Academic literature on the topic 'Nature-inspired materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nature-inspired materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nature-inspired materials"
ISU, Norifumi. "Nature Inspired Materials." Journal of the Japan Society for Precision Engineering 81, no. 5 (2015): 396–400. http://dx.doi.org/10.2493/jjspe.81.396.
Full textSun, Taolei, Guangyan Qing, Baolian Su, and Lei Jiang. "Functional biointerface materials inspired from nature." Chemical Society Reviews 40, no. 5 (2011): 2909. http://dx.doi.org/10.1039/c0cs00124d.
Full textZhang, Di, Wang Zhang, Jiajun Gu, Shenmin Zhu, Huilan Su, Qinglei Liu, Tongxiang Fan, Jian Ding, and Qixin Guo. "Bio-Inspired Functional Materials Templated From Nature Materials." KONA Powder and Particle Journal 28 (2010): 116–30. http://dx.doi.org/10.14356/kona.2010011.
Full textZhu, Hai, Zhiguang Guo, and Weimin Liu. "Biomimetic water-collecting materials inspired by nature." Chemical Communications 52, no. 20 (2016): 3863–79. http://dx.doi.org/10.1039/c5cc09867j.
Full textEstrada, Susana, and Alex Ossa. "Nature‐Inspired Protecto‐Flexible Impact‐Tolerant Materials." Advanced Engineering Materials 22, no. 8 (May 14, 2020): 2000006. http://dx.doi.org/10.1002/adem.202000006.
Full textZhang, Di, Qinglei Liu, Wang Zhang, Shenming Zhu, Huilan Su, Jiajun Gu, Tongxiang Fan, Jian Ding, and Qixin Guo. "Bio-inspired Functional Materials Converted from Nature Species." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2011, CICMT (September 1, 2011): 000146–51. http://dx.doi.org/10.4071/cicmt-2011-keynote4.
Full textLiu, Yaqing, Ke He, Geng Chen, Wan Ru Leow, and Xiaodong Chen. "Nature-Inspired Structural Materials for Flexible Electronic Devices." Chemical Reviews 117, no. 20 (October 9, 2017): 12893–941. http://dx.doi.org/10.1021/acs.chemrev.7b00291.
Full textSun, Taolei, Guangyan Qing, Baolian Su, and Lei Jiang. "ChemInform Abstract: Functional Biointerface Materials Inspired from Nature." ChemInform 42, no. 35 (August 4, 2011): no. http://dx.doi.org/10.1002/chin.201135271.
Full textWang, Hua, Yun Yang, and Lin Guo. "Nature-Inspired Electrochemical Energy-Storage Materials and Devices." Advanced Energy Materials 7, no. 5 (December 9, 2016): 1601709. http://dx.doi.org/10.1002/aenm.201601709.
Full textBley, Thomas. "Book review:Bio-Nanomaterials - Designing materials inspired by nature." Biotechnology Journal 9, no. 9 (September 2014): 1103. http://dx.doi.org/10.1002/biot.201400450.
Full textDissertations / Theses on the topic "Nature-inspired materials"
Johnson, Joseph Casey. "Peptidic Materials: Nature Inspired Mechanical Enhancement." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1403197488.
Full textJones, Celina. "Textile materials inspired by structural colour in nature." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/textile-materials-inspired-by-structural-colour-in-nature(47c02808-18b6-4c8d-adb3-09beb18091e4).html.
Full textGurera, Dev. "Lessons from Nature and Bioinspired Fabrication: Mosquito Bite and Lotus Leaf Inspired Superliquiphobic Leather." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1511962660965442.
Full textSánchez, Ferrero Aitor. "Biomimetic hydrogels for in situ bone tissue engineering : nature-inspired crosslinking methods as a tool to tune scaffold physical properties." Doctoral thesis, Universitat Politècnica de Catalunya, 2015. http://hdl.handle.net/10803/373909.
Full textS'espera que la incidència global de fractures òssies, i per extensió la d'aquelles que no són capaces de consolidar per si soles, augmenti en les pròximes dècades, principalment degut a l'increment del risc de patologies associades a l'envelliment. Actualment, el camp dels biomaterials es mou cap al disseny de bastides que mimetitzen el microambient cel·lular per tal de guiar la diferenciació de cèl·lules mare i recapitular el desenvolupament de teixits diana. El biomimetisme és un concepte ampli i diverses aproximacions han sigut dutes a terme per tal de produir bastides capaces de guiar el comportament cel·lular. En aquesta tesi hem explorat l'ús d'àcid cítric i l'enzim lisil oxidasa, ambdós relacionats amb la nanoestructura i propietats mecàniques del teixit ossi, per desenvolupar bastides que mimetitzin la matriu extracel·lular de l'os en desenvolupament. En primer lloc, es va produir hidrogels basats en polímers recombinants de tipus elastina (Elastin-like recombinamers; ELRs) mitjançant una reacció d'entrecreuament en un pas amb àcid cítric, una molècula actualment considerada una peça essencial per l'adequat funcionament mecànic del teixit ossi. Havent fet un estudi sistemàtic de la reacció d'entrecreuament i de la seva contribució a les propietats dels hidrogels, vam ser capaços de controlar l'arquitectura i la rigidesa de les bastides entrecreuades amb àcid cítric, tot preservant la integritat de les seqüències d'adhesió cel·lular contingudes als ELRs. És interessant remarcar que l'ús d'àcid cítric com agent entrecreuant conferí als hidrogels capacitat de nucleació de fosfats de calci. Es va demostrar que els hidrogels entrecreuats amb àcid cítric i amb propietats mecàniques diana permeten el creixement de cèl·lules mare mesenquimals humanes i donen lloc a productes de degradació aparentment biocompatibles. Tot i que els estudis de diferenciació in vitro no van ser concloents pel que fa al potencial osteogènic d'aquestes bastides, tant les matrius amb propietats mecàniques diana com aquelles control van ser capaces d'integrar-se amb l'os natiu i van ser parcialment degradades un cop implantades en defectes de mida crítica en calotes de ratolí. Tot i que la invasió cel·lular en hidrogels amb propietats mecàniques diana va ser inferior en comparació amb l'observada en bastides control, ambdós tipus de matrius van permetre la formació d'os nou, mitjançant ossificació intramembranosa, en quantitats similars al final de l'estudi. Als punts temporals seleccionats, ambdós tipus de bastides van demostrar ser osteoconductives, però no es va observar evidències d'osteoconducció en cap cas. El fet que les bastides amb propietats mecàniques diana no fossin superiors a les matrius control pel que fa a formació òssia, podria ser degut a (i) a una elevada densitat superficial que hauria dificultat la invasió cel·lular i retrassat l'osteoinducció, o (ii) a una combinació de propietats (químiques + físiques) no osteoinductiva tot i que les bastides posseïen una rigidesa teòricament osteoinductiva. Aquests resultats demostren que les bastides han de ser vistes com un tot donada l'elevada complexitat del nínxol de cèl·lules mare in vivo, les senyals del qual actuen de forma sinèrgica per definir el comportament cel·lular. Així, és necessari assolir bastides amb un nivell de complexitat més elevat per tal de recapitular el desenvolupament ossi. Addicionalment, es va produir lisil oxidasa (LOX) d'aorta humana en forma recombinant a elevada puresa a partir de cultius d'Escherichia coli. Tot i que es va aconseguir produir LOX amb un contingut del cofactor coure i una activitat superiors a aquells trobats en la literatura, l'activitat de l'enzim va ser generalment baixa i no es va assolir la insolubilització d'ELRs. Això evidencia la necessitat de desenvolupar nous sistemes d'expressió i purificació de l'enzim per tal que aquest pugui ser aplicat a la producció de bastides.
Ponzio, Florian. "Synthesis at different interfaces of bio-inspired films from mussels' byssus : influence of the oxidant nature at the solid/liquid interface and the addition of polymer at the air/water interface." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAE041/document.
Full textPolydopamine (PDA) materials are inspired from mussels’ byssus strong adhesion underwater. The oligomerization of dopamine in a basic medium allows forming a PDA coating on virtually any materials. In addition to the simplicity, ecofriendly and versatility of the deposition method, PDA has properties similar to those of melanin pigments and displays many outstanding properties. Thus PDAis widely used in energy, environmental and biomedical sciences. However design of PDA based new materials with tailored properties is a challenge since its structure is still unknown. In that sense one of the aims of this thesis is to gain knowledge in PDA structure-property relationship in order to design PDA materials with new properties. By choosing the appropriate oxidant we deposited thick and superhydrophylic films on any materials for the elaboration of low fouling and biocompatible surfaces. Additionally we discovered the possibility to form PDA films at the air/water interface. The investigation of this phenomenon led to the formation of stimuli responsive free standing membranes
Ivanová, Lucia. "Syntéza rozpustných prírodou inšpirovaných N, N-alkylovaných riboflavínových derivátov, štúdium efektu alkylových skupín." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-444542.
Full textBooks on the topic "Nature-inspired materials"
Fratzl, Peter, John W. C. Dunlop, and Richard Weinkamer, eds. Materials Design Inspired by Nature. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737555.
Full textPhotonic Structures Inspired By Nature. Springer, 2011.
Find full textKolle, Mathias. Photonic Structures Inspired by Nature. Springer, 2013.
Find full textKolle, Mathias. Photonic Structures Inspired by Nature. Springer, 2011.
Find full textMaterials Design Inspired By Nature Function Through Inner Architecture. Royal Society of Chemistry, 2013.
Find full textBamford, Carole, writer of foreword, ed. Architecture by hand: Inspired by nature. 2016.
Find full textBioinspired Photonics: Optical Structures and Systems Inspired by Nature. Taylor & Francis Group, 2015.
Find full textSaitō, Yuriko. Japanese Gardens. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780190456320.003.0009.
Full textHobden, Fiona, and Amanda Wrigley, eds. Ancient Greece on British Television. Edinburgh University Press, 2018. http://dx.doi.org/10.3366/edinburgh/9781474412599.001.0001.
Full textNissinen, Martti. Constructing Prophetic Divination. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198808558.003.0001.
Full textBook chapters on the topic "Nature-inspired materials"
Kolle, Mathias. "Materials and Techniques." In Photonic Structures Inspired by Nature, 57–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-15169-9_4.
Full textSpeck, Thomas, Georg Bauer, Felix Flues, Katharina Oelker, Markus Rampf, Andreas C. Schüssele, Max von Tapavicza, et al. "CHAPTER 16. Bio‐inspired Self‐healing Materials." In Materials Design Inspired by Nature, 359–89. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737555-00359.
Full textBréchet, Yves J. M. "CHAPTER 1. Architectured Materials: An Alternative to Microstructure Control for Structural Materials Design? A Possible Playground for Bio‐inspiration?" In Materials Design Inspired by Nature, 1–16. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737555-00001.
Full textWillie, Bettina, Georg N. Duda, and Richard Weinkamer. "CHAPTER 2. Bone Structural Adaptation and Wolff's Law." In Materials Design Inspired by Nature, 17–45. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737555-00017.
Full textWagermaier, Wolfgang, Aurelien Gourrier, and Barbara Aichmayer. "CHAPTER 3. Understanding Hierarchy and Functions of Bone Using Scanning X‐ray Scattering Methods." In Materials Design Inspired by Nature, 46–73. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737555-00046.
Full textDey, Archan, and Nico A. J. M. Sommerdijk. "CHAPTER 4. Advanced Transmission Electron Microscopy to Explore Early Stages of Bio(mimetic)mineralization." In Materials Design Inspired by Nature, 74–106. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737555-00074.
Full textGiraud Guille, M. M., N. Nassif, and F. M. Fernandes. "CHAPTER 5. Collagen‐based Materials for Tissue Repair, from Bio‐inspired to Biomimetic." In Materials Design Inspired by Nature, 107–27. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737555-00107.
Full textGierlinger, N., C. Reisecker, S. Hild, and S. Gamsjaeger. "CHAPTER 7. Raman Microscopy: Insights into the Chemistry and Structure of Biological Materials." In Materials Design Inspired by Nature, 151–79. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737555-00151.
Full textParis, Oskar, Markus A. Hartmann, and Gerhard Fritz-Popovski. "CHAPTER 8. The Mineralized Crustacean Cuticle: Hierarchical Structure and Mechanical Properties." In Materials Design Inspired by Nature, 180–96. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737555-00180.
Full textFriák, Martin, HELGE-OTTO Fabritius, Svetoslav Nikolov, Michal Petrov, Liverios Lymperakis, Christoph Sachs, PAVLíNA Elstnerová, Jörg Neugebauer, and Dierk Raabe. "CHAPTER 9. Multi‐scale Modelling of a Biological Material: The Arthropod Exoskeleton." In Materials Design Inspired by Nature, 197–218. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737555-00197.
Full textConference papers on the topic "Nature-inspired materials"
Su, Haw-Lih, Hugo Bronstein, Tobin Marks, Hassan Bazzi, and Mohammed Al-Hashimi. "Nature-Inspired Conjugated Molecules for Future Organic Solar Cell Materials." In Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press), 2016. http://dx.doi.org/10.5339/qfarc.2016.eepp2213.
Full textKishimoto, Naoko, M. C. Natori, Ken Higuchi, and Katsuyuki Ukegawa. "New Deployable Membrane Structure Models Inspired by Morphological Changes in Nature." In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
14th AIAA/ASME/AHS Adaptive Structures Conference
7th. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-1898.
Domazetovska, Simona, Kristijan Ivanoski, Stefani Josifovska, Viktor Slavkovski, and Jovana Jovanova. "Environmentally Friendly Bio-Inspired Turtle Robot." In ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/smasis2020-2341.
Full textGoodman, Joseph N., Jeannette Yen, Russell Gentry, Kathryn M. Nagel, and Guillermo J. Amador. "A Compound Analogical Design for Low Cost Solar Panel Systems." In ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/smasis2012-8256.
Full textMcCullar, Katie S., Preston C. Rhodes, S. Austin Underhill, and Jacquelyn K. S. Nagel. "Application of Bio-Inspired Design to Minimize Material Diversity." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59684.
Full textKarthigan, G., Sujoy Mukherjee, and Ranjan Ganguli. "Fish Inspired Biomimetic Ionic Polymer Metal Composite Pectoral Fins Using Labriform Propulsion." In ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-4931.
Full textBruck, Hugh A., Alan L. Gershon, and Satyandra K. Gupta. "Enhancement of Mechanical Engineering Curriculum to Introduce Manufacturing Techniques and Principles for Bio-Inspired Product Development." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60584.
Full textZhou, Haofei, Xin Chen, and Yumeng Li. "Design of Gradient Nanotwinned Metal Materials Using Adaptive Gaussian Process Based Surrogate Models." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97659.
Full textManzo, Justin E., Emily A. Leylek, and Ephrahim Garcia. "Drawing Insight From Nature: A Bat Wing for Morphing Aircraft." In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-613.
Full textMeller, Michael, and Ephrahim Garcia. "Power Savings of a Variable Recruitment Hydraulic Artificial Muscle Actuation Scheme." In ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smasis2014-7718.
Full textReports on the topic "Nature-inspired materials"
Scheidt, Karl A., and Chris Galliford. Nature Inspired Strategies for New Organic Materials. Fort Belvoir, VA: Defense Technical Information Center, January 2007. http://dx.doi.org/10.21236/ada462830.
Full text