Academic literature on the topic 'Natural gas-oxidizer; Laminar burning velocity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Natural gas-oxidizer; Laminar burning velocity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Natural gas-oxidizer; Laminar burning velocity"
Han, Zhiqiang, Zhennan Zhu, Peng Wang, Kun Liang, Zinong Zuo, and Dongjian Zeng. "The Effect of Initial Conditions on the Laminar Burning Characteristics of Natural Gas Diluted by CO2." Energies 12, no. 15 (July 27, 2019): 2892. http://dx.doi.org/10.3390/en12152892.
Full textWu, Xueshun, Peng Wang, Zhennan Zhu, Yunshou Qian, Wenbin Yu, and Zhiqiang Han. "The Equivalent Effect of Initial Condition Coupling on the Laminar Burning Velocity of Natural Gas Diluted by CO2." Energies 14, no. 4 (February 4, 2021): 809. http://dx.doi.org/10.3390/en14040809.
Full textJones, A. L., and R. L. Evans. "Comparison of Burning Rates in a Natural-Gas-Fueled Spark Ignition Engine." Journal of Engineering for Gas Turbines and Power 107, no. 4 (October 1, 1985): 908–13. http://dx.doi.org/10.1115/1.3239835.
Full textCardona Vargas, Arley, Carlos E. Arrieta, Hernando Alexander Yepes Tumay, Camilo Echeverri-Uribe, and Andrés Amell. "Determination of laminar burning velocity of methane/air flames in sub atmospheric environments." EUREKA: Physics and Engineering, no. 4 (July 23, 2021): 50–62. http://dx.doi.org/10.21303/2461-4262.2021.001775.
Full textZhang, Ziyue, Runfan Zhu, Yanqun Zhu, Wubin Weng, Yong He, and Zhihua Wang. "Experimental and Kinetic Study on Laminar Burning Velocities of High Ratio Hydrogen Addition to CH4+O2+N2 and NG+O2+N2 Flames." Energies 16, no. 14 (July 9, 2023): 5265. http://dx.doi.org/10.3390/en16145265.
Full textSanmiguel, Javier E., S. A. (Raj) Mehta, and R. Gordon Moore. "An Experimental Study of Controlled Gas-Phase Combustion in Porous Media for Enhanced Recovery of Oil and Gas." Journal of Energy Resources Technology 125, no. 1 (March 1, 2003): 64–71. http://dx.doi.org/10.1115/1.1510522.
Full textKro¨ner, M., J. Fritz, and T. Sattelmayer. "Flashback Limits for Combustion Induced Vortex Breakdown in a Swirl Burner." Journal of Engineering for Gas Turbines and Power 125, no. 3 (July 1, 2003): 693–700. http://dx.doi.org/10.1115/1.1582498.
Full textEl-Sherif, A. S. "Effects of natural gas composition on the nitrogen oxide, flame structure and burning velocity under laminar premixed flame conditions." Fuel 77, no. 14 (November 1998): 1539–47. http://dx.doi.org/10.1016/s0016-2361(98)00083-0.
Full textMehra, Roopesh Kumar, Hao Duan, Sijie Luo, and Fanhua Ma. "Laminar burning velocity of hydrogen and carbon-monoxide enriched natural gas (HyCONG): An experimental and artificial neural network study." Fuel 246 (June 2019): 476–90. http://dx.doi.org/10.1016/j.fuel.2019.03.003.
Full textMitu, Maria, Domnina Razus, and Volkmar Schroeder. "Laminar Burning Velocities of Hydrogen-Blended Methane–Air and Natural Gas–Air Mixtures, Calculated from the Early Stage of p(t) Records in a Spherical Vessel." Energies 14, no. 22 (November 12, 2021): 7556. http://dx.doi.org/10.3390/en14227556.
Full textDissertations / Theses on the topic "Natural gas-oxidizer; Laminar burning velocity"
Mumby, Christopher. "Predictions of explosions and fires of natural gas/hydrogen mixtures for hazard assessment." Thesis, Loughborough University, 2010. https://dspace.lboro.ac.uk/2134/6354.
Full textBook chapters on the topic "Natural gas-oxidizer; Laminar burning velocity"
Khan, A. R., M. R. Ravi, and Anjan Ray. "Effect of Natural Gas Blend Enrichment with Hydrogen on Laminar Burning Velocity and Flame Stability." In Sustainable Development for Energy, Power, and Propulsion, 135–60. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5667-8_6.
Full textConference papers on the topic "Natural gas-oxidizer; Laminar burning velocity"
Dirrenberger, P., P. A. Glaude, H. Le Gall, R. Bounaceur, O. Herbinet, F. Battin-Leclerc, and A. A. Konnov. "Laminar Flame Velocity of Components of Natural Gas." In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-46312.
Full textKim, Gihun, Ritesh Ghorpade, and Subith S. Vasu. "Laminar Flame Speed Measurements of Hydrogen/Natural Gas Mixtures for Gas Turbine Applications." In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-58870.
Full textMorovatiyan, Mohammadrasool, Martia Shahsavan, Mammadbaghir Baghirzade, and J. Hunter Mack. "Effect of Hydrogen and Carbon Monoxide Addition to Methane on Laminar Burning Velocity." In ASME 2019 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/icef2019-7169.
Full textEckart, Sven, Ralph Behrend, and Hartmut Krause. "Microwave influenced laminar premixed hydrocarbon flames: Spectroscopic investigations." In Ampere 2019. Valencia: Universitat Politècnica de València, 2019. http://dx.doi.org/10.4995/ampere2019.2019.9834.
Full textSahoo, Sridhar, Srinibas Tripathy, and Dhananjay Kumar Srivastava. "Performance and Combustion Investigation of a Lean Burn Natural Gas Engine Using CFD." In ASME 2018 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icef2018-9613.
Full textKro¨ner, Martin, Jassin Fritz, and Thomas Sattelmayer. "Flashback Limits for Combustion Induced Vortex Breakdown in a Swirl Burner." In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30075.
Full textSanmiguel, Javier E., S. A. (Raj) Mehta, and R. Gordon Moore. "An Experimental Study of Controlled Gas-Phase Combustion in Porous Media for Enhanced Recovery of Oil and Gas." In ASME 2001 Engineering Technology Conference on Energy. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/etce2001-17182.
Full textEggels, R. L. G. M. "Modelling of the Combustion Process of a Premixed DLE Gas Turbine." In ASME Turbo Expo 2000: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/2000-gt-0130.
Full textSubash, Arman Ahamed, Haisol Kim, Sven-Inge Möller, Mattias Richter, Christian Brackmann, Marcus Aldén, Andreas Lantz, Annika Lindholm, Jenny Larfeldt, and Daniel Lörstad. "Investigation of Fuel and Load Flexibility in a SGT-600/700/800 Burner Under Atmospheric Pressure Conditions Using High-Speed OH-PLIF and OH Chemiluminescence Imaging." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-14583.
Full textFeng, Yixin, Ryo Yamazaki, Ratnak Sok, and Jin Kusaka. "Effects of Pre-Chamber Internal Shape on CH <sub>4</sub> -H <sub>2</sub> Combustion Characteristics Using Rapid-Compression Expansion Machine Experiments and 3D-CFD Analysis." In 16th International Conference on Engines & Vehicles. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-24-0043.
Full text