Journal articles on the topic 'Navier-Stokes-Cahn-Hilliard model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Navier-Stokes-Cahn-Hilliard model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Li, Xiaoli, and Jie Shen. "On a SAV-MAC scheme for the Cahn–Hilliard–Navier–Stokes phase-field model and its error analysis for the corresponding Cahn–Hilliard–Stokes case." Mathematical Models and Methods in Applied Sciences 30, no. 12 (October 19, 2020): 2263–97. http://dx.doi.org/10.1142/s0218202520500438.
Full textMedjo, T. Tachim. "A Cahn-Hilliard-Navier-Stokes model with delays." Discrete and Continuous Dynamical Systems - Series B 21, no. 8 (September 2016): 2663–85. http://dx.doi.org/10.3934/dcdsb.2016067.
Full textMedjo, T. "Robust control of a Cahn-Hilliard-Navier-Stokes model." Communications on Pure and Applied Analysis 15, no. 6 (September 2016): 2075–101. http://dx.doi.org/10.3934/cpaa.2016028.
Full textKotschote, Matthias, and Rico Zacher. "Strong solutions in the dynamical theory of compressible fluid mixtures." Mathematical Models and Methods in Applied Sciences 25, no. 07 (April 14, 2015): 1217–56. http://dx.doi.org/10.1142/s0218202515500311.
Full textBoyer, Franck, and Sebastian Minjeaud. "Hierarchy of consistent n-component Cahn–Hilliard systems." Mathematical Models and Methods in Applied Sciences 24, no. 14 (October 16, 2014): 2885–928. http://dx.doi.org/10.1142/s0218202514500407.
Full textLAM, KEI FONG, and HAO WU. "Thermodynamically consistent Navier–Stokes–Cahn–Hilliard models with mass transfer and chemotaxis." European Journal of Applied Mathematics 29, no. 4 (October 9, 2017): 595–644. http://dx.doi.org/10.1017/s0956792517000298.
Full textLi, Xiaoli, and Jie Shen. "On fully decoupled MSAV schemes for the Cahn–Hilliard–Navier–Stokes model of two-phase incompressible flows." Mathematical Models and Methods in Applied Sciences 32, no. 03 (January 31, 2022): 457–95. http://dx.doi.org/10.1142/s0218202522500117.
Full textLasarzik, Robert. "Analysis of a thermodynamically consistent Navier–Stokes–Cahn–Hilliard model." Nonlinear Analysis 213 (December 2021): 112526. http://dx.doi.org/10.1016/j.na.2021.112526.
Full textDeugoue, Gabriel, Boris Jidjou Moghomye, and Theodore Tachim Medjo. "Splitting-up scheme for the stochastic Cahn–Hilliard Navier–Stokes model." Stochastics and Dynamics 21, no. 01 (March 18, 2020): 2150005. http://dx.doi.org/10.1142/s0219493721500052.
Full textChen, Jie, Shuyu Sun, and Zhangxin Chen. "Coupling Two-Phase Fluid Flow with Two-Phase Darcy Flow in Anisotropic Porous Media." Advances in Mechanical Engineering 6 (January 1, 2014): 871021. http://dx.doi.org/10.1155/2014/871021.
Full textMetzger, Stefan. "On convergent schemes for two-phase flow of dilute polymeric solutions." ESAIM: Mathematical Modelling and Numerical Analysis 52, no. 6 (November 2018): 2357–408. http://dx.doi.org/10.1051/m2an/2018042.
Full textAnders, Denis, and Kerstin Weinberg. "A Thermodynamically Consistent Approach to Phase-Separating Viscous Fluids." Journal of Non-Equilibrium Thermodynamics 43, no. 2 (April 25, 2018): 185–91. http://dx.doi.org/10.1515/jnet-2017-0052.
Full textBoyer, F., C. Lapuerta, S. Minjeaud, B. Piar, and M. Quintard. "Cahn–Hilliard/Navier–Stokes Model for the Simulation of Three-Phase Flows." Transport in Porous Media 82, no. 3 (May 7, 2009): 463–83. http://dx.doi.org/10.1007/s11242-009-9408-z.
Full textSibley, David N., Andreas Nold, and Serafim Kalliadasis. "Unifying binary fluid diffuse-interface models in the sharp-interface limit." Journal of Fluid Mechanics 736 (November 1, 2013): 5–43. http://dx.doi.org/10.1017/jfm.2013.521.
Full textHuang, Qiming, and Junxiang Yang. "Linear and Energy-Stable Method with Enhanced Consistency for the Incompressible Cahn–Hilliard–Navier–Stokes Two-Phase Flow Model." Mathematics 10, no. 24 (December 12, 2022): 4711. http://dx.doi.org/10.3390/math10244711.
Full textBrunk, Aaron, and Mária Lukáčová-Medvid’ová. "Global existence of weak solutions to viscoelastic phase separation part: I. Regular case." Nonlinearity 35, no. 7 (June 16, 2022): 3417–58. http://dx.doi.org/10.1088/1361-6544/ac5920.
Full textLiang, Zhilei, and Dehua Wang. "Stationary Cahn–Hilliard–Navier–Stokes equations for the diffuse interface model of compressible flows." Mathematical Models and Methods in Applied Sciences 30, no. 12 (October 23, 2020): 2445–86. http://dx.doi.org/10.1142/s0218202520500475.
Full textTachim Medjo, T. "Pullback attractor of a three dimensional globally modified Cahn–Hilliard-Navier–Stokes model." Applicable Analysis 97, no. 6 (March 13, 2017): 1016–41. http://dx.doi.org/10.1080/00036811.2017.1296952.
Full textEspath, L. F. R., A. F. Sarmiento, P. Vignal, B. O. N. Varga, A. M. A. Cortes, L. Dalcin, and V. M. Calo. "Energy exchange analysis in droplet dynamics via the Navier–Stokes–Cahn–Hilliard model." Journal of Fluid Mechanics 797 (May 23, 2016): 389–430. http://dx.doi.org/10.1017/jfm.2016.277.
Full textShin, Jaemin, Junxiang Yang, Chaeyoung Lee, and Junseok Kim. "The Navier–Stokes–Cahn–Hilliard model with a high-order polynomial free energy." Acta Mechanica 231, no. 6 (April 2, 2020): 2425–37. http://dx.doi.org/10.1007/s00707-020-02666-y.
Full textMinjeaud, Sebastian. "An unconditionally stable uncoupled scheme for a triphasic Cahn-Hilliard/Navier-Stokes model." Numerical Methods for Partial Differential Equations 29, no. 2 (April 27, 2012): 584–618. http://dx.doi.org/10.1002/num.21721.
Full textDeugoue, G., and T. Tachim Medjo. "Large deviation for a 2D Cahn-Hilliard-Navier-Stokes model under random influences." Journal of Mathematical Analysis and Applications 486, no. 1 (June 2020): 123863. http://dx.doi.org/10.1016/j.jmaa.2020.123863.
Full textShen, Mingguang, and Ben Q. Li. "A Phase Field Approach to Modeling Heavy Metal Impact in Plasma Spraying." Coatings 12, no. 10 (September 22, 2022): 1383. http://dx.doi.org/10.3390/coatings12101383.
Full textZhao, Xiaopeng. "On the strong solution of 3D non-isothermal Navier–Stokes–Cahn–Hilliard equations." Journal of Mathematical Physics 64, no. 3 (March 1, 2023): 031506. http://dx.doi.org/10.1063/5.0099260.
Full textGondyul, Е. А., and V. V. Lisitsa. "Modeling of unsteady flows of multiphase viscous fluid in a pore space." Interexpo GEO-Siberia 2, no. 2 (May 18, 2022): 32–37. http://dx.doi.org/10.33764/2618-981x-2022-2-2-32-37.
Full textBalashov, Vladislav, Evgenii Savenkov, and Alexander Zlotnik. "Numerical method for 3D two-component isothermal compressible flows with application to digital rock physics." Russian Journal of Numerical Analysis and Mathematical Modelling 34, no. 1 (February 25, 2019): 1–13. http://dx.doi.org/10.1515/rnam-2019-0001.
Full textTachim Medjo, T. "The exponential behavior of a stochastic Cahn-Hilliard-Navier-Stokes model with multiplicative noise." Communications on Pure & Applied Analysis 18, no. 3 (2019): 1117–38. http://dx.doi.org/10.3934/cpaa.2019054.
Full textTachim Medjo, T. "The exponential behavior of a stochastic Cahn-Hilliard-Navier-Stokes model with multiplicative noise." Communications on Pure & Applied Analysis 18, no. 6 (2019): 2961–82. http://dx.doi.org/10.3934/cpaa.2019132.
Full textDeugoué, G., A. Ndongmo Ngana, and T. Tachim Medjo. "On the strong solutions for a stochastic 2D nonlocal Cahn–Hilliard–Navier–Stokes model." Dynamics of Partial Differential Equations 17, no. 1 (2020): 19–60. http://dx.doi.org/10.4310/dpde.2020.v17.n1.a2.
Full textNaso, Aurore, and Lennon Ó. Náraigh. "A flow-pattern map for phase separation using the Navier–Stokes–Cahn–Hilliard model." European Journal of Mechanics - B/Fluids 72 (November 2018): 576–85. http://dx.doi.org/10.1016/j.euromechflu.2018.08.002.
Full textMagaletti, F., F. Picano, M. Chinappi, L. Marino, and C. M. Casciola. "The sharp-interface limit of the Cahn–Hilliard/Navier–Stokes model for binary fluids." Journal of Fluid Mechanics 714 (January 2, 2013): 95–126. http://dx.doi.org/10.1017/jfm.2012.461.
Full textNOCHETTO, RICARDO H., ABNER J. SALGADO, and SHAWN W. WALKER. "A DIFFUSE INTERFACE MODEL FOR ELECTROWETTING WITH MOVING CONTACT LINES." Mathematical Models and Methods in Applied Sciences 24, no. 01 (October 31, 2013): 67–111. http://dx.doi.org/10.1142/s0218202513500474.
Full textTachim Medjo, Theodore, Cristina Tone, and Florentina Tone. "Maximum principle of optimal control of a Cahn–Hilliard–Navier–Stokes model with state constraints." Optimal Control Applications and Methods 42, no. 3 (January 24, 2021): 807–32. http://dx.doi.org/10.1002/oca.2701.
Full textTierra, Francisco Guillén-González and Giordano. "Splitting Schemes for a Navier-Stokes-Cahn-Hilliard Model for Two Fluids with Different Densities." Journal of Computational Mathematics 32, no. 6 (June 2014): 643–64. http://dx.doi.org/10.4208/jcm.1405-m4410.
Full textTachim Medjo, T. "Unique strong and attractor of a three dimensional globally modified Cahn-Hilliard-Navier-Stokes model." Applicable Analysis 96, no. 16 (September 21, 2016): 2695–716. http://dx.doi.org/10.1080/00036811.2016.1236924.
Full textHe, Yinnian, and Xinlong Feng. "Uniform H2-regularity of solution for the 2D Navier–Stokes/Cahn–Hilliard phase field model." Journal of Mathematical Analysis and Applications 441, no. 2 (September 2016): 815–29. http://dx.doi.org/10.1016/j.jmaa.2016.04.040.
Full textTachim Medjo, T. "Weak solution of a stochastic 3D Cahn-Hilliard-Navier-Stokes model driven by jump noise." Journal of Mathematical Analysis and Applications 484, no. 1 (April 2020): 123680. http://dx.doi.org/10.1016/j.jmaa.2019.123680.
Full textBudiana, Eko Prasetya, Pranowo Pranowo, Catur Harsito, Dominicus Danardono Dwi Prija Tjahjana, and Syamsul Hadi. "Numerical Simulation of Droplet Coalescence Using Meshless Radial Basis Function and Domain Decomposition Method." CFD Letters 17, no. 4 (October 31, 2024): 1–17. http://dx.doi.org/10.37934/cfdl.17.4.117.
Full textFrigeri, Sergio. "Global existence of weak solutions for a nonlocal model for two-phase flows of incompressible fluids with unmatched densities." Mathematical Models and Methods in Applied Sciences 26, no. 10 (August 25, 2016): 1955–93. http://dx.doi.org/10.1142/s0218202516500494.
Full textTachim Medjo, T. "On the existence and uniqueness of solution to a stochastic 2D Cahn–Hilliard–Navier–Stokes model." Journal of Differential Equations 263, no. 2 (July 2017): 1028–54. http://dx.doi.org/10.1016/j.jde.2017.03.008.
Full textDeugoué, G., and T. Tachim Medjo. "The exponential behavior of a stochastic globally modified Cahn–Hilliard–Navier–Stokes model with multiplicative noise." Journal of Mathematical Analysis and Applications 460, no. 1 (April 2018): 140–63. http://dx.doi.org/10.1016/j.jmaa.2017.11.050.
Full textGuo, Z., and P. Lin. "A thermodynamically consistent phase-field model for two-phase flows with thermocapillary effects." Journal of Fluid Mechanics 766 (February 4, 2015): 226–71. http://dx.doi.org/10.1017/jfm.2014.696.
Full textZanella, R., G. Tegze, R. Le Tellier, and H. Henry. "Two- and three-dimensional simulations of Rayleigh–Taylor instabilities using a coupled Cahn–Hilliard/Navier–Stokes model." Physics of Fluids 32, no. 12 (December 1, 2020): 124115. http://dx.doi.org/10.1063/5.0031179.
Full textJia, Hongen, Xue Wang, and Kaitai Li. "A novel linear, unconditional energy stable scheme for the incompressible Cahn–Hilliard–Navier–Stokes phase-field model." Computers & Mathematics with Applications 80, no. 12 (December 2020): 2948–71. http://dx.doi.org/10.1016/j.camwa.2020.10.006.
Full textPERNA, TOMAS. "ROLE OF SYMMETRY IN OPTIMIZATION OF FEM SIMULATION CALCULATIONS." MM Science Journal 2022, no. 2 (June 1, 2022): 5670–74. http://dx.doi.org/10.17973/mmsj.2022_06_2022059.
Full textGao, Yali, Xiaoming He, Liquan Mei, and Xiaofeng Yang. "Decoupled, Linear, and Energy Stable Finite Element Method for the Cahn--Hilliard--Navier--Stokes--Darcy Phase Field Model." SIAM Journal on Scientific Computing 40, no. 1 (January 2018): B110—B137. http://dx.doi.org/10.1137/16m1100885.
Full textDeugoué, G., B. Jidjou Moghomye, and T. Tachim Medjo. "Existence of a solution to the stochastic nonlocal Cahn–Hilliard Navier–Stokes model via a splitting-up method." Nonlinearity 33, no. 7 (May 29, 2020): 3424–69. http://dx.doi.org/10.1088/1361-6544/ab8020.
Full textYang, Junxiang, and Junseok Kim. "A novel Cahn–Hilliard–Navier–Stokes model with a nonstandard variable mobility for two-phase incompressible fluid flow." Computers & Fluids 213 (December 2020): 104755. http://dx.doi.org/10.1016/j.compfluid.2020.104755.
Full textTian, Ben, Bing Zhang, Junkai Deng, Dong Wang, Houjun Gong, Yang Li, Kerong Guo, Sen Yang, and Xiaoqin Ke. "Morphological evolution during liquid-liquid phase separation governed by composition change pathways." Journal of Applied Physics 132, no. 6 (August 14, 2022): 064702. http://dx.doi.org/10.1063/5.0089516.
Full textFeng, Xiaobing. "Fully Discrete Finite Element Approximations of the Navier--Stokes--Cahn-Hilliard Diffuse Interface Model for Two-Phase Fluid Flows." SIAM Journal on Numerical Analysis 44, no. 3 (January 2006): 1049–72. http://dx.doi.org/10.1137/050638333.
Full text