Academic literature on the topic 'Natural molecules; Plants'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Natural molecules; Plants.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Natural molecules; Plants"
COMAN, Cristina, Olivia Dumitrita RUGINA, and Carmen SOCACIU. "Plants and Natural Compounds with Antidiabetic Action." Notulae Botanicae Horti Agrobotanici Cluj-Napoca 40, no. 1 (May 14, 2012): 314. http://dx.doi.org/10.15835/nbha4017205.
Full textLu, Kai, Madhavi Bhat, and Sujit Basu. "Plants and their active compounds: natural molecules to target angiogenesis." Angiogenesis 19, no. 3 (May 6, 2016): 287–95. http://dx.doi.org/10.1007/s10456-016-9512-y.
Full textMolteni, Monica, Annalisa Bosi, and Carlo Rossetti. "Natural Products with Toll-Like Receptor 4 Antagonist Activity." International Journal of Inflammation 2018 (2018): 1–9. http://dx.doi.org/10.1155/2018/2859135.
Full textSaikin, Semion K., Alexander Eisfeld, Stéphanie Valleau, and Alán Aspuru-Guzik. "Photonics meets excitonics: natural and artificial molecular aggregates." Nanophotonics 2, no. 1 (February 1, 2013): 21–38. http://dx.doi.org/10.1515/nanoph-2012-0025.
Full textEl Menyiy, Naoual, Aya Khouchlaa, Nasreddine El Omari, Gokhan Zengin, Monica Gallo, Domenico Montesano, and Abdelhakim Bouyahya. "Litholytic Activities of Natural Bioactive Compounds and Their Mechanism Insights." Applied Sciences 11, no. 18 (September 18, 2021): 8702. http://dx.doi.org/10.3390/app11188702.
Full textCarvalho, B. M. A., J. D. L. Santos, B. M. Xavier, J. R. Almeida, L. M. Resende, W. Martins, S. Marcussi, et al. "Snake Venom PLA2s Inhibitors Isolated from Brazilian Plants: Synthetic and Natural Molecules." BioMed Research International 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/153045.
Full textMohamed Yafout, Amine Ousaid, Ibrahim Sbai El Otmani, Youssef Khayati, and Amal Ait Haj Said. "Natural products from the traditional Moroccan pharmacopoeia: A potential lead for the prevention and treatment of COVID-19." International Journal of Research in Pharmaceutical Sciences 11, SPL1 (November 27, 2020): 1278–85. http://dx.doi.org/10.26452/ijrps.v11ispl1.3619.
Full textAcquaviva, Rosaria, Giuseppe Antonio Malfa, and Claudia Di Giacomo. "Plant-Based Bioactive Molecules in Improving Health and Preventing Lifestyle Diseases." International Journal of Molecular Sciences 22, no. 6 (March 15, 2021): 2991. http://dx.doi.org/10.3390/ijms22062991.
Full textMousavi, Seyyed Sasan, Akbar Karami, Tahereh Movahhed Haghighi, Sefren Geiner Tumilaar, Fatimawali, Rinaldi Idroes, Shafi Mahmud, et al. "In Silico Evaluation of Iranian Medicinal Plant Phytoconstituents as Inhibitors against Main Protease and the Receptor-Binding Domain of SARS-CoV-2." Molecules 26, no. 18 (September 21, 2021): 5724. http://dx.doi.org/10.3390/molecules26185724.
Full textKarade, Divya, Durairaj Vijayasarathi, Narendra Kadoo, Renu Vyas, P. K. Ingle, and Muthukumarasamy Karthikeyan. "Design of Novel Drug-like Molecules Using Informatics Rich Secondary Metabolites Analysis of Indian Medicinal and Aromatic Plants." Combinatorial Chemistry & High Throughput Screening 23, no. 10 (December 28, 2020): 1113–31. http://dx.doi.org/10.2174/1386207323666200606211342.
Full textDissertations / Theses on the topic "Natural molecules; Plants"
Tang, Lam T. "New routes to heterocyclic product families." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365338.
Full textConesa, Muñoz Miquel Àngel. "Hybridization patterns in Balearic endemic plants assessed by molecular and morphological markers." Doctoral thesis, Universitat de les Illes Balears, 2010. http://hdl.handle.net/10803/9373.
Full textNatural hybridization is a widely known process in plants. It is an important source of variation promoting species evolution. It is likely to be the origin of many angiosperms, including local endemisms. Oppositely, it is also regarded as a potential threat for endemisms survivorship, diluting their differentail traits. This thesis deals with putative natural hybridization processes involving three Balearic endemics (Viola jaubertiana, Lotus fulgurans i Helichrysum crassifolium), from the points of view of the DNA molecular markers and the morphology. The role of natural hybridization in the variation, origin, and conservation of the above endemics is evaluated.
Alber, Annette Veronika. "Phenolic 3-hydroxylases in land plants : biochemical diversity and molecular evolution." Thesis, Strasbourg, 2016. http://hdl.handle.net/1828/7651.
Full textGraduate
2017-08-31
Lakshmanan, Aparna. "Modulation of Sodium Iodide Symporter-mediated Thyroidal Radioiodide Uptake by Small Molecule Inhibitors, Natural Plant-based Products and microRNAs." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429407914.
Full textRaposo, Andréa. "Estrutura genética e fluxo gênico de populações naturais de andiroba (Carapa guianensis Aubl., Meliaceae) visando o manejo e a conservação da espécie." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/11/11137/tde-07082007-114235/.
Full textCrabwood (Carapa guianensis) is a tree of economic importance in the Amazon region, due to the great interest it has been attracting in the wood and cosmetics industries. It is a monoecious species, with asynchronic flowering and self-incompatible. This species is very plastic and adapts to occupy different habitats, and it is found in the lowland and upland habitats. The objectives of this study were to evaluate the genetic structure between two natural populations of crabwood, and to quantify the intrapopulational genetic diversity, the spatial autocorrelation and gene flow of one population, considering two habitats (upland and lowland) and three size classes (seedlings, young plants and adults). For the interpopulational study, 39 adult individuals were evaluated in the municipal district of Porto Acre and 38 in Rio Branco. For the intrapopulational studies, 957 individuals were analyzed in the municipal district of Rio Branco. Seven polymorphic microssatellite loci were used to detect 42 alleles in both populations, were the genetic parameter estimates were very similar to each other. Inbreeding was not observed and the apparent outcrossing rate was high, indicating an outcrossing breeding system for this species. Most of the genetic variability (90.5%) was found to be within populations. However, the genetic divergence between them (9.5%) was statistically significant and can be considered as intermediate. Regarding the intrapopulacional variability, 85 alleles were observed in the Rio Branco population, with 67 alleles occurring in the upland habitat and 70 in the lowland. The genetic diversity was similar in the three size classes in the total population, and in the two habitats. No inbreeding was observed in any of the size classes of either habitat. No genetic divergence was observed between size classes as well. Between individuals of the upland habitat and those of the lowland habitat, this divergence was low (1.63%), but significant. The autocorrelation spatial analysis of the genotypes showed that the Rio Branco population presented low spatial genetic structuring, with the trees located at a distance of approximately 370 meters tending to be genetically similar. In the lowland habitat the same pattern was found, with trees located at a distance of 160 meters tending to be more related between themselves. When each size class of this habitat was observed separately, a low spatial genetic structuring was found in the young classes and an almost random disposal of the genotypes was observed in the adult classes. In the upland habitat, a spatial genetic structure of the genotypes was not observed in any of the size classes. The paternity analysis of the seedlings indicated that 7.3% of the male parents were found in the upland habitat and 9.4% in the lowland. This low index shows that the amount of gene flow coming from outside the sampling area is high. Long-distance gene flow within the population studied was observed, with an average distance of 888.8 m found between habitats. Based in the acquired knowledge on the genetic structure, management and conservation strategies can be established for these natural crabwood populations.
Weisberg, Alexandra Jamie. "Investigations into the molecular evolution of plant terpene, alkaloid, and urushiol biosynthetic enzymes." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/64408.
Full textPh. D.
CANO, PERDOMO EDNA TATIANA, and RODRÍGUEZ JOSÉ LUIS HERNÁNDEZ. "EVALUACIÓN DE LA VARIACIÓN SOMACLONAL EN PLANTAS REGENERADAS IN VITRO DE Phalaenopsis sp, UTILIZANDO MARCADORES MOLECULARES." Tesis de Licenciatura, Universidad Autónoma del Estado de México, 2017. http://hdl.handle.net/20.500.11799/65254.
Full textINTRODUCCIÓN La familia Orchidaceae es considerada la más extensa y rica en diversidad debido a que está conformada por más de ochocientos géneros y más de veinte mil especies Las orquídeas tienen dos tipos básicos de crecimiento: simpodial en donde el nuevo crecimiento se produce a partir de una yema axilar en sentido horizontal; y monopodial en el cual el nuevo crecimiento se da a partir de una yema apical en sentido vertical como es el caso de la especie Phalaenopsis (Escobar y Múnera 1991) Phalaenopsis es una especie epífita originaria del sureste de Asia India Indonesia y parte de Australia (Rittershausen y Rittershausen 2004) Estas representan uno de los grupos de plantas más apreciados a nivel mundial por el colorido forma y duración de sus flores (Tirado et al 2005) Sin embargo debido a su crecimiento monopodial la propagación vegetativa se ha dificultado y la reproducción sexual se ha visto agravada por la presencia de altos índices de esterilidad en algunos híbridos (Feria et al 2007) Es por ello que se han desarrollado diversas formas de propagación clonal in vitro de Phalaenopsis por ejemplo: la formación de embriones somáticos a partir de callos hojas ápices radicales ápices meristemáticos yemas florales y cuellos o coronas para su posterior regeneración en plántulas (Tirado et al 2005) 2 La producción masiva de orquídeas se puede lograr mediante el uso de técnicas de micropropagación Sin embargo esto puede llevar a la ocurrencia de Variación Somaclonal (VS) lo que provoca cambios genéticos y en consecuencia variaciones morfológicas o fisiológicas en el producto final (Chen y Chen 2007) Puesto que el tiempo de producción de orquídeas es relativamente largo identificar la VS por los rasgos fenotípicos resulta difícil Por ello se pueden utilizar técnicas moleculares como el Random Amplified Polymorphic DNA (RAPD) el Amplified Fragment Length Polymorphism (AFLP) Restriction Fragment Length Polymorphism (RFLP) o la clonación de genes candidatos mediante el uso de primers degenerados y la Reacción de Cadena de la Polimerasa (PCR) basado en la conservación de secuencias de aminoácidos en los genes diana; que permiten identificar mutaciones genéticas o epigenéticas (Chen y Chen 2007)
Adhikari, Binaya. "Understanding natural expression of cytoplasmic male sterility in flowering plants using a wildflower Lobelia siphilitica L. (Campanulaceae)." Kent State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=kent1532954470078823.
Full textOeljeklaus, Julian [Verfasser], and Markus [Akademischer Betreuer] Kaiser. "Development and chemical synthesis of natural product-derived and rationally designed small molecule probes for plant biology research / Julian Oeljeklaus ; Betreuer: Markus Kaiser." Duisburg, 2018. http://d-nb.info/1151446610/34.
Full textOtto, Julio Cezar Santos. "Determinação do grau de homozigose de genótipos selecionados do híbrido natural W34b (BRA 031143) da espécie Arachis Pintoi Krapov. & Gregory, por meio de marcadores moleculares /." Botucatu : [s.n.], 2007. http://hdl.handle.net/11449/102709.
Full textBanca: Edson Seizo Mori
Banca: Rogério Abdallah Curi
Resumo: O Arachis Pintoi é uma leguminosa forrageira de alta qualidade, apresentando valores de 18 a 25% de proteína bruta, 60 a 67% de digestibilidade "in vitro" da matéria seca e 60 a 72% de digestibilidade da energia bruta, além de apresentar grande aceitabilidade pelos animais. O valor nutritivo do A. Pintoi é mais alto quando comparado com gramíneas e leguminosas tropicais. No sistema de produção animal em pasto a utilização de leguminosa forrageira deve ser valorizada pela qualidade de produção e pelo alto valor nutritivo que é oferecido à dieta e também pelo aporte de nitrogênio atmosférico incorporado aos ecossistemas das pastagens. O uso de leguminosas em pastagens, no Brasil, ainda é muito limitado, seja porque o portfólio de cultivares é pequeno, ou porque o preço da semente ou do material vegetativo é elevado. Neste trabalho foram avaliados quatro genótipos de A. Pintoi (G1, G2, G3 e G4) oriundos de pré-seleção de um híbrido natural da espécie, utilizando o marcador molecular microssatélite visando à seleção de plantas homozigotas para, a partir delas, seguir o processo de melhoramento em cada genótipo para obtenção de linhagens puras. Foram utilizados nesta avaliação 14 locos de microssatélites dos quais, dez mostraram-se polimórficos e quatro monomórficos. O número de alelos observado variou de 1 a 11 por loco, com um total de 85 alelos e média de 8,5 por loco. A heterozigose observada variou de 0,3377 no loco AP183CV a 0,8701 no loco AP190CV com média de 0,6403. As plantas de maior homozigose foram selecionadas para dar continuidade ao processo de melhoramento e após avaliação agronômica poderão ser lançadas como potenciais cultivares de A. Pintoi. Considerando-se somente as plantas com homozigose superior a 70%, foi possível selecionar cinco plantas do genótipo G1 ...(Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Not available.
Mestre
Books on the topic "Natural molecules; Plants"
Du, Guan-Hua. Natural Small Molecule Drugs from Plants. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8022-7.
Full textZhou, J. Traditional Chinese medicines: Molecular structures, natural sources, and applications. 2nd ed. Aldershot, England: Ashgate, 2003.
Find full textZhou, Jiaju. Encyclopedia of Traditional Chinese Medicines - Molecular Structures, Pharmacological Activities, Natural Sources and Applications: Vol. 5: Isolated Compounds T—Z, References, TCM Plants and Congeners. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Find full textMahmud Tareq Hassan Khan (Editor) and Arjumand Ather (Editor), eds. Lead Molecules from Natural Products, Volume 2: Discovery and New Trends (Advances in Phytomedicine). Elsevier Science, 2006.
Find full textDu, Guan-Hua. Natural Small Molecule Drugs from Plants. Springer, 2018.
Find full textGaines, Susan M., Geoffrey Eglinton, and Jürgen Rullkötter. Echoes of Life. Oxford University Press, 2008. http://dx.doi.org/10.1093/oso/9780195176193.001.0001.
Full textWiart, Christophe. Medicinal Plants in Asia for Metabolic Syndrome: Natural Products and Molecular Basis. Taylor & Francis Group, 2017.
Find full textWiart, Christophe. Medicinal Plants in Asia for Protozoal Infections: Molecular Basis of Natural Products Pharmacology. Elsevier Science & Technology Books, 2020.
Find full text(Compiler), Jiaju Zhou, Guirong Xie (Compiler), Xinjian Yan (Compiler), and G. W. A. Milne (Editor), eds. Traditional Chinese Medicines: Molecular Structures, Natural Sources and Applications. 2nd ed. Wiley, 2003.
Find full textPeña, Leandro. Transgenic Plants: Methods and Protocols (Methods in Molecular Biology). Humana Press, 2004.
Find full textBook chapters on the topic "Natural molecules; Plants"
Bandyopadhyay, Debasish, Valeria Garcia, and Felipe Gonzalez. "Heterocyclic Drugs from Plants." In Promising Drug Molecules of Natural Origin, 215–70. Includes bibliographical references and index.: Apple Academic Press, 2020. http://dx.doi.org/10.1201/9781003010395-11.
Full textNiero, Rivaldo, Valdir Cechinel Filho, and Rosendo Augusto Yunes. "Medicinal Plants and Phytomedicines." In Natural Products as Source of Molecules with Therapeutic Potential, 1–33. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00545-0_1.
Full textRamawat, K. G., M. Marthur, S. Dass, and S. Suthar. "Guggulsterone: a Potent Natural Hypolipidemic Agent from Commiphora wightii – Problems, Perseverance, and Prospects." In Bioactive Molecules and Medicinal Plants, 101–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-74603-4_5.
Full textVerma, Peeyushi, and Rakhi Chaturvedi. "In Vitro Plant Cell Cultures: A Route to Production of Natural Molecules and Systematic In Vitro Assays for their Biological Properties." In Medicinal Plants, 215–41. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31269-5_10.
Full textField, Robert A. "Oligosaccharide Signalling Molecules." In Plant-derived Natural Products, 349–59. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-85498-4_16.
Full textChakma, Nidhi, Moutoshi Chakraborty, Salma Bhyan, and Mobashwer Alam. "Molecular breeding for combating salinity stress in sorghum: progress and prospects." In Molecular breeding in wheat, maize and sorghum: strategies for improving abiotic stress tolerance and yield, 421–32. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789245431.0024.
Full textKlein, Markus, and Werner Roos. "Handling Dangerous Molecules: Transport and Compartmentation of Plant Natural Products." In Plant-derived Natural Products, 229–67. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-85498-4_11.
Full textArnold, Michael L., and Simon K. Emms. "Molecular Markers, Gene Flow, and Natural Selection." In Molecular Systematics of Plants II, 442–58. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5419-6_15.
Full textChaves-Silva, Samuel, Thamara Ferreira da Silva, and Cristiane Jovelina da-Silva. "Molecular Biology Tools to Boost the Production of Natural Products." In Brazilian Medicinal Plants, edited by Luzia Valentina Modolo, 71–90. Boca Raton, Florida : CRC Press, 2019. | Series: Natural products chemistry of global plants: CRC Press, 2019. http://dx.doi.org/10.1201/b22296-4.
Full textO’Connor, Sarah. "Methods for Molecular Identification of Biosynthetic Enzymes in Plants." In Plant-derived Natural Products, 165–79. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-85498-4_7.
Full textConference papers on the topic "Natural molecules; Plants"
Messaili, S., C. Colas, and E. Destandau. "Molecular networks and CPC fractionation for rapid screening of bioactive natural molecules." In 67th International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research (GA) in cooperation with the French Society of Pharmacognosy AFERP. © Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-3399696.
Full textKryukov, А. А., A. O. Gorbunova, Sh K. Kurbanniyazov, Yu V. Mikhaylova, A. V. Rodionov, M. F. Shishova, P. M. Zhurbenko, and A. P. Yurkov. "Molecular-genetic identification of arbuscular mycorrhiza fungi from Teberda natural reserve." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.134.
Full textGrajdieru, Cristina. "Molecular identification of Aflatoxin-producing aspergillus strains in maize seed-material." In International Scientific Symposium "Plant Protection – Achievements and Prospects". Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2020. http://dx.doi.org/10.53040/9789975347204.66.
Full textMurillo Mejias, Nadia Mariel, and Tien-Hao Hsieh. "Modelos químicos de protoestrellas de masa baja." In I Congreso Internacional de Ciencias Exactas y Naturales. Universidad Nacional, 2019. http://dx.doi.org/10.15359/cicen.1.40.
Full textZhou, H., K. Ma, G. Jia, J. Zoval, and M. Madou. "Micro Contact Printing of DNA Molecules." In ASME 2004 3rd Integrated Nanosystems Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/nano2004-46060.
Full textMishra, Ashok Kumar, and Satya Prakash Tewari. "Theoretical evaluation of the bioactivity of a plant-derived natural molecule-D-Pinitol and other derived structure." In ADVANCES IN BASIC SCIENCE (ICABS 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5122568.
Full textRemy, S., F. Olivon, D. Solis, D. Touboul, and M. Litaudon. "Feature-based molecular networking and network annotation propagation applied to natural antiviral compound research from tropical Euphorbiaceae." In 67th International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research (GA) in cooperation with the French Society of Pharmacognosy AFERP. © Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-3399652.
Full textGaudry, A., L. Quirós, A. Rutz, M. Dounoue, M. Kaiser, B. David, L. Marcourt, EF Queiroz, J.-L. Wolfender, and P.-M. Allard. "Multi-informative bioactivity-based molecular networking of a large chemodiverse plant collection allows efficient identification of trypanocidal natural products." In 67th International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research (GA) in cooperation with the French Society of Pharmacognosy AFERP. © Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-3399839.
Full textSulaiman Mohd Johari, M., N. Ahmat, Bakar S. Imran Abu, Kamarozaman A. Salihah, and Mohamad S. Aminah Syed. "Chemical constituents, molecular docking, and acetylcholinestrase inhibitory activity of Macaranga gigantea." In 67th International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research (GA) in cooperation with the French Society of Pharmacognosy AFERP. © Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-3399868.
Full textKritsanida, M., M. Graziani, E. Karachaliou, M. Litaudon, MA Beniddir, and R. Grougnet. "Investigation of the phytochemical profiles of Boronella spp (Rutaceae) using molecular networking." In 67th International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research (GA) in cooperation with the French Society of Pharmacognosy AFERP. © Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-3399835.
Full textReports on the topic "Natural molecules; Plants"
Safeguarding through science: Center for Plant Health Science and Technology 2009 Accomplishments. U.S. Department of Agriculture, Animal and Plant Health Inspection Service, February 2011. http://dx.doi.org/10.32747/2011.7296843.aphis.
Full text