Dissertations / Theses on the topic 'Natural language processing (Computer science)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Natural language processing (Computer science).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Naphtal, Rachael (Rachael M. ). "Natural language processing based nutritional application." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/100640.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 67-68).
The ability to accurately and eciently track nutritional intake is a powerful tool in combating obesity and other food related diseases. Currently, many methods used for this task are time consuming or easily abandoned; however, a natural language based application that converts spoken text to nutritional information could be a convenient and eective solution. This thesis describes the creation of an application that translates spoken food diaries into nutritional database entries. It explores dierent methods for solving the problem of converting brands, descriptions and food item names into entries in nutritional databases. Specifically, we constructed a cache of over 4,000 food items, and also created a variety of methods to allow refinement of database mappings. We also explored methods of dealing with ambiguous quantity descriptions and the mapping of spoken quantity values to numerical units. When assessed by 500 users entering their daily meals on Amazon Mechanical Turk, the system was able to map 83.8% of the correctly interpreted spoken food items to relevant nutritional database entries. It was also able to nd a logical quantity for 92.2% of the correct food entries. Overall, this system shows a signicant step towards the intelligent conversion of spoken food diaries to actual nutritional feedback.
by Rachael Naphtal.
M. Eng.
Cosh, Kenneth John. "Supporting organisational semiotics with natural language processing techniques." Thesis, Lancaster University, 2003. http://eprints.lancs.ac.uk/12351/.
Full text張少能 and Siu-nang Bruce Cheung. "A concise framework of natural language processing." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1989. http://hub.hku.hk/bib/B31208563.
Full textLei, Tao Ph D. Massachusetts Institute of Technology. "Interpretable neural models for natural language processing." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/108990.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 109-119).
The success of neural network models often comes at a cost of interpretability. This thesis addresses the problem by providing justifications behind the model's structure and predictions. In the first part of this thesis, we present a class of sequence operations for text processing. The proposed component generalizes from convolution operations and gated aggregations. As justifications, we relate this component to string kernels, i.e. functions measuring the similarity between sequences, and demonstrate how it encodes the efficient kernel computing algorithm into its structure. The proposed model achieves state-of-the-art or competitive results compared to alternative architectures (such as LSTMs and CNNs) across several NLP applications. In the second part, we learn rationales behind the model's prediction by extracting input pieces as supporting evidence. Rationales are tailored to be short and coherent, yet sufficient for making the same prediction. Our approach combines two modular components, generator and encoder, which are trained to operate well together. The generator specifies a distribution over text fragments as candidate rationales and these are passed through the encoder for prediction. Rationales are never given during training. Instead, the model is regularized by the desiderata for rationales. We demonstrate the effectiveness of this learning framework in applications such multi-aspect sentiment analysis. Our method achieves a performance over 90% evaluated against manual annotated rationales.
by Tao Lei.
Ph. D.
Grinman, Alex J. "Natural language processing on encrypted patient data." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/113438.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 85-86).
While many industries can benefit from machine learning techniques for data analysis, they often do not have the technical expertise nor computational power to do so. Therefore, many organizations would benefit from outsourcing their data analysis. Yet, stringent data privacy policies prevent outsourcing sensitive data and may stop the delegation of data analysis in its tracks. In this thesis, we put forth a two-party system where one party capable of powerful computation can run certain machine learning algorithms from the natural language processing domain on the second party's data, where the first party is limited to learning only specific functions of the second party's data and nothing else. Our system provides simple cryptographic schemes for locating keywords, matching approximate regular expressions, and computing frequency analysis on encrypted data. We present a full implementation of this system in the form of a extendible software library and a command line interface. Finally, we discuss a medical case study where we used our system to run a suite of unmodified machine learning algorithms on encrypted free text patient notes.
by Alex J. Grinman.
M. Eng.
Cheung, Siu-nang Bruce. "A concise framework of natural language processing /." [Hong Kong : University of Hong Kong], 1989. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12432544.
Full textShepherd, David. "Natural language program analysis combining natural language processing with program analysis to improve software maintenance tools /." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 176 p, 2007. http://proquest.umi.com/pqdweb?did=1397920371&sid=6&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textBajwa, Imran Sarwar. "A natural language processing approach to generate SBVR and OCL." Thesis, University of Birmingham, 2014. http://etheses.bham.ac.uk//id/eprint/4890/.
Full textStrandberg, Aron, and Patrik Karlström. "Processing Natural Language for the Spotify API : Are sophisticated natural language processing algorithms necessary when processing language in a limited scope?" Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186867.
Full textBigert, Johnny. "Automatic and unsupervised methods in natural language processing." Doctoral thesis, Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-156.
Full textWalker, Alden. "Natural language interaction with robots." Diss., Connect to the thesis, 2007. http://hdl.handle.net/10066/1275.
Full textXIAO, MIN. "Generalized Domain Adaptation for Sequence Labeling in Natural Language Processing." Diss., Temple University Libraries, 2016. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/391382.
Full textPh.D.
Sequence labeling tasks have been widely studied in the natural language processing area, such as part-of-speech tagging, syntactic chunking, dependency parsing, and etc. Most of those systems are developed on a large amount of labeled training data via supervised learning. However, manually collecting labeled training data is too time-consuming and expensive. As an alternative, to alleviate the issue of label scarcity, domain adaptation has recently been proposed to train a statistical machine learning model in a target domain where there is no enough labeled training data by exploiting existing free labeled training data in a different but related source domain. The natural language processing community has witnessed the success of domain adaptation in a variety of sequence labeling tasks. Though the labeled training data in the source domain are available and free, however, they are not exactly as and can be very different from the test data in the target domain. Thus, simply applying naive supervised machine learning algorithms without considering domain differences may not fulfill the purpose. In this dissertation, we developed several novel representation learning approaches to address domain adaptation for sequence labeling in natural language processing. Those representation learning techniques aim to induce latent generalizable features to bridge domain divergence to enable cross-domain prediction. We first tackle a semi-supervised domain adaptation scenario where the target domain has a small amount of labeled training data and propose a distributed representation learning approach based on a probabilistic neural language model. We then relax the assumption of the availability of labeled training data in the target domain and study an unsupervised domain adaptation scenario where the target domain has only unlabeled training data, and give a task-informative representation learning approach based on dynamic dependency networks. Both works are developed in the setting where different domains contain sentences in different genres. We then extend and generalize domain adaptation into a more challenging scenario where different domains contain sentences in different languages and propose two cross-lingual representation learning approaches, one is based on deep neural networks with auxiliary bilingual word pairs and the other is based on annotation projection with auxiliary parallel sentences. All four specific learning scenarios are extensively evaluated with different sequence labeling tasks. The empirical results demonstrate the effectiveness of those generalized domain adaptation techniques for sequence labeling in natural language processing.
Temple University--Theses
Cline, Ben E. "Knowledge intensive natural language generation with revision." Diss., This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-09092008-063657/.
Full textChen, Michelle W. M. Eng Massachusetts Institute of Technology. "Comparison of natural language processing algorithms for medical texts." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/100298.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Title as it appears in MIT Commencement Exercises program, June 5, 2015: Comparison of NLP systems for medical text. Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 57-58).
With the large corpora of clinical texts, natural language processing (NLP) is growing to be a field that people are exploring to extract useful patient information. NLP applications in clinical medicine are especially important in domains where the clinical observations are crucial to define and diagnose the disease. There are a variety of different systems that attempt to match words and word phrases to medical terminologies. Because of the differences in annotation datasets and lack of common conventions, many of the systems yield conflicting results. The purpose of this thesis project is (1) to create a visual representation of how different concepts compare to each other when using various annotators and (2) to improve upon the NLP methods to yield terms with better fidelity to what the clinicians are trying to express.
by Michelle W. Chen.
M. Eng.
Chien, Isabel. "Natural language processing for precision clinical diagnostics and treatment." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119754.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 61-65).
In this thesis, I focus upon application of natural language processing to clinical diagnostics and treatment within the palliative care and serious illness field. I explore a variety of natural language processing methods, including deep learning, rule-based, and classic machine learning, and applied to the identication of documentation reflecting advanced care planning measures, serious illnesses, and serious illness symptoms. I introduce two tools that can be used to analyze clinical notes from electronic health records: ClinicalRegex, a regular expression interface, and PyCCI, an a clinical text annotation tool. Additionally, I discuss a palliative care-focused research project in which I apply machine learning natural language processing methods to identifying clinical documentation in the palliative care and serious illness field. Advance care planning, which includes clarifying and documenting goals of care and preferences for future care, is essential for achieving end-of-life care that is consistent with the preferences of dying patients and their families. Physicians document their communication about these preferences as unstructured free text in clinical notes; as a result, routine assessment of this quality indicator is time consuming and costly. Integrating goals of care conversations and advance care planning into decision-making about palliative surgery have been shown to result in less invasive care near the time of death and improve clinical outcomes for both the patient and surviving family members. Natural language processing methods offer an efficient and scalable way to improve the visibility of documented serious illness conversations within electronic health record data, helping to better quality of care.
by Isabel Chien.
M. Eng.
Indovina, Donna Blodgett. "A natural language interface to MS-DOS /." Online version of thesis, 1989. http://hdl.handle.net/1850/10548.
Full textShah, Aalok Bipin 1977. "Iteractive design and natural language processing in the WISE Project." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/80118.
Full textIncludes bibliographical references (p. 55-57).
by Aalok Bipin Shah.
S.B.and M.Eng.
Pham, Son Bao Computer Science & Engineering Faculty of Engineering UNSW. "Incremental knowledge acquisition for natural language processing." Awarded by:University of New South Wales. School of Computer Science and Engineering, 2006. http://handle.unsw.edu.au/1959.4/26299.
Full textLi, Wenhui. "Sentiment analysis: Quantitative evaluation of subjective opinions using natural language processing." Thesis, University of Ottawa (Canada), 2008. http://hdl.handle.net/10393/28000.
Full textJarmasz, Mario. ""Roget's Thesaurus" as a lexical resource for natural language processing." Thesis, University of Ottawa (Canada), 2003. http://hdl.handle.net/10393/26493.
Full textHu, Jin. "Explainable Deep Learning for Natural Language Processing." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254886.
Full textDjupa inlärningsmetoder får imponerande prestanda i många naturliga Neural Processing (NLP) uppgifter, men det är fortfarande svårt att veta vad hände inne i ett djupt neuralt nätverk. I denna avhandling, en allmän översikt av förklarliga AI och hur förklarliga djupa inlärningsmetoder tillämpas för NLP-uppgifter ges. Då den bi-riktiga LSTM och CRF (BiLSTM-CRF) modell för Named Entity Recognition (NER) uppgift införs, liksom tillvägagångssättet för att göra denna modell förklarlig. De tillvägagångssätt för att visualisera vikten av neuroner i BiLSTM-skiktet av Modellen för NER genom Layer-Wise Relevance Propagation (LRP) föreslås, som kan mäta hur neuroner bidrar till varje förutsägelse av ett ord i en sekvens. Idéer om hur man mäter påverkan av CRF-skiktet i Bi-LSTM-CRF-modellen beskrivs också.
O'Sullivan, John J. D. "Teach2Learn : gamifying education to gather training data for natural language processing." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/117320.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 65-66).
Teach2Learn is a website which crowd-sources the problem of labeling natural text samples using gamified education as an incentive. Students assign labels to text samples from an unlabeled data set, thereby teaching superised machine learning algorithms how to interpret new samples. In return, students can learn how that algorithm works by unlocking lessons written by researchers. This aligns the incentives of researchers and learners to help both achieve their goals. The application used current best practices in gamification to create a motivating structure around that labeling task. Testing showed that 27.7% of the user base (5/18 users) engaged with the content and labeled enough samples to unlock all of the lessons, suggesting that learning modules are sufficient motivation for the right users. Attempts to grow the platform through paid social media advertising were unsuccessful, likely because users aren't looking for a class when they browse those sites. Unpaid posts on subreddits discussing related topics, where users were more likely to be searching for learning opportunities, were more successful. Future research should seek users through comparable sites and explore how Teach2Learn can be used as an additional learning resource in classrooms.
by John J.D. O'Sullivan
M. Eng.
Forsyth, Alexander William. "Improving clinical decision making with natural language processing and machine learning." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112847.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 49-53).
This thesis focused on two tasks of applying natural language processing (NLP) and machine learning to electronic health records (EHRs) to improve clinical decision making. The first task was to predict cardiac resynchronization therapy (CRT) outcomes with better precision than the current physician guidelines for recommending the procedure. We combined NLP features from free-text physician notes with structured data to train a supervised classifier to predict CRT outcomes. While our results gave a slight improvement over the current baseline, we were not able to predict CRT outcome with both high precision and high recall. These results limit the clinical applicability of our model, and reinforce previous work, which also could not find accurate predictors of CRT response. The second task in this thesis was to extract breast cancer patient symptoms during chemotherapy from free-text physician notes. We manually annotated about 10,000 sentences, and trained a conditional random field (CRF) model to predict whether a word indicated a symptom (positive label), specifically indicated the absence of a symptom (negative label), or was neutral. Our final model achieved 0.66, 1.00, and 0.77 F1 scores for predicting positive, neutral, and negative labels respectively. While the F1 scores for positive and negative labels are not extremely high, with the current performance, our model could be applied, for example, to gather better statistics about what symptoms breast cancer patients experience during chemotherapy and at what time points during treatment they experience these symptoms.
by Alexander William Forsyth.
M. Eng.
Manek, Meenakshi. "Natural language interface to a VHDL modeling tool." Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-06232009-063212/.
Full textWatanabe, Kiyoshi. "Visible language : repetition and its artistic presentation with the computers." Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/17664.
Full textCohn, Trevor A. "Scaling conditional random fields for natural language processing /." Connect to thesis, 2007. http://eprints.unimelb.edu.au/archive/00002874.
Full textKeller, Thomas Anderson. "Comparison and Fine-Grained Analysis of Sequence Encoders for Natural Language Processing." Thesis, University of California, San Diego, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10599339.
Full textMost machine learning algorithms require a fixed length input to be able to perform commonly desired tasks such as classification, clustering, and regression. For natural language processing, the inherently unbounded and recursive nature of the input poses a unique challenge when deriving such fixed length representations. Although today there is a general consensus on how to generate fixed length representations of individual words which preserve their meaning, the same cannot be said for sequences of words in sentences, paragraphs, or documents. In this work, we study the encoders commonly used to generate fixed length representations of natural language sequences, and analyze their effectiveness across a variety of high and low level tasks including sentence classification and question answering. Additionally, we propose novel improvements to the existing Skip-Thought and End-to-End Memory Network architectures and study their performance on both the original and auxiliary tasks. Ultimately, we show that the setting in which the encoders are trained, and the corpus used for training, have a greater influence of the final learned representation than the underlying sequence encoders themselves.
Thompson, Cynthia Ann. "Semantic lexicon acquisition for learning natural language interfaces /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Full textSchäfer, Ulrich. "Integrating deep and shallow natural language processing components : representations and hybrid architectures /." Saarbrücken : German Reseach Center for Artificial Intelligence : Saarland University, Dept. of Computational Linguistics and Phonetics, 2007. http://www.loc.gov/catdir/toc/fy1001/2008384333.html.
Full textBerman, Lucy. "Lewisian Properties and Natural Language Processing: Computational Linguistics from a Philosophical Perspective." Scholarship @ Claremont, 2019. https://scholarship.claremont.edu/cmc_theses/2200.
Full textHuber, Bernard J. Jr. "A knowledge-based approach to understanding natural language. /." Online version of thesis, 1991. http://hdl.handle.net/1850/11053.
Full textVälme, Emma, and Lea Renmarker. "Accelerating Sustainability Report Assessment with Natural Language Processing." Thesis, Uppsala universitet, Avdelningen för visuell information och interaktion, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-445912.
Full textLinckels, Serge, and Christoph Meinel. "An e-librarian service : natural language interface for an efficient semantic search within multimedia resources." Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2009/3308/.
Full textLazic, Marko. "Using Natural Language Processing to extract information from receipt text." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279302.
Full textFörmågan att automatiskt läsa, känna igen och utvinna information från ostrukturerad text har en avgörande betydelse för många områden. Majoriteten av den forskning som gjorts inom området har varit inriktad på inskannade fakturor. Detta examensarbete undersöker huruvida språkteknologi kan användas för att utvinna information från kvittotext. Tre olika maskininlärningsmodeller, BiLSTM, GCN och BERT, tränades på att utvinna totalt 7 olika datapunkter från ett dataset bestående av 790 kvitton. Dessutom byggdes en enkel regel- baserad modell som en referens. Dessa fyra modeller har sedan jämförts på hur väl de presterat på de olika datapunkterna. Modellen som gav bäst resultat bland maskininlärningsmodellerna var BERT med F1-resultatet 0.455. Den näst bästa modellen var BiLSTM med F1-resultatet 0.278 medan GCN ha- de F1-resultat 0.167. Dessa resultat påverkas starkt av den låga prestandan på produktlistan som observerades med alla tre modellerna. BERT visade lovande resultat på leverantörens namn, datum, moms, pris och valuta. Dock hade den regelbaserade modellen bättre resultat på alla datapunkter förutom leve- rantörens namn och moms. Kvittobilder från datasetet är ofta suddiga, roterade och innehåller skrynkliga kvitton, vilket resulterar i ett högt fel hos maskinläsningverktyget. Detta fel propagerades sedan genom alla steg och var troligen den främsta anledningen till att maskininlärningsmodellerna, särskilt BERT, inte kunde prestera. Sammanfattningsvis kan slutsatsen dras att användandet av språkteknologi för att utvinna information från kvittotext har potential. Ytterligare forskning behövs dock om det ska användas istället för regelbaserade modeller.
Chandra, Yohan. "Natural Language Interfaces to Databases." Thesis, University of North Texas, 2006. https://digital.library.unt.edu/ark:/67531/metadc5474/.
Full textCusty, E. John. "An architecture for the semantic processing of natural language input to a policy workbench." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Mar%5FCusty.pdf.
Full textThesis advisor(s): James Bret Michael, Neil C. Rowe. Includes bibliographical references (p. 91-92). Also available online.
Dua, Smrite. "Introducing Semantic Role Labels and Enhancing Dependency Parsing to Compute Politeness in Natural Language." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1430876809.
Full textDulle, John David. "A caption-based natural-language interface handling descriptive captions for a multimedia database system." Thesis, Monterey, California : Naval Postgraduate School, 1990. http://handle.dtic.mil/100.2/ADA236533.
Full textThesis Advisor(s): Lum, Vincent Y. ; Rowe, Neil C. "June 1990." Description based on signature page. DTIC Identifiers: Interfaces, natural language, databases, theses. Author(s) subject terms: Natural language processing, multimedia database system, natural language interface, descriptive captions. Includes bibliographical references (p. 27).
Califf, Mary Elaine. "Relational learning techniques for natural language information extraction /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Full textRamachandran, Venkateshwaran. "A temporal analysis of natural language narrative text." Thesis, This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-03122009-040648/.
Full textHan, Yo-Sub. "Regular languages and codes /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?COMP%202005%20HAN.
Full textByström, Adam. "From Intent to Code : Using Natural Language Processing." Thesis, Uppsala universitet, Avdelningen för datalogi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-325238.
Full textGonzález, Alejandro. "A Swedish Natural Language Processing Pipeline For Building Knowledge Graphs." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254363.
Full textVetskapen om kunskap är den del av det som definierar den nutida människan (som vet, att hon vet). De immateriella begreppen oberoende av materiella attribut är en del av beviset på att människan en själslig varelse som till viss del är oberoende av materialet. För närvarande försöker forskningsinsatser inom artificiell intelligens efterlikna det mänskliga betandet med hjälp av datorer genom att "lära" dem hur man läser och förstår mänskligt språk genom att använda maskininlärningstekniker relaterade till behandling av mänskligt språk. Det finns emellertid fortfarande ett betydande antal utmaningar, till exempel hur man representerar denna kunskap så att den kan användas av en maskin för att dra slutsatser eller ge svar utifrån detta. Denna avhandling presenterar en studie i användningen av ”Natural Language Processing” i en pipeline som kan generera en kunskapsrepresentation av informationen utifrån det svenska språket som bas. Resultatet är ett system som, med svensk text i råformat, bygger en representation i form av en kunskapsgraf av kunskapen eller informationen i den texten.
Das, Dipanjan. "Semi-Supervised and Latent-Variable Models of Natural Language Semantics." Research Showcase @ CMU, 2012. http://repository.cmu.edu/dissertations/342.
Full textRamos, Brás Juan Ariel. "Natural language processing and translation using augmented transition networks and semantic networks." Diss., Connect to the thesis, 2003. http://hdl.handle.net/10066/1480.
Full textKakavandy, Hanna, and John Landeholt. "How natural language processing can be used to improve digital language learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281693.
Full textGlobaliseringen medför flertal konsekvenser för växande företag. En av utmaningarna som företag står inför är anställandet av tillräckligt med kompentent personal. För många företag står språkbarriären mellan de och att anställa kompetens, arbetsökande har ofta inte tillräckligt med språkkunskaper för att klara av jobbet. Lingio är företag som arbetar med just detta, deras produkt är en digital applikation som undervisar yrkesspecific svenska, en effektiv lösning för den som vill fokusera sin inlärning av språket inför ett jobb. Syftet är att hjälpa Lingio i utvecklingen av deras produkt, närmare bestämt i arbetet med att göra den mer interaktiv. Detta görs genom att undersöka effektiviteten hos applikationens yttranden som används för inlärningssyfte och att använda en språkteknologisk modell för att klassificera en användares svar till ett yttrande. Vidare analyseras huruvida det är bäst att använda en golden standard eller insamlat material från enkäter som referenspunkt för ett korrekt yttrande. Resultatet visar att modellen har flertal svagheter och behöver utvecklas för att kunna göra klassificeringen på ett korrekt sätt och att det finns utrymme för bättring när det kommer till yttrandena. Det visas även att insamlat material från enkäter fungerar bättre än en golden standard.
Mahamood, Saad Ali. "Generating affective natural language for parents of neonatal infants." Thesis, University of Aberdeen, 2010. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=158569.
Full textAugustsson, Christopher. "Multipurpose Case-Based Reasoning System, Using Natural Language Processing." Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-104890.
Full textBuys, Jan Moolman. "Incremental generative models for syntactic and semantic natural language processing." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:a9a7b5cf-3bb1-4e08-b109-de06bf387d1d.
Full textBotha, Gerrti Reinier. "Text-based language identification for the South African languages." Pretoria : [s.n.], 2007. http://upetd.up.ac.za/thesis/available/etd-090942008-133715/.
Full text