Academic literature on the topic 'Navier'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Navier.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Navier"

1

Amrouche, Chérif, and Ahmed Rejaiba. "Navier-Stokes equations with Navier boundary condition." Mathematical Methods in the Applied Sciences 39, no. 17 (February 16, 2015): 5091–112. http://dx.doi.org/10.1002/mma.3338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Acevedo Tapia, P., C. Amrouche, C. Conca, and A. Ghosh. "Stokes and Navier-Stokes equations with Navier boundary conditions." Journal of Differential Equations 285 (June 2021): 258–320. http://dx.doi.org/10.1016/j.jde.2021.02.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Acevedo, Paul, Chérif Amrouche, Carlos Conca, and Amrita Ghosh. "Stokes and Navier–Stokes equations with Navier boundary condition." Comptes Rendus Mathematique 357, no. 2 (February 2019): 115–19. http://dx.doi.org/10.1016/j.crma.2018.12.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brenner, Howard. "Navier–Stokes revisited." Physica A: Statistical Mechanics and its Applications 349, no. 1-2 (April 2005): 60–132. http://dx.doi.org/10.1016/j.physa.2004.10.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brenner, Howard. "Beyond Navier–Stokes." International Journal of Engineering Science 54 (May 2012): 67–98. http://dx.doi.org/10.1016/j.ijengsci.2012.01.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Ya-zhou, Qiao-lin He, Bin Huang, and Xiao-ding Shi. "Navier-Stokes/Allen-Cahn System with Generalized Navier Boundary Condition." Acta Mathematicae Applicatae Sinica, English Series 38, no. 1 (January 2022): 98–115. http://dx.doi.org/10.1007/s10255-022-1068-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Russo, Antonio, and Alfonsina Tartaglione. "On the Navier problem for the stationary Navier–Stokes equations." Journal of Differential Equations 251, no. 9 (November 2011): 2387–408. http://dx.doi.org/10.1016/j.jde.2011.07.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bela Cruzeiro, Ana. "Navier-Stokes and stochastic Navier-Stokes equations via Lagrange multipliers." Journal of Geometric Mechanics 11, no. 4 (2019): 553–60. http://dx.doi.org/10.3934/jgm.2019027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liao, Jie, and Xiao-Ping Wang. "Stability of an efficient Navier-Stokes solver with Navier boundary condition." Discrete & Continuous Dynamical Systems - B 17, no. 1 (2012): 153–71. http://dx.doi.org/10.3934/dcdsb.2012.17.153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Xiong, Linjie. "Incompressible Limit of isentropic Navier-Stokes equations with Navier-slip boundary." Kinetic & Related Models 11, no. 3 (2018): 469–90. http://dx.doi.org/10.3934/krm.2018021.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Navier"

1

Ghosh, Amrita. "Naviers-Stokes equations with Navier boundary condition." Thesis, Pau, 2018. http://www.theses.fr/2018PAUU3021/document.

Full text
Abstract:
Le titre de ma thèse de doctorat est "Equations de Stokes et de Navier-Stokes avec la con- dition de Navier", où j’ai considéré l’écoulement d’un fluide newtonien visqueux, incompressible dans un domaine borné de R3. L’écoulement du fluide est décrit par les équations bien connues de Navier-Stokes, données par le système suivant ∂t − ∆u + (u • ∇)u + ∇π = 0, div u = 0 dans Ω × (0, T )u • n = 0, 2[(Du)n]τ + αuτ = 0 sur Γ × (0, T )u(0) = u0 dans Ω (0.1) dans un domaine borné Ω ⊂ R3 de frontière Γ, éventuellement non simplement connexe, de classe C1,1. La vitesse initiale u0 et le coefficient de friction α, scalaire, sont des fonctions don- nées. Les vecteurs unitaires normal extérieur et tangents à Γ sont notés n et τ respectivement et Du = 1 (∇u + ∇uT ) est le tenseur des déformations. Les fonctions u et π décrivent respective- ment les champs de vitesses et de pression du fluide dans Ω satisfaisant la condition aux limites (0.1.2).Cette condition aux limites, proposée par H. Navier en 1823, a été abondamment étudiée ces dernières années, qui pour de nombreuses raisons convient parfois mieux que la condition aux limites de Dirichlet sans glissement : elle offre plus de liberté et est susceptible de fournir une solution physiquement acceptable au moins pour certains des phénomènes paradoxaux résultant de la condition de non-glissement, comme par exemple le paradoxe de D’Alembert ou le paradoxe de non-collision.Ma thèse comporte trois parties. Dans la première, je cherche à savoir si le problème (0.1) est bien posé en théorie Lp, en particulier l’existence, l’unicité de solutions faibles, fortes dans W 1,p(Ω) et W 2,p(Ω) pour tout p ∈ (1, ∞), en considérant la régularité minimale du coefficient de friction α. Ici α est une fonction, pas simplement une constante qui reflète les diverses propriétés du fluide et/ou de la frontière, ce qui nous permet d’analyser le comportement de la solution par rapport au coefficient de frottement.Utilisant le fait que les solutions sont bornées indépendamment de α, on montre que la solution des équations de Navier-Stokes avec la condition de Navier converge fortement vers une solution des équations de Navier-Stokes avec la condition de Dirichlet, correspondant à la même donnée initiale dans l’espace d’énergie lorsque α → ∞. Des résultats similaires ont été obtenus pour le cas stationnaire.Le dernier chapitre concerne les estimations pour le problème de Robin pour le laplacien : l’opérateur elliptique de second ordre suivant, sous forme divergentielle dans un domaine bornéΩ ⊂ Rn de classe C1, avec la condition aux limites de Robin a été considéré div(A∇)u = divf + F dans Ω, ∂u+ αu = f n + g sur Γ.∂n (0.2) Les coefficients de la matrice symétrique A sont supposés appartenir à l’espace V MO(R3). Aussi α est une fonction appartenant à un certain espace Lq . En plus de prouver l’existence, l’unicité de solutions faibles et fortes, nous obtenons une borne sur u, uniforme par rapport à α pour α suffisamment large, en norme Lp. Pour plus de clarté, nous avons étudié séparément les deux cas: l’estimation intérieure et l’estimation au bord
My PhD thesis title is "Navier-Stokes equations with Navier boundary condition" where I have considered the motion of an incompressible, viscous, Newtonian fluid in a bounded do- main in R3. The fluid flow is described by the well-known Navier-Stokes equations, given by thefollowing system 1 )t − L1u + (u ⋅ ∇)u + ∇n = 0, div u = 01u ⋅ n = 0, 2[(IDu)n]r + aur = 0 in Q × (0, T )on Γ × (0, T ) (0.1) 11lu(0) = u0 in Qin a bounded domain Q ⊂ R3 with boundary Γ, possibly not connected, of class C1,1. The initialvelocity u0 and the (scalar) friction coefficient a are given functions. The unit outward normal and tangent vectors on Γ are denoted by n and r respectively and IDu = 1 (∇u + ∇uT ) is the rate of strain tensor. The functions u and n describe respectively the velocity2 and the pressure of a fluid in Q satisfying the boundary condition (0.1.2).This boundary condition, first proposed by H. Navier in 1823, has been studied extensively in recent years, among many reasons due to its contrast with the no-slip Dirichlet boundary condition: it offers more freedom and are likely to provide a physically acceptable solution at least to some of the paradoxical phenomenons, resulting from the no-slip condition, for example, D’Alembert’s paradox or no-collision paradox.My PhD work consists of three parts. primarily I have discussed the Lp -theory of well-posedness of the problem (0.1), in particular existence, uniqueness of weak and strong solutions in W 1,p (Q) and W 2,p (Q) for all p ∈ (1, ∞) considering minimal regularity on the friction coefficienta. Here a is a function, not merely a constant which reflects various properties of the fluid and/or of the boundary. Moreover, I have deduced estimates showing explicitly the dependence of u on a which enables us to analyze the behavior of the solution with respect to the friction coefficient.Using this fact that the solutions are bounded with respect to a, we have shown the solution of the Navier-Stokes equations with Navier boundary condition converges strongly to a solution of the Navier-Stokes equations with Dirichlet boundary condition corresponding to the sameinitial data in the energy space as a → ∞. The similar results have also been deduced for thestationary case.The last chapter is concerned with estimates for a Laplace-Robin problem: the following second order elliptic operator in divergence form in a bounded domain Q ⊂ Rn of class C1, withthe Robin boundary condition has been considered1div(A∇)u = divf + F in Q, 11 )u + u = f ⋅ n + g on Γ. (0.2) 2The coefficient matrix A is symmetric and belongs to V MO(R3). Also a is a function belonging to some Lq -space. Apart from proving existence, uniqueness of weak and strong solutions, we obtain the bound on u, uniform in a for a sufficiently large, in the Lp -norm. We have separately studied the two cases: the interior estimate and the boundary estimate to make the main idea clear in the simple set up
APA, Harvard, Vancouver, ISO, and other styles
2

Gecgel, Murat. "Parallel, Navier." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/12604807/index.pdf.

Full text
Abstract:
The aim of this study is to extend a parallel Fortran90 code to compute three&ndash
dimensional laminar and turbulent flowfields over rotary wing configurations. The code employs finite volume discretization and the compact, four step Runge-Kutta type time integration technique to solve unsteady, thin&ndash
layer Navier&ndash
Stokes equations. Zero&ndash
order Baldwin&ndash
Lomax turbulence model is utilized to model the turbulence for the computation of turbulent flowfields. A fine, viscous, H type structured grid is employed in the computations. To reduce the computational time and memory requirements parallel processing with distributed memory is used. The data communication among the processors is executed by using the MPI ( Message Passing Interface ) communication libraries. Laminar and turbulent solutions around a two bladed UH &ndash
1 helicopter rotor and turbulent solution around a flat plate is obtained. For the rotary wing configurations, nonlifting and lifting rotor cases are handled seperately for subsonic and transonic blade tip speeds. The results are, generally, in good agreement with the experimental data.
APA, Harvard, Vancouver, ISO, and other styles
3

BORDIGNON, ALEX LAIER. "NAVIER-STOKES EM GPU." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2006. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8928@1.

Full text
Abstract:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
Nesse trabalho, mostramos como simular um fluido em duas dimensões em um domínio com fronteiras arbitrárias. Nosso trabalho é baseado no esquema stable fluids desenvolvido por Joe Stam. A implementação é feita na GPU (Graphics Processing Unit), permitindo velocidade de interação com o fluido. Fazemos uso da linguagem Cg (C for Graphics), desenvolvida pela companhia NVidia. Nossas principais contribuições são o tratamento das múltiplas fronteiras, onde aplicamos interpolação bilinear para atingir melhores resultados, armazenamento das condições de fronteira usa apenas um canal de textura, e o uso de confinamento de vorticidade.
In this work we show how to simulate fluids in two dimensions in a domain with arbitrary bondaries. Our work is based on the stable fluid scheme developed by Jo Stam. The implementation is done in GPU (Graphics Processinfg Unit), thus allowing fluid interaction speed. We use the language Cg (C for Graphics) developed by the company Nvídia. Our main contributions are the treatment of domains with multiple boundaries, where we apply bilinear interpolation to obtain better results, the storage of the bondaty conditions in a unique texturre channel, and the use of vorticity confinement.
APA, Harvard, Vancouver, ISO, and other styles
4

Rejaiba, Ahmed. "Equations de Stokes et de Navier-Stokes avec des conditions aux limites de Navier." Thesis, Pau, 2014. http://www.theses.fr/2014PAUU3050/document.

Full text
Abstract:
Résumé : Cette thèse est consacrée à l'étude des équations de Stokes et de Navier-Stokes avec des conditions aux limites de Navier dans un ouvert borné de . Le manuscrit ici est composé de trois chapitres. Dans le premier, nous considérons les équations de Stokes stationnaires avec des conditions aux limites de Navier. Nous démontrons l'existence, l'unicité et la régularité de la solution d'abord dans un cadre hilbertien puis dans le cadre de la théorie . Nous traitons aussi le cas de solutions très faibles. Dans le deuxième chapitre, nous nous intéressons aux équations de Navier-Stokes avec la condition de Navier. Sous certaines hypothèses sur les données, nous démontrons l'existence de solution faible dans , avec en utilisant un théorème du point fixe appliqué à un problème d'Oseen. Nous démontrons examinons ensuite les questions de régularité des solutions en particulier dans . Dans le dernier chapitre, nous étudions le problème d'évolution de Stokes avec la condition de Navier. La résolution de ce problème se fait au moyen de la théorie des semi-groupes analytiques qui jouent un rôle important pour établir l'existence et l'unicité de la solution dans le cas homogène. Nous traitons le cas du problème non homogène par le biais des puissances imaginaires de l'opérateur de Stokes
This thesis is devoted to the study of the Stokes equations and Navier-Stokes equations with Navier boundary conditions in a bounded domain of . The work contains three chapters: In the first chapter, we consider the stationary Stokes equations with Navier boundary condition. We show the existence, uniqueness and regularity of the solution in the Hilbert case and in the -theory. We prove also the case of very weak solutions. In the second chapter, we focus on the Navier-Stokes equations with the Navier boundary condition. We show the existence of the weak solution in , with by a fixed point theorem over the Oseen equation. We show also the existence of the strong solution in . In chapter three, we study the evolution Stokes problem with Navier boundary condition. For this, we apply the analytic semi-groups theory, which plays a crucial role in the study of existence and uniqueness of solution in the case of the homogeneous evolution problem. We treat the case of non-homogeneous problem through imaginary powers of the Stokes operator
APA, Harvard, Vancouver, ISO, and other styles
5

Cannone, Marco. "Ondelettes, paraproduits et Navier-Stokes." Paris 9, 1994. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1994PA090016.

Full text
Abstract:
Dans cette thèse nous donnons quelques théorèmes d'existence et unicité de solutions mild du problème de Cauchy associe aux équations de Navier-Stokes. Dans la première partie, inspirés par une approche en ondelettes établie par P. Federbush, nous utilisons la décomposition de Littlewood-Paley pour en déduire un théorème d'existence et unicité locale de solutions mild à valeurs dans un espace de Banach abstrait de distributions. Nombreux exemples de tels espaces seront fournis, comme ceux de Lebesgue, Sobolev, Morrey-Campanato et Besov. La deuxième partie de la thèse est consacrée aux solutions globales mild dans des espaces de Banach dont la norme est invariante par les dilatations normalisées. En particulier, nous généralisons un résultat classique du a t. Kato en faisant remarquer que le temps de vie de sa solution globale est, en effet, donne par une norme Besov plus faible que celle usuelle de Lebesgue ne le laissait prévoir. Enfin, nous montrons comment utiliser lesdits espaces de Besov pour en déduire un théorème d'existence et unicité de solutions auto-similaires pour les équations de Navier-Stokes
APA, Harvard, Vancouver, ISO, and other styles
6

Mallinger, François. "Couplage adaptatif Boltzmann Navier-Stokes." Paris 9, 1996. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1996PA090042.

Full text
Abstract:
Nous étudions les écoulements externes en régime semi raréfié à grands nombre de mach. Pour ce faire, nous proposons une stratégie de décomposition de domaine couplant les modèles Boltzmann et Navier-Stokes. Le couplage est réalisé par le biais de conditions aux limites. Les domaines de calcul Boltzmann et Navier-Stokes sont déterminés de manière automatique par un critère analysant la validité de la solution Navier-Stokes. Nous proposons donc un algorithme de couplage adaptatif qui prend en compte d'une part la détermination automatique des domaines, et d'autre part un algorithme de marche en temps pour le couplage des modèles. Le couplage adaptatif résulte d'une interprétation cinétique des équations de Navier-Stokes. Pour le généraliser, nous étudions la transition entre régimes microscopiques (Boltzmann) and macroscopiques (Navier-Stokes) pour des gaz diatomiques, en étendant la démarche initiale de grad. Enfin nous donnons une justification mathématique du couplage Boltzmann Navier-Stokes
We study external flows for semirarefied régimes at high mach number. We propose a domain décomposition strategy coupling Boltzmann and Navier-Stokes models. The coupling is done by boundary conditions. The Boltzmann and Navier-Stokes computational domains are defined automatically thanks to a critérium analysing the validity of the numerical Navier-Stokes solution. We propose therefore an adaptative coupling algorithm taking into account both the automatic définition of the computation domains and a time marching algorithm to couple the models. The whole strategy results from the transition between the microscopie model (Boltzmann) and the macroscopie model (Navier-Stokes). In order to generalize this adaptative coupling, we study this connection for diatomic gases. Finally, we justify the coupled problem from a mathematical view point
APA, Harvard, Vancouver, ISO, and other styles
7

Landmann, Björn. "A parallel discontinuous Galerkin code for the Navier-Stokes and Reynolds-averaged Navier-Stokes equations." [S.l. : s.n.], 2008. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-35199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Landmann, Björn. "A parallel discontinuous Galerkin code for the Navier-Stokes and Reynolds averaged Navier-Stokes equations." München Verl. Dr. Hut, 2007. http://d-nb.info/988422433/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sahin, Pinar. "Navier-stokes Calculations Over Swept Wings." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607618/index.pdf.

Full text
Abstract:
In this study, the non-equilibrium Johnson and King Turbulence Model (JK model) is implemented in a three-dimensional, Navier-Stokes flow solver. The main program is a structured Euler/Navier-Stokes flow solver in which spatial discretization is accomplished by a finite volume formulation and a multigrid technique is used as a convergence accelerator. The aim is the validation of this in-house developed CFD (Computational Fluid Dynamics) tool with this enhanced enlarged capability in order to obtain a reliable flow solver that can solve flows over swept wings accurately. Various test cases were evaluated against reference solutions in order to demonstrate the accuracy of the newly implemented JK turbulence model. The selected test cases are NACA 0012 airfoil, ONERA M6 wing, DLR-F4 wing and two wings taken from the 3rd Drag Prediction Workshop. The solutions were analyzed and discussed in detail. The results show appreciably good agreement with the experimental data including force coefficients and surface pressure distributions.
APA, Harvard, Vancouver, ISO, and other styles
10

Shuttleworth, Robert. "Block preconditioning the Navier-Stokes equations." College Park, Md. : University of Maryland, 2007. http://hdl.handle.net/1903/7002.

Full text
Abstract:
Thesis (Ph. D.) -- University of Maryland, College Park, 2007.
Thesis research directed by: Applied Mathematics and Scientific Computation Program. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Navier"

1

Łukaszewicz, Grzegorz, and Piotr Kalita. Navier–Stokes Equations. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27760-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kollmann, Wolfgang. Navier-Stokes Turbulence. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31869-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Constantin, P. Navier-Stokes equations. Chicago: University of Chicago Press, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ramm, Alexander G. The Navier-Stokes Problem. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-031-02431-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Plotnikov, Pavel, and Jan Sokołowski. Compressible Navier-Stokes Equations. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0367-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sohr, Hermann. The Navier-Stokes Equations. Basel: Springer Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-0551-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sohr, Hermann. The Navier-Stokes Equations. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8255-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zeytounian, Radyadour Kh. Navier-Stokes-Fourier Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20746-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Barbu, Viorel. Stabilization of Navier–Stokes Flows. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-043-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hărăguș, D. Equations du type Navier-Stokes. Timișoara: Tipografia Universitătii din Timișoara, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Navier"

1

Di Pietro, Daniele Antonio, and Jérôme Droniou. "Navier–Stokes." In The Hybrid High-Order Method for Polytopal Meshes, 421–74. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37203-3_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kollmann, Wolfgang. "Navier–Stokes Equations." In Navier-Stokes Turbulence, 17–53. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31869-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kollmann, Wolfgang. "Introduction." In Navier-Stokes Turbulence, 1–16. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31869-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kollmann, Wolfgang. "Solution of Hopf-Type Equations in the Spatial Description." In Navier-Stokes Turbulence, 163–77. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31869-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kollmann, Wolfgang. "Finite-Dimensional Characteristic Functions, Pdfs and Cdfs Based on the Dirac Distribution." In Navier-Stokes Turbulence, 179–201. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31869-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kollmann, Wolfgang. "Properties and Construction of Mappings." In Navier-Stokes Turbulence, 203–16. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31869-7_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kollmann, Wolfgang. "$$\mathcal{M}_1(1)$$: Single Scalar in Homogeneous Turbulence." In Navier-Stokes Turbulence, 217–47. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31869-7_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kollmann, Wolfgang. "$$\mathcal{M}_1(N)$$: Mappings for Velocity–Scalar and Position–Scalar Pdfs." In Navier-Stokes Turbulence, 249–67. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31869-7_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kollmann, Wolfgang. "Integral Transforms and Spectra." In Navier-Stokes Turbulence, 269–75. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31869-7_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kollmann, Wolfgang. "Intermittency." In Navier-Stokes Turbulence, 277–83. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31869-7_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Navier"

1

Wolf, Jörg. "A direct proof of the Caffarelli-Kohn-Nirenberg theorem." In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wrzosek, Dariusz. "Chemotaxis models with a threshold cell density." In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Arkhipova, Arina. "New a priori estimates for nondiagonal strongly nonlinear parabolic systems." In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Escher, Joachim, and Zhaoyang Yin. "Initial boundary value problems of the Degasperis-Procesi equation." In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Farwig, Reinhard, Hideo Kozono, and Hermann Sohr. "Criteria of local in time regularity of the Navier-Stokes equations beyond Serrin's condition." In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Feireisl, Eduard, and Hana Petzeltová. "Non-standard applications of the Łojasiewicz-Simon theory: Stabilization to equilibria of solutions to phase-field models." In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Goncerzewicz, Jan. "On the initial-boundary value problems for a degenerate parabolic equation." In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gramchev, Todor, and Grzegorz Łysik. "Uniform analytic-Gevrey regularity of solutions to a semilinear heat equation." In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Janela, João, and Adélia Sequeira. "On a constrained minimization problem arising in hemodynamics." In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Konieczny, Paweł. "Linear flow problems in 2D exterior domains for 2D incompressible fluid flows." In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Navier"

1

Martin, Daniel, and Phillip Colella. Incompressible Navier-Stokes with particles algorithm designdocument. Office of Scientific and Technical Information (OSTI), July 2006. http://dx.doi.org/10.2172/926455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Srinivasan, G. R., and W. J. McCroskey. Navier-Stokes Calculations of Hovering Rotor Flowfields,. Fort Belvoir, VA: Defense Technical Information Center, August 1987. http://dx.doi.org/10.21236/ada184784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Murman, Earll M. Adaptive Navier-Stokes Calculations for Vortical Flows. Fort Belvoir, VA: Defense Technical Information Center, March 1993. http://dx.doi.org/10.21236/ada266236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Reed, Helen L. Navier-Stokes Simulation of Boundary-Layer Transition. Fort Belvoir, VA: Defense Technical Information Center, May 1990. http://dx.doi.org/10.21236/ada226351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Newman, Christopher K. Exponential integrators for the incompressible Navier-Stokes equations. Office of Scientific and Technical Information (OSTI), July 2004. http://dx.doi.org/10.2172/975250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Selvam, R. P., and Zu-Qing Qu. Adaptive Navier Stokes Flow Solver for Aerospace Structures. Fort Belvoir, VA: Defense Technical Information Center, May 2004. http://dx.doi.org/10.21236/ada424479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kilic, M. S., G. B. Jacobs, J. S> Hesthaven, and G. Haller. Reduced Navier-Stokes Equations Near a Flow Boundary. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada458888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nguyen, Phuc N. Use of Navier-Stokes Analysis in Section Design. Fort Belvoir, VA: Defense Technical Information Center, December 1990. http://dx.doi.org/10.21236/ada242074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Elman, Howard, and David Silvester. Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations. Fort Belvoir, VA: Defense Technical Information Center, June 1994. http://dx.doi.org/10.21236/ada599710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Elman, Howard C. Navier-Stokes Solvers and Generalizations for Reacting Flow Problems. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1060752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography