Academic literature on the topic 'Natural background radiation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Natural background radiation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Natural background radiation"
Sivintsev, Yu V. "Natural background radiation." Soviet Atomic Energy 64, no. 1 (January 1988): 55–67. http://dx.doi.org/10.1007/bf01124007.
Full textDOLCHINKOV, Nikolay Todorov. "SOURCES OF NATURAL BACKGROUND RADIATION." Security and Defence Quarterly 16, no. 3 (September 28, 2017): 40–51. http://dx.doi.org/10.35467/sdq/103183.
Full textAl-Azmi, Darwish, N. Karunakara, and Amidu O. Mustapha. "Teaching about natural background radiation." Physics Education 48, no. 4 (June 20, 2013): 506–11. http://dx.doi.org/10.1088/0031-9120/48/4/506.
Full textWENG, PAO-SHAN, TIEH-CHI CHU, and CHIN-FANG CHEN. "Natural Radiation Background in Metropolitan Taipei." Journal of Radiation Research 32, no. 2 (1991): 165–74. http://dx.doi.org/10.1269/jrr.32.165.
Full textStone, J. M., R. D. Whicker, S. A. Ibrahim, and F. W. Whicker. "SPATIAL VARIATIONS IN NATURAL BACKGROUND RADIATION." Health Physics 76, no. 5 (May 1999): 516–23. http://dx.doi.org/10.1097/00004032-199905000-00008.
Full textShahbazi-Gahrouei, Daryoush, Samaneh Setayandeh, and Mehrdad Gholami. "A review on natural background radiation." Advanced Biomedical Research 2, no. 1 (2013): 65. http://dx.doi.org/10.4103/2277-9175.115821.
Full textThorne, M. C. "Background radiation: natural and man-made." Journal of Radiological Protection 23, no. 1 (March 1, 2003): 29–42. http://dx.doi.org/10.1088/0952-4746/23/1/302.
Full textAl-Khawlany, AbduHamoud, AR Khan, and JM Pathan. "Review on studies in natural background radiation." Radiation Protection and Environment 41, no. 4 (2018): 215. http://dx.doi.org/10.4103/rpe.rpe_55_18.
Full textLin, Yu-Ming, Ching-Jiang Chen, and Pei-Hou Lin. "Natural background radiation dose assessment in Taiwan." Environment International 22 (January 1996): 45–48. http://dx.doi.org/10.1016/s0160-4120(96)00087-6.
Full textTracy, B. L., E. G. Letourneau, R. G. McGregor, and W. B. Walker. "Variations in natural background radiation across Canada." Environment International 22 (January 1996): 55–60. http://dx.doi.org/10.1016/s0160-4120(96)00089-x.
Full textDissertations / Theses on the topic "Natural background radiation"
Berlivet, Justine. "Rôle des expositions aux radiations ionisantes naturelles dans le risque de leucémie aiguë et de tumeur cérébrale chez l’enfant en France métropolitaine." Electronic Thesis or Diss., Université Paris Cité, 2021. http://www.theses.fr/2021UNIP5244.
Full textHigh-dose ionizing radiation (IR) have been classified as carcinogenic to humans by the IARC. This work aimed to further investigate the role of natural background radiation (NBR), which are present at lower doses, in risk of childhood acute leukemia (AL) and central nervous system (CNS) tumors, the most common childhood cancer types. Recent studies have moslty considered the risk of AL, with several design, but results are not concordant. The French population-based case-control study did not show association between childhood AL and NBR level (gamma radiation and radon) in the municipality of residence at cancer diagnosis. Firstly, this manuscript had the objective to consider the role of NBR exposure at birth. There are fewer studies about CNS tumors. For the first time, we have examined the association between the incidence of childhood CNS tumors and NBR levels in France mainland, by considering the municipality of residence at diagnosis. We conducted two studies based on the National Register of Childhood Cancer. This database gather all the cancer cases diagnosed in children in France mainland, since 1990 for AL and 2000 for solid tumors (including CNS tumors). We estimated precisely the NBR exposure all over France thanks to geostatistical methods taking account of numerous NBR measures and geological information (Institut of Radioprotection and Nuclear Safety). In this way, we evatuated contrasts of incidence rate ratios regarding variations of NBR levels in the french municipalities, setting up Poisson regression models. NBR exposures have been considered one at a time, jointly, cumulatively and, in an exploratory analysis, considering their biological impact. This question have not been ever explored regarding CNS tumors. We included 6 059 AL cases born and diagnosed between 1990 and 2000, and we did not find association between gamma radiation or radon exposure, in the municipality of residence at birth, and risk of AL. Conclusions by AL subtypes were similar. We did not observe association between NBR levels and the risk of CNS tumors, considered as a whole, taking account of all the cases diagnosed between 2000 and 2012 (5 471 cases). However, results support a positive association between gamma radiation level in the municipality of residence at diagnosis and the incidence rate of pilocytic astrocytomas, a type of non-malignant tumor common CNS tumor in childhood, very rare in adulthood. A 12% increase in incidence rate was observed for an increase of 50 nSv/h increase in gamma radiation level. We used high quality data, based on validated models considering measured and precisely geolocated exposures, all over a territory with a large range of NBR exposure. The number of cases was sufficient to distinguish AL and CNS tumors subtypes. In mainland France, we did not observe any association between NBR exposure and the risk of childhood AL, considering the window of exposure around diagosis or around birth, although the perinatal period is commonly considered as a high radiosusceptibility time span. The association that we noticed between pilocytic astrocytomas and gamma radiation level in the municipality of residence at birth was still observed in several sensitivity analysis. Different designs were used in studies on NBR and childhood cancers studies, based on high quality incidence data and validated NBR exposure models, have shown discordant results : an association between gamma rays and incidence rate of AL was found in the UK and in Switzeland, there was no association in Germany or in France, as we show in this thesis work. The consideration of other factors of geographical variability of childhood cancers incidence may precise help to understand the heterogeneity between results. There are fewer studies about CNS tumours and our results need to be replicated. Attention should be paid to CNS tumor subtypes, since their etiology might be different
Noncolela, Sive Professor. "Calibration of a NaI (Tl) detector for low level counting of naturally occurring radionuclides in soil." University of the Western Cape, 2011. http://hdl.handle.net/11394/5426.
Full textThe Physics Department at the University of the Western Cape and the Environmental Physics group at iThemba labs have been conducting radiometric studies on both land and water. In this study a 7.5 cm X 7.5 cm NaI (Tl) detector was used to study activity concentrations of primordial radionuclides in soil and sand samples. The detector and the sample were placed inside a lead castle to reduce background in the laboratory from the surroundings such as the wall and the floor. The samples were placed inside a 1 L Marinelli beaker which surrounds the detector for better relative efficiency as almost the whole sample is exposed to the detector. Additional lead bricks were placed below the detector to further reduce the background by 20%. The NaI detector is known to be prone to spectral drift caused by temperature differences inside and around the detector. The spectral drift was investigated by using a ¹³⁷Cs source to monitor the movements in the 662 keV peak. The maximum centroid shift was about 4 keV (for a period of 24 hours) which is enough to cause disturbances in spectral fitting. There was no correlation between the centroid shift and small room temperature fluctuations of 1.56 ºC. A Full Spectrum Analysis (FSA) method was used to extract the activity concentrations of ²³⁸U, ²³²Th and ⁴⁰K from the measured data. The FSA method is different from the usual Windows Analysis (WA) as it uses the whole spectrum instead of only putting a ‘window’ around the region of interest to measure the counts around a certain energy peak. The FSA method uses standard spectra corresponding to the radionuclides being investigated, and is expected to have an advantage when low-activity samples are measured. The standard spectra are multiplied by the activity concentrations and then added to fit the measured spectrum. Accurate concentrations are then extracted using a chi-squared (χ²) minimization procedure. Eight samples were measured in the laboratory using the NaI detector and analyzed using the FSA method. The samples were measured for about 24 hours for good statistics. Microsoft Excel and MATLAB were used to calculate the activity concentrations. The ²³⁸U activity concentration values varied from 14 ± 1 Bq/kg (iThemba soil, HS6) to 256 ± 10 Bq/kg (Kloof sample). The ²³²Th activity concentration values varied from 7 ± 1 Bq/kg (Anstip beach sand) to 53 ± 3 Bq/kg (Rawsonville soil #B31). The ⁴⁰K activity concentration values varied from 60 ± 20 Bq/kg (iThemba soil, HS6) to 190 ± 20 Bq/kg (Kloof sample). The χ² values also varied from sample to sample with the lowest being 12 (Anstip beach sand) and the highest (for samples without contamination of anthropogenic nuclei) being 357 (Rawsonville soil #B28). A high χ² value usually represents incomplete gain drift corrections, improper set of fitting functions, proper inclusion of coincidence summing or the presence of anthropogenic (man made) radionuclei in the source [Hen03]. Activity concentrations of ⁴⁰K, ²³²Th and ²³⁸U were measured at four stationary points on the Kloof mine dump. The fifth stationary point was located on the Southdeep mine dump. These measurements were analysed using the FSA method and fitting by "eye" the standard spectra to the measured spectra using Microsoft Excel. These values were then compared to values obtained using an automated minimization procedure in MATLAB. There was a good correlation between these results except for ²³²Th which had higher concentrations when MATLAB was used, where 16 Bq/kg was the average value in Excel and 24 Bq/kg was the average value in MATLAB.
Fitzmaurice, Matthew Blake 1988. "Developing a Methodology for Characterizing the Effects of Building Materials’ Natural Radiation Background on a Radiation Portal Monitoring System." Thesis, 2012. http://hdl.handle.net/1969.1/148144.
Full textJohnson, Christine Michelle. "Examination of natural background sources of radioactive noble gases with CTBT significance." Thesis, 2013. http://hdl.handle.net/2152/23631.
Full texttext
Books on the topic "Natural background radiation"
Preliminary environmental natural radioactivity mapping of Lusaka. Lusaka: Republic of Zambia, Ministry of Finance and National Planning, 2005.
Find full textInternational Symposium on the Natural Radiation Environment (6th 1995 Montréal, Québec). The natural radiation environment VI: Sixth International Symposium on the Natural Radiation Environment (NRE-VI), Montreal, Quebec, Canada, 5-9 June 1995. Edited by Hopke Philip K. 1944-. [Oxford?]: Pergamon, 1996.
Find full textTuttle, Robert J. The fourth source: Effects of natural nuclear reactors. Boca Raton: Universal-Publishers, 2012.
Find full textInternational, Conference on High Levels of Natural Radiation and Radon Areas (6th 2004 Osaka Japan). High levels of natural radiation and radon areas: Radiation dose and health effects. San Diego, CA, USA: Elsevier, 2005.
Find full textProtasevich, E. T. Natural electromagnetic background and long-lived glowing phenomena in the atmosphere. Tomsk: IPF TPU, 1995.
Find full textGilkeson, Robert H. Natural background radiation in the proposed Illinois SSC siting area. Champaign, Ill: Illinois State Geological Survey, 1988.
Find full textEuropean Commission. Directorate-General for Environment, Nuclear Safety, and Civil Protection., ed. Radiation protection 88: Recommendations for the implementation of Title VII of the European Basic Safety Standards Directive (BSS) concerning significant increase in exposure due to natural radiation sources. Luxembourg: Office for the Official Publications of the European Communities, 1997.
Find full textInternational Symposium on the Natural Radiation Environment (8th 2007 Rio de Janeiro , Brazil). The natural radiation environment: 8th International Symposium (NRE VIII), Buzios, Rio de Janeiro, Brazil, 7-12 October 2007. Edited by Paschoa A. S and Steinhäusler F. Melville, N.Y: American Institute of Physics, 2008.
Find full textInternational Symposium on the Natural Radiation Environment (8th 2007 Rio de Janeiro , Brazil). The natural radiation environment: 8th International Symposium (NRE VIII), Buzios, Rio de Janeiro, Brazil, 7-12 October 2007. Edited by Paschoa A. S and Steinhäusler F. Melville, N.Y: American Institute of Physics, 2008.
Find full textHorner, Jack K. Natural radioactivity in water supplies. Boulder: Westview Press, 1985.
Find full textBook chapters on the topic "Natural background radiation"
Nakagawa, Hitoshi. "History of mutation breeding and molecular research using induced mutations in Japan." In Mutation breeding, genetic diversity and crop adaptation to climate change, 24–39. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789249095.0003.
Full textJackson Kimball, Derek F., and Dmitry Budker. "Introduction to Dark Matter." In The Search for Ultralight Bosonic Dark Matter, 1–30. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95852-7_1.
Full textObodovskiy, Ilya. "Residents of Areas With High Natural Background Radiation." In Radiation, 631–39. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-444-63979-0.00053-7.
Full text"3659 natural background radiation [n]." In Encyclopedic Dictionary of Landscape and Urban Planning, 604. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-76435-9_8343.
Full textAlpen, Edward L. "Radiation Exposure from Natural Background and Other Sources." In Radiation Biophysics, 424–60. Elsevier, 1998. http://dx.doi.org/10.1016/b978-012053085-4/50018-1.
Full textFox, Michael H. "What Comes Naturally and Not So Naturally." In Why We Need Nuclear Power. Oxford University Press, 2014. http://dx.doi.org/10.1093/oso/9780199344574.003.0014.
Full textKumar, Sanat. "Natural vs Anthropogenic Background Aerosol Contribution to the Radiation Budget over Indian Thar Desert." In Atmospheric Aerosols - Regional Characteristics - Chemistry and Physics. InTech, 2012. http://dx.doi.org/10.5772/48722.
Full textOtake, Masanori. "Genetic Risks from Exposure to the Atomic Bombs: Hiroshima and Nagasaki." In Genetics of Cellular, Individual, Family, and Population Variability, 83–92. Oxford University PressNew York, NY, 1993. http://dx.doi.org/10.1093/oso/9780195066258.003.0005.
Full textWinterton, R. H. S. "Introduction." In Heat Transfer. Oxford University Press, 1997. http://dx.doi.org/10.1093/hesc/9780198562979.003.0001.
Full textSengupta, D., A. K. Mohanty, S. K. Das, and S. K. Saha. "Natural radioactivity and radiation exposure in the high background area of the Chhatrapur beach placer deposits of Orissa, India." In Radioactivity in the Environment, 1148–51. Elsevier, 2005. http://dx.doi.org/10.1016/s1569-4860(04)07141-4.
Full textConference papers on the topic "Natural background radiation"
Li, Xia, Jianguo Liu, Yanbing Dong, and Juan Lin. "Experimental research on infrared radiation measurement of typical natural background." In Fourth Seminar on Novel Optoelectronic Detection Technology and Application, edited by Weiqi Jin and Ye Li. SPIE, 2018. http://dx.doi.org/10.1117/12.2314830.
Full textNagy, A., J. Renner, I. Török, and R. Kavanda. "Distributions of Natural and Artificial Gamma Background Radiation in Hungary." In 66th EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 2004. http://dx.doi.org/10.3997/2214-4609-pdb.3.p112.
Full textEnkhbat, N., N. Norov, B. Bat-Erdene, G. Khuukhenkhuu, B. Otgooloi, Dugersuren Dashdorj, Undraa Agvaanluvsan, and Gary E. Mitchell. "Study of Natural Background Radiation around Gurvanbulag Uranium Deposit Area." In NUCLEAR PHYSICS AND APPLICATIONS: Proceedings of the First Ulaanbaatar Conference on Nuclear Physics and Applications. AIP, 2009. http://dx.doi.org/10.1063/1.3122245.
Full textBastos, Rodrigo O., Carlos R. Appoloni, Anselmo Salles Paschoa, and Friedrich Steinhäusler. "Modeling Background Attenuation by Sample Matrix in Gamma Spectrometric Analyses." In THE NATURAL RADIATION ENVIRONMENT: 8th International Symposium (NRE VIII). AIP, 2008. http://dx.doi.org/10.1063/1.2991259.
Full textSzkliniarz, Katarzyna. "Characteristics of natural background radiation at BSUIN and EUL Underground Laboratories." In RAP Conference. Sievert Association, 2021. http://dx.doi.org/10.37392/rapproc.2021.09.
Full textIsmailova, A. A., and N. A. Nurbaeva. "Forecasting the radiation background in the territories of Kazakhstan located near the uranium mining industries." In VIII Vserossijskaja konferencija s mezhdunarodnym uchastiem «Mediko-fiziologicheskie problemy jekologii cheloveka». Publishing center of Ulyanovsk State University, 2021. http://dx.doi.org/10.34014/mpphe.2021-99-102.
Full textYongqiang, Li, Chen Jingmin, Xiong Zhengye, Wang Wenhua, Tang Zhao, Shi Wenqing, and Li Shiping. "Investigation on Thermoluminescence of Al2O3:C and LiF:Mg,Cu,P to Natural Background Radiation." In 2012 International Conference on Biomedical Engineering and Biotechnology (iCBEB). IEEE, 2012. http://dx.doi.org/10.1109/icbeb.2012.255.
Full textSzkliniarz, Katarzyna, Kinga Polaczek-Grelik, Agata Walencik-Łata, and Jan Kisiel. "Measurements of natural background radiation in the underground laboratories of the BSUIN and EUL projects." In RAD Conference. RAD Centre, 2021. http://dx.doi.org/10.21175/rad.abstr.book.2021.28.7.
Full textKylivnik, Yuriy, Svyatoslav Vuchkan, Ihor Syika, Hanna Vasylyeva, and Olexander Sych. "Purification of aqueous solutions from strontium ions by natural and synthetic sorbents under increased radiation background." In RAD Conference. RAD Centre, 2021. http://dx.doi.org/10.21175/rad.abstr.book.2021.11.4.
Full textTawara, Yuzuru, Shinji Hara, Kazuo Koga, and Kenji Tsuji. "Application of Cloud Chambers for Heuristic Comprehension of Radiation." In 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-16909.
Full textReports on the topic "Natural background radiation"
Corriveau, Elizabeth, Travis Thornell, Mine Ucak-Astarlioglu, Dane Wedgeworth, Hayden Hanna, Robert Jones, Alison Thurston, and Robyn Barbato. Characterization of pigmented microbial isolates for use in material applications. Engineer Research and Development Center (U.S.), March 2023. http://dx.doi.org/10.21079/11681/46633.
Full textButterweck, Gernot, Alberto Stabilini, Benno Bucher, David Breitenmoser, Ladislaus Rybach, Cristina Poretti, Stéphane Maillard, et al. Aeroradiometric measurements in the framework of the swiss exercise ARM23. Paul Scherrer Institute, PSI, March 2024. http://dx.doi.org/10.55402/psi:60054.
Full text