Dissertations / Theses on the topic 'Natural van der Waals heterostructures'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 39 dissertations / theses for your research on the topic 'Natural van der Waals heterostructures.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Boddison-Chouinard, Justin. "Fabricating van der Waals Heterostructures." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38511.
Full textMauro, Diego. "Electronic properties of Van der Waals heterostructures." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10565/.
Full textMarsden, Alexander J. "Van der Waals epitaxy in graphene heterostructures." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/77193/.
Full textCoy, Diaz Horacio. "Preparation and Characterization of Van der Waals Heterostructures." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6212.
Full textMa, Qiong Ph D. Massachusetts Institute of Technology. "Optoelectronics of graphene-based Van der Waals heterostructures." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104523.
Full textCataloged from PDF version of thesis.
Includes bibliographical references.
Research on van der Waals (vdW) materials (homo- or hetero-) is a rapidly emerging field in condensed matter physics. They are layered structures with strong chemical bonding within layers and relatively weak van der Waals force to combine layers together. This unique layer-bylayer nature makes it easy to exfoliate layers out and at the same time to re-assemble in arbitrary sequences with different combinations. The versatility, flexibility, and relatively low cost of production make the scientific community enthusiastic about their future. In this thesis, I investigate the fundamental physical processes of light-matter interactions in these layered structures, including graphene, boron nitride, transition metal dichalcogenides and heterostructures formed from these materials. My research involves state-of-the-art nanoscale fabrication and microscale photocurrent spectroscopy and imaging. In Chapter 1, 1 will briefly discuss basic physical properties of the vdW materials involved in this thesis and introduce the main nanofabrication and measurement techniques. Chapter 2-4 are about hot electron dynamics and electron-phonon coupling in intrinsic graphene systems, among which Chapter 2 is focusing on the generation mechanism of the photocurrent at the p-n interface, which is demonstrated to have a photothermoelectric origin. This indicates a weak electron-phonon coupling strength in graphene. Chapter 3 is a direct experimental follow-up of the work in Chapter 2 and reveals the dominant electron-phonon coupling mechanism at different temperature and doping regimes. In Chapter 4, I present the observation of anomalous geometric photocurrent patterns in various devices at the charge neutral point. The spatial pattern can be understood as a local photo-generated current near edges being collected by remote electrodes. The anomalous behavior as functions of change density and temperature indicates an interesting regime of energy and charge dynamics. In Chapter 5 and 6, 1 will show the photoresponse of graphene-BN heterostuctures. In graphene-BN stack directly on SiO₂, we observed strong photo-induced doping phenomenon, which can be understood as charge transfer from graphene across BN and eventually trapped at the interface between BN and SiO₂. By inserting another layer of graphene between BN and SiO₂ , we can measure an electrical current after photoexcitation due to such charge transfer. We further studied the competition between this vertical charge transfer and in-plane carrier-carrier scattering in different regimes. In Chapter 7, I will briefly summarize collaborated work with Prof. Dimitri Basov's group on near-field imaging of surface polariton in two-dimensional materials. This technique provides a complementary tool to examine the intriguing light-matter interaction (for large momentum excitations) in low-dimensional materials. Chapter 8 is the outlook, from my own point of view, what more can be done following this thesis.
by Qiong Ma.
Ph. D.
Khestanova, Ekaterina. "Van der Waals heterostructures : fabrication, mechanical and electronic properties." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/van-der-waals-heterostructures-fabrication-mechanical-and-electronic-properties(047ce24b-7a58-4192-845d-54c7506f179f).html.
Full textYu, Geliang. "Transport properties of graphene based van der Waals heterostructures." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/transport-properties-of-graphene-based-van-der-waals-heterostructures(5cbb782f-4d49-42da-a05e-15b26606e263).html.
Full textTomarken, Spencer Louis. "Thermodynamic and tunneling measurements of van der Waals heterostructures." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123567.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 201-212).
In certain electronic systems, strong Coulomb interactions between electrons can favor novel electronic phases that are difficult to anticipate theoretically. Accessing fundamental quantities such as the density of states in these platforms is crucial to their analysis. In this thesis, I explore the application of two measurement techniques towards this goal: capacitance measurements that probe the thermodynamic ground state of an electronic system and planar tunneling measurements that access its quasiparticle excitation spectrum. Both techniques were applied to van der Waals materials, a class of crystals composed of layered atomic sheets with weak interplane bonding which permits the isolation of single and few-layer sheets that can be manually assembled into heterostructures. Capacitance measurements were performed on a material system commonly known as magic-angle twisted bilayer graphene (MATBG).
When two monolayers of graphene, a single sheet of graphite, are stacked on top of one another with a relative twist between their crystal axes, the resultant band structure is substantially modified from the cases of both monolayer graphene and Bernal-stacked (non-twisted) bilayer graphene. At certain magic angles, the low energy bands become extremely flat, quenching the electronic kinetic energy and allowing strong electron-electron interactions to become relevant. Exotic insulating and superconducting phases have been observed using conventional transport measurements. By accessing the thermodynamic density of states of MATBG, we estimate its low energy bandwidth, Fermi velocity, and interaction-driven energy gaps. Time-domain planar tunneling was performed on a heterostructure that consisted of monolayer graphene and hexagonal boron nitride (serving as the dielectric and tunnel barrier) sandwiched between a graphite tunneling probe and metal gate.
Tunneling currents were induced by applying a sudden voltage pulse across the full parallel plate structure. The lack of in-plane charge motion allowed access to the tunneling density of states even when the heterostructure was electrically insulating in the quantum Hall regime. These measurements represent the first application of time-domain planar tunneling to the van der Waals class of materials, an important step in extending the technique to new material platforms.
by Spencer Louis Tomarken.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Physics
Luo, Yuanhong Ph D. Massachusetts Institute of Technology. "Twist angle physics in graphene based van der Waals heterostructures." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119050.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged student-submitted from PDF version of thesis.
Includes bibliographical references (pages 121-131).
In this thesis, I present my experimental work on twisted bilayer graphene, a van der Waals heterostructure consisting of two graphene sheets stack on top of each other. In particular, the twist angle is a new degree of freedom in this system, and has an important effect in the determination of its transport properties. The work presented will explore the twist-dependent physics in two regimes: the large twist angle and small twist angle regimes. In the large-twist angle limit, the two sheets have little interlayer interactions and are strongly decoupled, allowing us to put independent quantum Hall edge modes in both layers. We study the edge state interactions in this system, culminating in the formation of a quantum spin Hall state in twisted bilayer graphene. In the small twist angle limit, interlayer interactions are strong and the layers are strongly hybridized. Additionally, a new long-range moiré phenomenon emerges, and we study the effects of the interplay between moiré physics and interlayer interactions on its transport properties.
by Yuanhong Luo.
Ph. D.
Yankowitz, Matthew Abraham. "Local Probe Spectroscopy of Two-Dimensional van der Waals Heterostructures." Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/594649.
Full textSchwarz, Stefan. "Microcavity-enhanced light-matter interaction in van der Waals heterostructures." Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/12278/.
Full textConstantinescu, Gabriel Cristian. "Large-scale density functional theory study of van-der-Waals heterostructures." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274876.
Full textNagler, Philipp [Verfasser], and Tobias [Akademischer Betreuer] Korn. "Exciton spectroscopy of van der Waals heterostructures / Philipp Nagler ; Betreuer: Tobias Korn." Regensburg : Universitätsbibliothek Regensburg, 2019. http://d-nb.info/1183376073/34.
Full textZheng, Zhikun, Xianghui Zhang, Christof Neumann, Daniel Emmrich, Andreas Winter, Henning Vieker, Wei Liu, Marga Lensen, Armin Gölzhäuser, and Andrey Turchanin. "Hybrid van der Waals heterostructures of zero-dimensional and two-dimensional materials." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-188567.
Full textHadland, Erik. "Thin Film van der Waals Heterostructures containing MoSe2 from Modulated Elemental Precursors." Thesis, University of Oregon, 2019. http://hdl.handle.net/1794/24520.
Full text2021-04-30
Lorchat, Étienne. "Optical spectroscopy of heterostructures based on atomically-thin semiconductors." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAE035.
Full textDuring this thesis, we have fabricated and studied by optical spectroscopy, van der Waals heterostructures composed of semiconductor monolayers (transition metal dichalcogenides, TMD) coupled to a graphene monolayer or to a plasmonic resonator. We have observed significant changes in the dynamics of the TMD optically excited states (excitons) when it is in direct contact with graphene. Graphene neutralizes the TMD monolayer and enables non-radiative transfer of excitons within less than a few picoseconds. This energy transfer process may be accompanied by a considerably less efficient, extrinsic photodoping. The reduced lifetime of TMD excitons in the presence of graphene has been exploited to show that their valley pseudo-spin maintains a high degree of polarization and coherence up to room temperature. Finally, by strongly coupling TMD excitons to the modes of a geometric phase plasmonic resonator, we have demonstrated, at room temperature, that the momentum of the resulting chiral polaritons (chiralitons) is locked to their valley pseudo-spin
Adrian, Marlene [Verfasser]. "Energy transfer in free-standing van der Waals heterostructures after optical excitation / Marlene Adrian." Kassel : Universitätsbibliothek Kassel, 2019. http://d-nb.info/1187165239/34.
Full textMenon, Vaidehi. "Stiffness and Strain Sensitivity of Graphene-CNT van der Waals Heterostructures: Molecular Dynamics Study." University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1595938261814484.
Full textLi, Wei. "Ultrasensitive NO2 gas sensors based on layered van der Waals MoO3 and its heterostructures." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/232666/1/Wei_Li_Thesis.pdf.
Full textHenck, Hugo. "Hétérostructures de van der Waals à base de Nitrure." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS319/document.
Full textThis thesis is at the interface between the study of nitride based compounds and the emerging structures formed by atomically thin bi-dimensional (2D) materials. This work consists in the study of the hybridization of the properties of large band gap materials from the nitride family and the mechanical, electronic and optical performances of layered materials, recently isolated at the monolayer level, highly considered due to their possible applications in electronics devices and fundamental research. In particular, a study of electronics and structural properties of stacked layered materials and 2D/3D interfaces have been realised with microscopic and spectroscopic means such as Raman, photoemission and absorption spectroscopy.This work is firstly focused on the structural and electronic properties of hexagonal boron nitride (h-BN), insulating layered material with exotic optical properties, essential in in the purpose of integrating these 2D materials with disclosed performances. Using graphene as an ideal substrate in order to enable the measure of insulating h-BN during photoemission experiments, a study of structural defects has been realized. Consequently, the first direct observation of multilayer h-BN band structure is presented in this manuscript. On the other hand, a different approach consisting on integrating bi-dimensional materials directly on functional bulk materials has been studied. This 2D/3D heterostructure composed of naturally N-doped molybdenum disulphide and intentionally P-doped gallium nitride using magnesium has been characterised. A charge transfer from GaN to MoS2 has been observed suggesting a fine-tuning of the electronic properties of such structure by the choice of materials.In this work present the full band alignment diagrams of the studied structure allowing a better understanding of these emerging systems
Froehlicher, Guillaume. "Optical spectroscopy of two-dimensional materials : graphene, transition metal dichalcogenides and van der Waals heterostructures." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAE033/document.
Full textIn this project, we have used micro-Raman and micro-photoluminescence spectroscopy to study two-dimensional materials (graphene and transition metal dichalcogenides) and van der Waals heterostructures. First, using electrochemically-gated graphene transistors, we show that Raman spectroscopy is an extremely sensitive tool for advanced characteri-zations of graphene samples. Then, we investigate the evolution of the physical properties of N-layer semiconducting transition metal dichalcogenides, in particular molybdenum ditelluride (MoTe2) and molybdenum diselenide (MoSe2). In these layered structures, theDavydov splitting of zone-center optical phonons is observed and remarkably well described by a ‘textbook’ force constant model. We then describe an all-optical study of interlayer charge and energy transfer in van der Waals heterostructures made of graphene and MoSe2 monolayers. This work sheds light on the very rich photophysics of these atomically thin two-dimensional materials and on their potential in view of optoelectronic applications
Chen, Xi. "The Hofstadter spectrum of monolayer and bilayer graphene van der Waals heterostructures with boron nitride." Thesis, Lancaster University, 2015. http://eprints.lancs.ac.uk/76231/.
Full textDel, Pozo Zamudio Osvaldo. "Optics of atomically thin films and van der Waals heterostructures made from two-dimensional semiconductors." Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/11975/.
Full textFörg, Michael [Verfasser], and Alexander [Akademischer Betreuer] Högele. "Confocal and cavity-enhanced spectroscopy of semiconductor van der Waals heterostructures / Michael Förg ; Betreuer: Alexander Högele." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2020. http://d-nb.info/1218466251/34.
Full textZollner, Klaus [Verfasser], and Jaroslav [Akademischer Betreuer] Fabian. "Proximity-induced spin-orbit and exchange coupling in van der Waals heterostructures / Klaus Zollner ; Betreuer: Jaroslav Fabian." Regensburg : Universitätsbibliothek Regensburg, 2021. http://d-nb.info/1227039603/34.
Full textCohen, Liam Augustus. "Fabricating Van der Waals heterostructures with air sensitive materials : a study of flake Bi₂Sr₂CaCu₂08₊x." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/118024.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages [96]-[97]).
by Liam Augustus Cohen.
S.B.
Bradford, Jonathan. "Growth and characterisation of two-dimensional materials and their heterostructures on sic." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/134400/1/Jonathan_Bradford_Thesis.pdf.
Full textMouafo, Notemgnou Louis Donald. "Two dimensional materials, nanoparticles and their heterostructures for nanoelectronics and spintronics." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAE002/document.
Full textThis thesis investigates the charge and spin transport processes in 0D, 2D nanostructures and 2D-0D Van der Waals heterostructures (VdWh). The La0.67Sr0.33MnO3 perovskite nanocrystals reveal exceptional magnetoresistances (MR) at low temperature driven by their paramagnetic shell magnetization independently of their ferromagnetic core. A detailed study of MoSe2 field effect transistors enables to elucidate a complete map of the charge injection mechanisms at the metal/MoSe2 interface. An alternative approach is reported for fabricating 2D-0D VdWh suitable for single electron electronics involving the growth of self-assembled Al nanoclusters over the graphene and MoS2 surfaces. The transparency the 2D materials to the vertical electric field enables efficient modulation of the electric state of the supported Al clusters resulting to single electron logic functionalities. The devices consisting of graphene exhibit MR attributed to the magneto-Coulomb effect
Tenasini, Giulia. "Quantum transport in monolayer WTe2." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14897/.
Full textTesař, Jan. "Příprava a charakterizace atomárně tenkých vrstev." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417143.
Full textHsu, Chi-Chang, and 徐啟昌. "Light interaction in InSe/GaSe van der Waals heterostructures." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/4wc8ju.
Full text國立中山大學
物理學系研究所
106
The two-dimensional heterostructures are bonded by van der Waals forces at the interface, different from three-dimensional materials which are connected by covalent bonds. These heterostructures lack dangling bonds and lattice mismatch. In addition, ultra-fast charge transfer in van der Waals heterostructures takes place within 50 fs. When incident light passes through the heterostructures, it engages in multiple reflections within the underlying substrates, producing interferences that lead to enhancement or attenuation of Raman intensities and photoluminescence intensities. Thus, the multiple boundaries and thickness of each material play a key role in the interaction of light and heterostructures and strongly affect the device performance. Gallium selenide (GaSe) and indium selenide (InSe) of IIIA-VIA groups have direct band gaps in few layers and multi-color photoresponse ranging from ultraviolet to near infrared. Therefore, in this study, InSe/GaSe and GaSe/InSe heterostructures were fabricated on wafers with silicon dioxide of different thicknesses. The interaction between the light and heterostructures was investigated by employing Raman and photoluminescence spectroscopy. From the results, the Raman intensities of the individual InSe, individual GaSe and junction are the strongest when the thickness of silicon dioxide is 270 nm. The Raman intensities of InSe and GaSe at the lower layer of the junction are higher than the upper layer. The photoluminescence intensity of GaSe at the lower layer of the junction is stronger than the upper layer. It is found that when the excitation wavelength is close to the band gap of GaSe, a resonance phenomenon occur at interface resulting in enhancement of Raman intensities. Based on the interference model, a strategy to modulate the photon and photoelectric properties of InSe/GaSe heterostructures and GaSe/InSe heterostructures is proposed which may provide new ways to improve the performance of optoelectronic devices such as LEDs and solar cells.
Finney, Nathan Robert. "Symmetry engineering via angular control of layered van der Waals heterostructures." Thesis, 2021. https://doi.org/10.7916/d8-h1jk-ha03.
Full text(9597326), Maithilee Motlag. "Laser shock nanostraining of 2D materials and van der Waals heterostructures." Thesis, 2021.
Find full textSince the successful exfoliation of graphene, two-dimensional (2D) materials have attracted a lot of scientific interest due to their electronic, chemical, and mechanical properties. Due their reduced dimensionality, these 2D materials exhibit superior mechanical and optoelectronic properties when compared to their bulk counterparts. Within the family of 2D materials, the ultrathin transition metal dichalcogenides (TMDs) such as Tungsten diselenide and Molybdenum disulphide have gained significant attention due to their chemical versatility and tunability. Furthermore, it is possible to leverage the distinct characteristic properties of these 2D materials, which are held together by van der Waals forces, by stacking different 2D layers on top of each other resulting in van der Waals (vdW) heterostructures. Due to the absence of feasible methods to effectively deform the crystal structures of these 2D materials and vdW heterostructures, their mechanical properties have not been thoroughly understood. The atomistic simulations can effectively capture the material behavior at the nanoscale level and help us not only not only understand the mechanical properties of these materials but also aid in the development of tailored processes to tune the material properties for the design of novel metamaterials. Using atomistic simulations, we develop the process - property relationships which can guide the direction of experimentation efforts, thereby making the process of discovering and designing new metamaterials efficient.
In this work, we have used laser shock nanostraining technique which is a scalable approach to modulate the optomechanical properties of 2D materials and vdW materials for practical semiconductor industry applications. The deformation mechanisms of 2D materials such as graphene, boron nitride (BN) and TMDs such as WSe2 and MoS2 are examined by employing a laser shocking process. We report studies on crystal structure deformation of multilayered WSe2 and monolayer graphene at ultra-high strain rate using laser shock . The laser shocking process generates high pressure at GPa level, causing asymmetric 3D straining in graphene and a novel kinked-like locking structure in multilayered WSe2. The deformation processes and related mechanical behaviors in laser shocked 2D materials are examined using atomistic simulations. Moiré heterostructures can be obtained by introducing a twist angle between these 2D layers, which can result into vdW materials with different properties, thereby adding an additional degree of freedom in the process-property design approach. We were able to successfully create a tunable stain profile in 2D materials and vdW heterostructures to modulate the local properties such as friction, and bandgap by controlling the level of laser shock, twist angle between the 2D layers and by applying appropriate laser shock pressure . We thus extend this knowledge to further explore the pathways of strain modulation using a combination of laser shocking process, moiré engineering, and strain engineering in 2D materials consisting of graphene, BN, and MoS2 and to develop the process - property relationships in vdW materials.
In summary, this research presents a systematic understanding of the effect of laser shocking process on the van der Waals materials and demonstrates the modulation of mechanical and opto-electronic property using laser nanostraining approach. This understanding provides us with opportunities for deterministic design of 2D materials with controllable properties for semiconductor and nanoelectronics applications.
Chen, Ciao-Fen, and 陳巧芬. "Multifunctional Logic-gate Realizations in van der Waals Heterostructures via Rapid Thermal Annealing." Thesis, 2019. http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id=%22107NCHU5198003%22.&searchmode=basic.
Full text國立中興大學
物理學系所
107
In this work, we produced a field-effect transistor based on a Molybdenum ditelluride(MoTe2)/ Tin sulfide (SnS2) structure by mechanical exfoliation and dry transferred. SnS2 is a typical n-type semiconductor, and MoTe2 exhibits ambipolar behavior which the thickness is between 3 to 10 nm. By the process of rapid thermal annealing in the dry air environment, the polarity of MoTe2 could change to p-type because of oxygen doping. Because of this process, the position of Fermi level would be down-shifted to valence band. As for SnS2, we chose the thicker thickness of SnS2 to prevent the polarity change from annealing. The band structure of heterojunction in various annealing temperature condition and gate voltage was different, so the rectification ratio would be positive or negative. In terms of applications in logic circuits, we observed the binary inverter in the condition that was without annealing process. We hope that we can obverse the multistate logic inverter by the method of annealing.
Strutynski, Karol. "The Van Der Waals Interactions in Graphitic Systems." Tese, 2014. https://repositorio-aberto.up.pt/handle/10216/75188.
Full textStrutynski, Karol. "The Van Der Waals Interactions in Graphitic Systems." Doctoral thesis, 2014. https://repositorio-aberto.up.pt/handle/10216/75188.
Full textTsai, Meng-Yu, and 蔡孟宇. "Nonvolatile Optoelectronic Memory with Fully Visible Spectral Distinction Based on van der Waals Heterostructures." Thesis, 2019. http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id=%22107NCHU5759017%22.&searchmode=basic.
Full text國立中興大學
奈米科學研究所
107
Various functional wearable-device are facing the hidden problem of cost, power consumption and efficacy performance. However, with the miniaturization of electronic component size, portable and low-power devices become more and more popular. In this research, we apply two-dimensional layered materials to the structure of nonvolatile memory. Through the excellent electrical properties of 2-D layered materials and the structural arrangement of floating-gate memory, we start to explore the photoelectric characteristics and the application value of ReSe2/h-BN/graphene 2-D structure. In terms of experiment, mechanical exfoliation was chosen to complete multi-functional 2-D components. To research the memory ability of two-dimensional structure, we selected ReSe2 material as semiconductor, h-BN material as insulator, and graphene as the metal of floating-gate, expecting that this component will show non-volatile performance with low power consumption as well as erasable-programmable property. Combining the ambipolar electrical characteristics of ReSe2 with the storage ability of graphene floating gate not only shows excellent memory retention, which maintains nearly 6 orders of storage space for a long time, but also shows the durability of cycling endurance test. Therefore, it can be developed into a functional application of memristor with multi-resistive-state performance. However, there are unexpected results in the illumination experiment. We found that, through photon injection, electrons and holes will be erased at the same time. Besides, this device not only exhibits rapid photoreaction time of 1 sec, but also discriminates fully visible light and different optical power without external power supply, which can achieve the function of distinguishing color and brightness. There are lots of potential to create functional applications, such like power-saving nanoscale light detector or digital camera. As a nanoscale electronic component, this non-volatile ReSe2/h-BN/graphene device exhibits great memory performance as expected, and achieves characteristics of low cost, low power consumption and multi-function. The outstanding performance creates highly applied value in the future.
Sá, Miguel Boultwood de Carvalho Marques de. "Theoretical description of angleresolved photoemission spectroscopy of low twist angle van der Waals multilayers." Master's thesis, 2022. https://hdl.handle.net/10216/140715.
Full textSahoo, Anindita. "Electrical Transport in the Hybrid Structures of 2D Van Der Waals Materials and Perovskite Oxide." Thesis, 2016. http://etd.iisc.ernet.in/handle/2005/2948.
Full text