Dissertations / Theses on the topic 'NATURE INSPIRED ALGORITHM'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 20 dissertations / theses for your research on the topic 'NATURE INSPIRED ALGORITHM.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Sholedolu, Michael O. "Nature-inspired optimisation : improvements to the Particle Swarm Optimisation Algorithm and the Bees Algorithm." Thesis, Cardiff University, 2009. http://orca.cf.ac.uk/55013/.
Full textLakshminarayanan, Srinivasan. "Nature Inspired Discrete Integer Cuckoo Search Algorithm for Optimal Planned Generator Maintenance Scheduling." University of Toledo / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1438101954.
Full textLakshminarayanan, Srivathsan. "Nature Inspired Grey Wolf Optimizer Algorithm for Minimizing Operating Cost in Green Smart Home." University of Toledo / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1438102173.
Full textAyo, Babatope S. "Data-driven flight path rerouting during adverse weather: Design and development of a passenger-centric model and framework for alternative flight path generation using nature inspired techniques." Thesis, University of Bradford, 2018. http://hdl.handle.net/10454/17387.
Full textBozhinovski, Konstantin. "Generative design of a nature-inspired geometry manipulated by an algorithm in a BIM-environment, applied in a façade system for a residential building in Bologna, Italy." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21501/.
Full textAlam, Intekhab Asim. "Real time tracking using nature-inspired algorithms." Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8253/.
Full textCrossley, Matthew James. "Fitness landscape-based analysis of nature-inspired algorithms." Thesis, Manchester Metropolitan University, 2014. http://e-space.mmu.ac.uk/47/.
Full textNakrani, Sunil. "Biomimetic and autonomic server ensemble orchestration." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.534214.
Full textJulai, Sabariah. "Nature-inspired algorithms for vibration control of flexible plate structures." Thesis, University of Sheffield, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531231.
Full textLiu, Fang. "Nature inspired computational intelligence for financial contagion modelling." Thesis, Brunel University, 2014. http://bura.brunel.ac.uk/handle/2438/8208.
Full textParkinson, Scott. "Rational Design Inspired Application of Natural Language Processing Algorithms to Red Shift mNeptune684." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/41928.
Full textArcanjo, Diego Nascimento. "Metodologia multi-estágio para restabelecimento de sistemas elétricos de distribuição utilizando algoritmos bio-inspirados." Universidade Federal de Juiz de Fora, 2014. https://repositorio.ufjf.br/jspui/handle/ufjf/697.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-02-26T11:52:47Z (GMT) No. of bitstreams: 1 diegonascimentoarcanjo.pdf: 1706072 bytes, checksum: 2329ddd810b5aca8da733c7793937d65 (MD5)
Made available in DSpace on 2016-02-26T11:52:47Z (GMT). No. of bitstreams: 1 diegonascimentoarcanjo.pdf: 1706072 bytes, checksum: 2329ddd810b5aca8da733c7793937d65 (MD5) Previous issue date: 2014-07-24
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Neste trabalho é proposto uma metodologia multi-estágio utilizando algoritmos bio-inspirados para a resolução do processo de Restabelecimento de Sistemas Elétricos de Distribuição. O primeiro estágio consiste na solução de uma função multi-objetivo visando a determinação da configuração final das chaves do sistema após isolados os ramos defeituosos (configuração de pós-contingência). Neste estágio, a modelagem da função multi-objetivo busca uma configuração adequada de chaves para minimizar a carga não suprida, as perdas do sistema, o número de chaveamentos, penalizando as violações aos limites operativos do sistema e considerando a presença de consumidores prioritários. Adicionalmente, a restrição de radialidade é assegurada em cada configuração utilizando, caso necessário, uma técnica de abertura de laço. A partir da configuração final obtida no primeiro estágio, são identificadas as chaves que foram manobradas. O segundo estágio da metodologia busca a determinação da sequência de chaveamento levando em conta a minimização da energia não suprida. Essa formulação permite que o tempo de manobra das chaves possa ser considerado. Sendo necessário, é realizado, ainda neste estágio, cortes mínimos discretos de carga para cada manobra executada. Em ambos os estágios foram utilizadas algoritmos bio-inspirados como métodos de solução dos respectivos problemas de otimização não-lineares inteiros mistos. As técnicas utilizadas são: Algoritmos Genéticos, Método da Eco Localização de Morcegos (Bat Algorithm) e Método da Reprodução dos Pássaros Cuco (Cuckoo Search). Os desenvolvimentos do algoritmo proposto foi implementado no ambiente MatLab®. Os resultados obtidos foram comparados com outras metodologias conhecidas da literatura comprovando a eficiência e robustez da técnica proposta.
This dissertation proposes a methodology for solving multi-stage process of Restoration on Power Distribution Systems using Nature-Inspired Algorithms. The first stage consists in solving a fitness multi-objective function in order to determine the final configuration of the switches after the faulted branches were isolated (post-contingency configuration). In this stage the multi-objective function seeks through the suitable configuration to minimize the undelivered power, the power losses, the number of switching, penalizing for violation in the system operational limits and taking in consideration the presence of priority load in the system. Additionally the radiality constraint is improved using an open loop technique. After the final configuration is obtained, for the first stage, the switches which were maneuvered are identified. The second stage of the methodology is to determine the sequence of switching taking into account the minimization of energy not supplied. This formulation allows to consider the switching operation time. If necessary, the minimum discrete load shedding procedure is made for each maneuvered switch. In both stages Nature-Inspired Algorithms to solve mixed integer nonlinear programming problems were used. The techniques used are: Genetic Algorithms, Bat Algorithm and Cuckoo Search. The developments of the proposed algorithm were implemented in MatLab ® environment. The results obtained were compared with other well-known methodologies showing the efficiency and robustness of the proposed technique.
GUPTA, MANI. "TAXONOMY OF NATURE INSPIRED ALGORITHM FOR FACE RECOGNITION." Thesis, 2016. http://dspace.dtu.ac.in:8080/jspui/handle/repository/14713.
Full textKumar, Pawan. "Formulation and Synthesis of Hexagonal Prism Array Using Nature Inspired Algorithm." Thesis, 2014. http://ethesis.nitrkl.ac.in/6503/1/212EE1209-15.pdf.
Full textFreitas, Diogo Nuno Teixeira. "Nature-inspired algorithms for solving some hard numerical problems." Master's thesis, 2020. http://hdl.handle.net/10400.13/3010.
Full textA Optimização é um ramo da matemática desenvolvido para encontrar as soluções óptimas, de entre todas as possíveis, para um determinado problema. Actualmente, são várias as técnicas de optimização aplicadas a problemas de engenharia, de informática e da indústria. Dada a grande panóplia de aplicações, existem inúmeros trabalhos publicados que propõem métodos para resolver, de forma óptima, problemas específicos. Esta dissertação foca-se na adaptação de dois algoritmos inspirados na natureza que, tendo como base técnicas de optimização, são capazes de calcular aproximações para zeros de polinómios e raízes de equações não lineares e sistemas de equações não lineares. Embora já existam muitos métodos iterativos para encontrar todas as raízes ou zeros de uma função, eles usualmente exigem: (a) deflações repetidas, que podem levar a resultados muito inexactos, devido ao problema da acumulação de erros de arredondamento a cada iteração; (b) boas aproximações iniciais para as raízes para o algoritmo convergir, ou (c) o cálculo de derivadas de primeira ou de segunda ordem que, além de ser computacionalmente intensivo, para muitas funções é impossível de se calcular. Estas desvantagens motivaram o uso da Optimização por Enxame de Partículas (PSO) e de Redes Neurais Artificiais (RNAs) para o cálculo de raízes. Estas técnicas são conhecidas, respectivamente, pela sua capacidade de explorar espaços de dimensão superior (não exigindo boas aproximações iniciais) e pela sua capacidade de modelar problemas complexos. Além disto, tais técnicas não necessitam de deflações repetidas, nem do cálculo de derivadas. Ao longo deste documento, os algoritmos são descritos e testados, usando um conjunto de problemas numéricos com aplicações nas ciências e na engenharia. Os resultados foram comparados com outros disponíveis na literatura e com o método de Durand–Kerner, e sugerem que ambos os algoritmos são capazes de resolver os problemas numéricos considerados.
Miele, Raffaele. "Nature inspired Optimization Algorithms for Classification and Regression Trees." Tesi di dottorato, 2006. http://www.fedoa.unina.it/609/1/tesi_dottorato_Miele.pdf.
Full textRathod, Nihesh. "Nature-inspired Algorithms for Automated Deployment of Outdoor IoT Networks." Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5681.
Full textBaartman, Sive. "Nature-inspired meta-heuristic algorithms in PID controller tuning for gimbal stabilization." Thesis, 2020. https://hdl.handle.net/10539/31109.
Full textInertial stabilization systems are essential in ensuring that the optical system tracks the target of interest and rejects any disturbance. The work presented in this dissertation focuses on optimizing the Proportional-Integral-Derivative (PID) controller in order to ensure that the gimbal used in the chosen inertial stabilization system follows the Line-of-Sight (LOS) rate command input (which represents the target velocity) and rejects disturbance. The main objective of this research was to compare which optimization methods for tuning the PID controller work best for the one-axis gimbal stabilization system. The methods compared are three nature-inspired meta-heuristic algorithms; the Teaching Learning Based Optimization (TLBO) algorithm, the Flower Pollination Algorithm (FPA) and the Genetic Algorithm (GA). This research also involved tuning the parameters of the algorithms themselves in order for the algorithms to optimize the controller. This work also encompasses tuning the common algorithm parameters including the population size and search space bounds, tuning algorithm-specific parameters for each algorithm that requires this, and comparing whether dynamic or static parameters are better suited for the problem instances presented. These parameters were optimized for three different problem instances, which represent different target motions and additional disturbances in the system. It was found that different parameters work best for different problem instances and that this research favoured the TLBO when comparing the algorithm performances overall
CK2021
Neshat, Mehdi. "The Application of Nature-inspired Metaheuristic Methods for Optimising Renewable Energy Problems and the Design of Water Distribution Networks." Thesis, 2020. http://hdl.handle.net/2440/130439.
Full textThesis (Ph.D.) -- University of Adelaide, School of Computer Science, 2020
CHEN, XIANG, and 陳祥. "Implementation of Natural-inspired Algorithms and Topology Strategy on Maximum Power Point Tracking for High Concentration Photovoltaic System under Partial Shading Conditions." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/hq4q84.
Full text國立金門大學
電子工程學系碩士班
106
In this study, two techniques "software algorithm" and "hardware reconfiguration circuit" were separately proposed to improve the power output of high concentration photovoltaic (HCPV) systems under partial shading conditions (PSC). The maximum power point (MPP) of an HCPV system varies rapidly under changing environmental conditions. Therefore, a "software algorithm" maximum power point tracking (MPPT) with rapid response is needed. However, the power-voltage (P-V) curve of a solar system under PSC exhibits multi-peaks of each interval. As a result, although the tracking speed of conventional MPPT algorithms is rapid, they usually couldn’t accurately track the global maximum power point (GMPP) under PSC. To overcome this issue, researchers have proposed using various natural-inspired algorithms for MPPT, such as genetic algorithm (GA) etc. Although GA could accurately track GMPP under PSC, it has complicated calculation and slow tracking speed. In order to further improve the tracking speed of GA with non-decreasing accuracy, a novel modified genetic algorithm (MGA) is proposed in this study. The proposed MGA integrates the calculation processes of conventional firefly algorithm (FA) and difference evolution (DE) algorithm for MPPT of HCPV systems under PSC. In the second part of this thesis, the strategy of using "hardware reconfiguration circuit" to improve total output power of an HCPV system is studied. Conventional reconfiguration circuit methods rearrange serial and parallel connections of a solar array under PSC which could increase the total output power of the system. However, they need complicated switching control algorithms and large number of switches and sensors. In order to improve this strategy and overcome its disadvantages, a novel modified circuit reconfiguration (MCR) method is proposed in this research. The total-cross-tied (TCT) topology is adopted in the MCR to simplify its switching control algorithm and reduce the number of switches and sensors. The performance of the two proposed techniques were first simulated and then evaluated by practical hardware. In the first phase, an HCPV circuit model and various PSC patterns with different solar radiance were established using the M-file and Simulink toolbox of Matlab software for preliminary simulation and parameters fine tuning. In this second phase, the hardware evaluation experiments of the proposed MGA were conducted using a solar I-V curve simulator, while actual LED light sources and HCPV modules were adopted for MCR evaluation. Evaluation results demonstrate that when compared with conventional GA, the execution time and tracking accuracy of the proposed MGA could improve around 69.4% and 4.16%, respectively. In addition, when compared with conventional FA, the execution time and tracking accuracy could improve around 42.9% and 1.85%, respectively. On the other hand, when compared with conventional series-connection and TCT methods, the total output power of an HCPV system using the proposed MCR method could increase around 29.12% and 40.11%, respectively. The advantage of the proposed MGA is fast tracking speed with high accuracy, while the MCR method can successfully effectively increase output power with simplified control algorithm and reduced hardware cost. Both methods can be implemented not only to HCPV systems but also different solar systems. In addition, the proposed prototype architecture is capable of being extended to larger scale solar arrays.