacyl-tRNAs on the mRNA-programmed bacterial ribosome." Proceedings of the National Academy of Sciences 112, no. 31 (July 20, 2015): 9602–7. http://dx.doi.org/10.1073/pnas.1506823112.
Full textBeznosková, Petra, Laure Bidou, Olivier Namy, and Leoš Shivaya Valášek. "Increased expression of tryptophan and tyrosine tRNAs elevates stop codon readthrough of reporter systems in human cell lines." Nucleic Acids Research 49, no. 9 (May 1, 2021): 5202–15. http://dx.doi.org/10.1093/nar/gkab315.
Full textThomas, Erica N., Carrie L. Simms, Hannah E. Keedy, and Hani S. Zaher. "Insights into the base-pairing preferences of 8-oxoguanosine on the ribosome." Nucleic Acids Research 47, no. 18 (August 10, 2019): 9857–70. http://dx.doi.org/10.1093/nar/gkz701.
Full textKhonsari, Bahar, and Roland Klassen. "Impact of Pus1 Pseudouridine Synthase on Specific Decoding Events in Saccharomyces cerevisiae." Biomolecules 10, no. 5 (May 7, 2020): 729. http://dx.doi.org/10.3390/biom10050729.
Full textNg, Martin Y., Hong Li, Mikel D. Ghelfi, Yale E. Goldman, and Barry S. Cooperman. "Ataluren and aminoglycosides stimulate read-through of nonsense codons by orthogonal mechanisms." Proceedings of the National Academy of Sciences 118, no. 2 (January 7, 2021): e2020599118. http://dx.doi.org/10.1073/pnas.2020599118.
Full textKeedy, Hannah E., Erica N. Thomas, and Hani S. Zaher. "Decoding on the ribosome depends on the structure of the mRNA phosphodiester backbone." Proceedings of the National Academy of Sciences 115, no. 29 (July 2, 2018): E6731—E6740. http://dx.doi.org/10.1073/pnas.1721431115.
Full textBeznosková, Petra, Zuzana Pavlíková, Jakub Zeman, Colin Echeverría Aitken, and Leoš S. Valášek. "Yeast applied readthrough inducing system (YARIS): an invivo assay for the comprehensive study of translational readthrough." Nucleic Acids Research 47, no. 12 (May 9, 2019): 6339–50. http://dx.doi.org/10.1093/nar/gkz346.
Full textAkins, R. A., R. L. Kelley, and A. M. Lambowitz. "Characterization of mutant mitochondrial plasmids of Neurospora spp. that have incorporated tRNAs by reverse transcription." Molecular and Cellular Biology 9, no. 2 (February 1989): 678–91. http://dx.doi.org/10.1128/mcb.9.2.678.
Full textAkins, R. A., R. L. Kelley, and A. M. Lambowitz. "Characterization of mutant mitochondrial plasmids of Neurospora spp. that have incorporated tRNAs by reverse transcription." Molecular and Cellular Biology 9, no. 2 (February 1989): 678–91. http://dx.doi.org/10.1128/mcb.9.2.678-691.1989.
Full textSharma, Virag, Marie-Françoise Prère, Isabelle Canal, Andrew E. Firth, John F. Atkins, Pavel V. Baranov, and Olivier Fayet. "Analysis of tetra- and hepta-nucleotides motifs promoting -1 ribosomal frameshifting in Escherichia coli." Nucleic Acids Research 42, no. 11 (May 29, 2014): 7210–25. http://dx.doi.org/10.1093/nar/gku386.
Full textRoy, Bijoyita, John D. Leszyk, David A. Mangus, and Allan Jacobson. "Nonsense suppression by near-cognate tRNAs employs alternative base pairing at codon positions 1 and 3." Proceedings of the National Academy of Sciences 112, no. 10 (March 2, 2015): 3038–43. http://dx.doi.org/10.1073/pnas.1424127112.
Full textMcMurry, Jonathan L., and Michelle C. Y. Chang. "Fluorothreonyl-tRNA deacylase prevents mistranslation in the organofluorine producerStreptomyces cattleya." Proceedings of the National Academy of Sciences 114, no. 45 (October 23, 2017): 11920–25. http://dx.doi.org/10.1073/pnas.1711482114.
Full textBeyer, Jenna N., Parisa Hosseinzadeh, Ilana Gottfried-Lee, Elise M. Van Fossen, Phillip Zhu, Riley M. Bednar, P. Andrew Karplus, Ryan A. Mehl, and Richard B. Cooley. "Overcoming Near-Cognate Suppression in a Release Factor 1-Deficient Host with an Improved Nitro-Tyrosine tRNA Synthetase." Journal of Molecular Biology 432, no. 16 (July 2020): 4690–704. http://dx.doi.org/10.1016/j.jmb.2020.06.014.
Full textKondo, Jiro, and Mai Koganei. "Structural Bases for the Fitness Cost of the Antibiotic-Resistance and Lethal Mutations at Position 1408 of 16S rRNA." Molecules 25, no. 1 (December 31, 2019): 159. http://dx.doi.org/10.3390/molecules25010159.
Full textSuzuki, Takeo, Kenjyo Miyauchi, Tsutomu Suzuki, Shin-ichi Yokobori, Naoki Shigi, Akiko Kondow, Nono Takeuchi, Akihiko Yamagishi, and Kimitsuna Watanabe. "Taurine-containing Uridine Modifications in tRNA Anticodons Are Required to Decipher Non-universal Genetic Codes in Ascidian Mitochondria." Journal of Biological Chemistry 286, no. 41 (August 26, 2011): 35494–98. http://dx.doi.org/10.1074/jbc.m111.279810.
Full textZhang, Hong, Zhihui Lyu, Yongqiang Fan, Christopher R. Evans, Karl W. Barber, Kinshuk Banerjee, Oleg A. Igoshin, Jesse Rinehart, and Jiqiang Ling. "Metabolic stress promotes stop-codon readthrough and phenotypic heterogeneity." Proceedings of the National Academy of Sciences 117, no. 36 (August 24, 2020): 22167–72. http://dx.doi.org/10.1073/pnas.2013543117.
Full textJobin, Parker G., Nestor Solis, Yoan Machado, Peter A. Bell, Simran K. Rai, Nam Hoon Kwon, Sunghoon Kim, Christopher M. Overall, and Georgina S. Butler. "Moonlighting matrix metalloproteinase substrates: Enhancement of proinflammatory functions of extracellular tyrosyl-tRNA synthetase upon cleavage." Journal of Biological Chemistry 295, no. 8 (November 26, 2019): 2186–202. http://dx.doi.org/10.1074/jbc.ra119.010486.
Full textPisareva, Vera P., and Andrey V. Pisarev. "DHX29 reduces leaky scanning through an upstream AUG codon regardless of its nucleotide context." Nucleic Acids Research 44, no. 9 (April 11, 2016): 4252–65. http://dx.doi.org/10.1093/nar/gkw240.
Full textMelnikov, Sergey V., Keith D. Rivera, Denis Ostapenko, Arthur Makarenko, Neil D. Sanscrainte, James J. Becnel, Mark J. Solomon, Catherine Texier, Darryl J. Pappin, and Dieter Söll. "Error-prone protein synthesis in parasites with the smallest eukaryotic genome." Proceedings of the National Academy of Sciences 115, no. 27 (June 18, 2018): E6245—E6253. http://dx.doi.org/10.1073/pnas.1803208115.
Full textBiswas, Priyanka, Dillip K. Sahu, Kalyanasis Sahu, and Rajat Banerjee. "Spectroscopic Studies of Asparaginyl-tRNA Synthetase from Entamoeba histolytica." Protein & Peptide Letters 26, no. 6 (July 4, 2019): 435–48. http://dx.doi.org/10.2174/0929866526666190327122419.
Full textKämper, U., U. Kück, A. D. Cherniack, and A. M. Lambowitz. "The mitochondrial tyrosyl-tRNA synthetase of Podospora anserina is a bifunctional enzyme active in protein synthesis and RNA splicing." Molecular and Cellular Biology 12, no. 2 (February 1992): 499–511. http://dx.doi.org/10.1128/mcb.12.2.499.
Full textKämper, U., U. Kück, A. D. Cherniack, and A. M. Lambowitz. "The mitochondrial tyrosyl-tRNA synthetase of Podospora anserina is a bifunctional enzyme active in protein synthesis and RNA splicing." Molecular and Cellular Biology 12, no. 2 (February 1992): 499–511. http://dx.doi.org/10.1128/mcb.12.2.499-511.1992.
Full textNilsson, Kristina, Hans K. Lundgren, Tord G. Hagervall, and Glenn R. Björk. "The Cysteine Desulfurase IscS Is Required for Synthesis of All Five Thiolated Nucleosides Present in tRNA from Salmonella enterica Serovar Typhimurium." Journal of Bacteriology 184, no. 24 (December 15, 2002): 6830–35. http://dx.doi.org/10.1128/jb.184.24.6830-6835.2002.
Full textMangkalaphiban, Kotchaphorn, Feng He, Robin Ganesan, Chan Wu, Richard Baker, and Allan Jacobson. "Transcriptome-wide investigation of stop codon readthrough in Saccharomyces cerevisiae." PLOS Genetics 17, no. 4 (April 20, 2021): e1009538. http://dx.doi.org/10.1371/journal.pgen.1009538.
Full textSundararajan, Anuradha, William A. Michaud, Qiang Qian, Guillaume Stahl, and Philip J. Farabaugh. "Near-Cognate Peptidyl-tRNAs Promote +1 Programmed Translational Frameshifting in Yeast." Molecular Cell 4, no. 6 (December 1999): 1005–15. http://dx.doi.org/10.1016/s1097-2765(00)80229-4.
Full textSanbonmatsu, Karissa Y. "Flipping through the Genetic Code: New Developments in Discrimination between Cognate and Near-Cognate tRNAs and the Effect of Antibiotics." Journal of Molecular Biology 426, no. 19 (September 2014): 3197–200. http://dx.doi.org/10.1016/j.jmb.2014.07.005.
Full textBeznosková, Petra, Stanislava Gunišová, and Leoš Shivaya Valášek. "Rules of UGA-N decoding by near-cognate tRNAs and analysis of readthrough on short uORFs in yeast." RNA 22, no. 3 (January 12, 2016): 456–66. http://dx.doi.org/10.1261/rna.054452.115.
Full textThakur, Anil, and Alan G. Hinnebusch. "eIF1 Loop 2 interactions with Met-tRNAi control the accuracy of start codon selection by the scanning preinitiation complex." Proceedings of the National Academy of Sciences 115, no. 18 (April 16, 2018): E4159—E4168. http://dx.doi.org/10.1073/pnas.1800938115.
Full textLoveland, Anna B., Eugene Bah, Rohini Madireddy, Ying Zhang, Axel F. Brilot, Nikolaus Grigorieff, and Andrei A. Korostelev. "Ribosome•RelA structures reveal the mechanism of stringent response activation." eLife 5 (July 19, 2016). http://dx.doi.org/10.7554/elife.17029.
Full textHolm, Mikael, Chandra Sekhar Mandava, Måns Ehrenberg, and Suparna Sanyal. "The mechanism of error induction by the antibiotic viomycin provides insight into the fidelity mechanism of translation." eLife 8 (June 7, 2019). http://dx.doi.org/10.7554/elife.46124.
Full textMustafi, Mainak, and James C. Weisshaar. "Simultaneous Binding of Multiple EF-Tu Copies to Translating Ribosomes in Live Escherichia coli." mBio 9, no. 1 (January 16, 2018). http://dx.doi.org/10.1128/mbio.02143-17.
Full textLlácer, Jose Luis, Tanweer Hussain, Adesh K. Saini, Jagpreet Singh Nanda, Sukhvir Kaur, Yuliya Gordiyenko, Rakesh Kumar, Alan G. Hinnebusch, Jon R. Lorsch, and V. Ramakrishnan. "Translational initiation factor eIF5 replaces eIF1 on the 40S ribosomal subunit to promote start-codon recognition." eLife 7 (November 30, 2018). http://dx.doi.org/10.7554/elife.39273.
Full textMartin-Marcos, Pilar, Fujun Zhou, Charm Karunasiri, Fan Zhang, Jinsheng Dong, Jagpreet Nanda, Shardul D. Kulkarni, et al. "eIF1A residues implicated in cancer stabilize translation preinitiation complexes and favor suboptimal initiation sites in yeast." eLife 6 (December 5, 2017). http://dx.doi.org/10.7554/elife.31250.
Full text