Journal articles on the topic 'Native perennial grasses'

To see the other types of publications on this topic, follow the link: Native perennial grasses.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Native perennial grasses.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Parker, Sophie S., and Joshua P. Schimel. "Invasive Grasses Increase Nitrogen Availability in California Grassland Soils." Invasive Plant Science and Management 3, no. 1 (May 2010): 40–47. http://dx.doi.org/10.1614/ipsm-09-046.1.

Full text
Abstract:
AbstractAs Europeans colonized California, they introduced annual grasses from the Mediterranean Basin. These exotic annual grasses eventually invaded grasslands throughout the state, some of which were once dominated by native perennial grass species. Annual grasses differ from perennials in their phenology, longevity, rooting depth, litter chemistry, and interaction with the microbial community. As these traits may influence plant nitrogen (N) use, it is likely that the invasion by annual species resulted in changes in the availability and cycling of N in California grassland systems. We addressed the question of how invasive annual grasses influence rates of N cycling by measuring N pool sizes and rates of net and gross mineralization and nitrification, gross immobilization, and the denitrification potential of soils from experimentally planted annual and perennial-dominated grasslands. With an increase in annual grass cover, we saw increases in ammonium (NH4+) pool sizes and rates of N mineralization, nitrification, and denitrification in soils. These differences in N status suggest that N cycling in California grasslands was altered at sites where native perennial bunchgrasses were invaded by nonnative annual grasses. One consequence of annual grass invasion may be a legacy of NH4+-enriched soils that hinder the reestablishment of native perennial grass species.
APA, Harvard, Vancouver, ISO, and other styles
2

McIvor, JG, and CJ Gardener. "Germinable soil seed banks in native pastures in north-eastern Australia." Australian Journal of Experimental Agriculture 34, no. 8 (1994): 1113. http://dx.doi.org/10.1071/ea9941113.

Full text
Abstract:
Germinable soil seed banks were determined in 20 native pasture communities of widely varying composition (dominated by native tussock grasses, Bothriochloa pertusa, or forbs) near Collinsville (20�34'S, 147�51'E). Samples of surface soil (0-10 cm) were taken during the late dry season, seeds were germinated in a shadehouse, and seedlings were identified and counted. Over all pastures there were seeds of 100 species in the seed banks, including 29 grasses (14 perennial), 11 legumes, 8 sedges, and 52 forbs. Total seed numbers varied among pastures from 210 to 9770/m2. Forbs were the most numerous component, followed in order by sedges, perennial grasses, annual grasses, and legumes. Of the 790 seeds/m2 of perennial grasses, the naturalised species B. pertusa contributed 620/m2. Even though the native perennial grasses were prominent in these pastures, they had few seeds in the soil, especially when the pastures had been heavily grazed. To maintain these grasses in pastures, management should aim to prevent excessive mortality of the perennial plants as seedling regeneration could be limited by the small seed numbers available.
APA, Harvard, Vancouver, ISO, and other styles
3

Hacker, Ronald B., Ian D. Toole, Gavin J. Melville, Yohannes Alemseged, and Warren J. Smith. "Managing competitive interactions to promote regeneration of native perennial grasses in semi-arid south-eastern Australia." Rangeland Journal 39, no. 1 (2017): 59. http://dx.doi.org/10.1071/rj16048.

Full text
Abstract:
Treatments to reduce available soil nitrogen and achieve specified levels of weed control were evaluated for their capacity to promote regeneration of native perennial grasses in a degraded semi-arid woodland in central-western New South Wales. Treatments were factorial combinations of nitrogen-reduction levels and weed-control levels. The four levels of nitrogen reduction were no intervention, and oversowing of an unfertilised summer crop, an unfertilised winter crop or an unfertilised perennial grass. The three weed-control levels were defined by the outcome sought rather than the chemical applied and were nil, control of annual legumes and control of all annual species (AA). Regeneration of perennial grasses, predominantly Enteropogon acicularis, was promoted most rapidly by the AA level of weed control with no introduction of sown species. Sown species negated the benefits of weed control and limited but did not prevent the regeneration of native perennials. Sown species also contributed substantially to biomass production, which was otherwise severely limited under the AA level of weed control, and they were effective in reducing soil nitrogen availability. Sown species in combination with appropriate herbicide use can therefore maintain or increase available forage in the short–medium term, permit a low rate of native perennial grass recruitment, and condition the system (by reducing soil mineral nitrogen) for more rapid regeneration of native perennials should annual sowings be discontinued or a sown grass fail to persist. Soil nitrate was reduced roughly in proportion to biomass production. High levels of soil nitrate did not inhibit native perennial grass regeneration when biomass was suppressed by AA weed control, and may be beneficial for pastoral production, but could also render sites more susceptible to future invasion of exotic annuals. The need for astute grazing management of the restored grassland is thus emphasised. This study was conducted on a site that supported a remnant population of perennial grasses. Use of the nitrogen-reduction techniques described may not be appropriate on sites where very few perennial grass plants remain.
APA, Harvard, Vancouver, ISO, and other styles
4

Lenz, Tanja I., and José M. Facelli. "Correlations between environmental factors, the biomass of exotic annual grasses and the frequency of native perennial grasses." Australian Journal of Botany 54, no. 7 (2006): 655. http://dx.doi.org/10.1071/bt05083.

Full text
Abstract:
The species composition of temperate grasslands in the mid-north of South Australia has been radically altered from a system dominated by native perennial grasses to a system dominated by Mediterranean annual grasses. This study investigated the importance of chemical and physical soil characteristics, topographical features and climatic variables on the abundance of native and exotic grass species in nine ungrazed grasslands. Overall, climatic and other abiotic factors were highly variable. In addition, past management practices and original species composition are generally unknown, leading to further unexplained variation in the data. On a large spatial scale (among sites), the abundance of exotic annual grasses was positively correlated with mean annual rainfall, and on any scale, with finer soil textures and higher soil organic carbon levels. The most abundant annual grass, Avena barbata (Pott ex Link), was generally associated with soil factors denoting higher soil fertility. The abundance of native perennial grass species was not correlated with any environmental variables at any scale. The various native perennial grass species did not show clear associations with soil factors, although they tended to be associated with factors denoting lower soil fertility. However, at small spatial scales (within some sites) and among sites, the abundances of exotic annual and native perennial grasses were strongly negatively correlated. The results suggest that at the present time, rainfall and soil properties are important variables determining the abundance of annual grasses. The driving variables for the abundance of perennial grasses are less clear. They may be controlled by other factors or extreme rainfall events, which were not surveyed. In addition, they are likely to be controlled by competitive interactions with the annual grasses.
APA, Harvard, Vancouver, ISO, and other styles
5

Archer, KA, and GG Robinson. "Agronomic potential of native grass species on the Northern Tablelands of New South Wales. II. Nutritive value." Australian Journal of Agricultural Research 39, no. 3 (1988): 425. http://dx.doi.org/10.1071/ar9880425.

Full text
Abstract:
The quality of three year-long green and three summer-growing, frost-susceptible perennial native grasses was compared with that of two introduced temperate perennial grasses and white clover (Trifolium repens L. cv. Haifa). Digestibility of white clover generally exceeded that of all grasses, except for the green leaves of the two introduced species, Festuca arundinacea Screb. cv. Demeter and Phalaris aquatica L. cv. Sirosa, during winter. The digestibility of the green leaves of most winter-green species increased during winter and decreased in summer, the extent of this being greater for the introduced grasses.The digestibility of fescue and phalaris was generally similar throughout the study and was mostly higher than that of the native grasses, but the quality of the green leaves of two year-long green native species, Danthonra linkii Kunth and Microlaena stipoides (Labill.) R.Br., approached that of the two introduced grasses. The quality of the summer perennial species was poor during winter owing to the presence of only dead leaves, but the green leaves of Bothriochloa macra (Steud) S. T. Blake retained high levels of digestibility during summer. Considerable variation in digestibility exists between individual plants of Poaseiberana Spreng, indicating that opportunities may exist for selection of highly productive lines from some native species.In pen-feeding studies, voluntary intake of most of the year-long green native grasses was similar to that of the introduced grasses, but intake of the summer perennial species tended to be lower.Results from this study indicate that the quality of native pastures and their potential for animal production will vary considerably according to species composition, season and the presence of white clover.
APA, Harvard, Vancouver, ISO, and other styles
6

Aryal, Parmeshwor, and M. Anowarul Islam. "Effect of Forage Kochia on Seedling Growth of Cheatgrass (Bromus tectorum) and Perennial Grasses." Invasive Plant Science and Management 11, no. 4 (December 2018): 201–7. http://dx.doi.org/10.1017/inp.2018.27.

Full text
Abstract:
AbstractForage kochia [Bassia prostrata(L.) A. J. Scott] is competitive with annual weeds and has potential for use in reclamation of disturbed land. However, land managers are reluctant to use forage kochia in revegetation programs due to lack of understanding of its compatibility with or invasiveness in the native plant community. We conducted two greenhouse experiments, one to compare the competitive effect of forage kochia versus perennial grasses on growth of cheatgrass (Bromus tectorumL.) and one to study the effect of forage kochia on growth of native perennial grasses. In the first experiment, a single seedling ofB. tectorumwas grown with increasing neighbor densities (0 to 5 seedlings pot−1) of either forage kochia, crested wheatgrass [Agropyron cristatum(L.) Gaertner ×A. desertorum(Fisch. ex Link) Schultes; nonnative perennial grass], or thickspike wheatgrass [Elymus lanceolatus(Scribn. & J. G. Sm.) Gould; native perennial grass].Bromus tectorumgrowth was reduced moderately by all three perennial neighbors, butA. cristatumandE. lanceolatushad more effect onB. tectorumwhen compared with forage kochia. This experiment was repeated and similar results were observed. In the second experiment, forage kochia was grown with each of four native cool-season grass species: basin wildrye [Leymus cinereus(Scribn. & Merr.) Á. Löve], bluebunch wheatgrass [Pseudoroegneria spicata(Pursh) Á. Löve],E. lanceolatus, and western wheatgrass [Pascopyrum smithii(Rydb.) Á. Löve]. Forage kochia had no effect on height, tiller number, and aboveground biomass of native grasses. Similarly, native grasses did not show a significant effect on forage kochia seedlings. This experiment was also repeated, and forage kochia somewhat reduced the aboveground biomass ofL. cinereusandP. spicata. However, all native grasses significantly reduced change in height, branching, and aboveground biomass of forage kochia. These results suggest that forage kochia interfered withB. tectorumseedling growth, but it showed little competitive effect on native grass seedlings.
APA, Harvard, Vancouver, ISO, and other styles
7

Whalley, R. D. B., D. A. Friend, P. Sanford, and M. L. Mitchell. "Evaluation of native and introduced grasses for low-input pastures in temperate Australia: rationale and scope." Rangeland Journal 27, no. 1 (2005): 1. http://dx.doi.org/10.1071/rj05004.

Full text
Abstract:
The historical approach to pasture improvement in the high rainfall zone of temperate Australia has been to add introduced herbaceous legumes and to replace perennial native grasses with introduced species requiring high inputs of fertiliser for maintenance. The application of this high-input approach on land with low capability has lead to the loss of perennial grasses, erosion, soil acidification and increasing salinity on the lower slopes. This model of pasture improvement has not been successful on the margins of the wheat belt and in semi-arid regions. The Native and Low-input Grasses Network (NLIGN) was established in 1996 to coordinate research on grasses suitable for land with low capability and for semi-arid regions. The NLIGN multi-site evaluation project was initiated to test promising lines (accessions) of native and introduced grasses for low-input pastures at eight sites across southern Australia. The broad objective of the project was to identify native and/or introduced perennial grass lines that had possible commercial potential for low-input pastures. This objective was achieved in an initial 3-year evaluation phase, which began in 1998 and tested lines for persistence, production and palatability.
APA, Harvard, Vancouver, ISO, and other styles
8

Vickery, P. J., M. J. Hill, and G. E. Donald. "Satellite derived maps of pasture growth status: association of classification with botanical composition." Australian Journal of Experimental Agriculture 37, no. 5 (1997): 547. http://dx.doi.org/10.1071/ea97014.

Full text
Abstract:
Summary. Spectral data from the green, red and near-infrared bands of Landsat MSS and Landsat TM satellite imagery acquired in mid-spring were classified into 3 and 6 pasture growth classes respectively. The classifications were compared with a site database of botanical composition for the Northern Tablelands of New South Wales to examine the association between spectral growth class and pasture composition. Pastures ranged in composition from unimproved native perennial grasses through semi-improved mixtures of native and naturalised grasses and legumes to highly improved temperate perennial grasses and legumes. For 3 years of MSS data, the fast growth class had a mean botanical composition of about 80% improved perennial grass and 0% native; medium growth class averaged 46% improved perennial grass and 14% native; while the slow growth class had about 60% native and 1% improved perennial grass when averaged over 3 years of MSS data. For the 6 class TM data from a single year, a predictive logistic regression of cumulative probability was developed for percentage of ‘very fast’ growth pixels and ordered 10 percentile categories of improved perennial grass or native grass. Differences in patch characteristics between classes with MSS disappeared with TM reclassified to the same 3 class level. Most probable pasture type was inferred from 3 class MSS and TM data using Bayesian probability analysis. The resulting maps were similar in general appearance but detail was better with the TM data. The pasture growth classification identified highly improved perennial grass pastures and native pastures but sensitivity to intermediate pasture types was poor. Future improvement will come from direct measurement of biophysical characteristics using vegetation indices or inversion of reflectance models.
APA, Harvard, Vancouver, ISO, and other styles
9

Robinson, GG, and KA Archer. "Agronomic potential of native grass species on the Northern Tablelands of New South Wales. I. Growth and herbage production." Australian Journal of Agricultural Research 39, no. 3 (1988): 415. http://dx.doi.org/10.1071/ar9880415.

Full text
Abstract:
The herbage mass and relative growth rate of six perennial native grasses were compared with two introduced temperate perennial grasses (Phalaris aquatica L. cv. Sirosa, Festuca arundinacea Schreb. cv. Demeter and the temperate legume, white clover (Trifolium repens L. cv. Haifa). Of the native grasses three were year-long green species (Danthonia linkii Kunth, Microlaena stipoides (Labill) R.Br., Poa seiberana Spreng), and three were summer-growing frost susceptible species (Themeda australia (R.Br.) Stapf, Sporobolus elongatus R. Br., Bothriochloa macra (Steud) S.T. Blake). The summer perennial species, in particular Bothriochloa, were highly productive. However, in addition to inability to produce or retain green herbage during the winter, the summer-growing perennials produced a lower proportion of leaf material, a feature likely to render them less acceptable for grazing. Themeda was an exception, and produced a high proportion of leaf throughout the growing season and retained green material longer into the winter. Among the yearlong green species, both native and introduced, Poa proved a most productive species with significantly higher green leaf production than any other species, both in terms of herbage mass and relative growth rate. Although Danthonia produced as much herbage as phalaris on an annual basis, it has a higher stem component overall, and its relative growth rate was higher in the warmer months and lower during the winter months. Only Poa, white clover and phalaris produced signficant amounts of herbage during the winter months. These data suggest that native species have valuable agronomic features which could be exploited by selection and plant breeding programmes to advantage by the grazing industry.
APA, Harvard, Vancouver, ISO, and other styles
10

Nyamai, Priscilla A., Timothy S. Prather, and John M. Wallace. "Evaluating Restoration Methods across a Range of Plant Communities Dominated by Invasive Annual Grasses to Native Perennial Grasses." Invasive Plant Science and Management 4, no. 3 (September 2011): 306–16. http://dx.doi.org/10.1614/ipsm-d-09-00048.1.

Full text
Abstract:
AbstractPrairies are imperiled habitats, with remnants being generally small and often existing in isolation. Invasive plants have the potential to invade not just the edge of small remnants but also the interior because smaller remnants experience greater edge effects than do large, contiguous prairies. Additionally, invasive plants limit recruitment of native plants, which can arrest secondary succession. We proposed to assess techniques for restoration that included removing annual grasses and supplementing native species recruitment with seeding of native grass and forb species. We also assessed the effect of specific factors affecting recruitment: soil moisture and seed predation. Treatments included broadcast, spot, or no application of the herbicides imazapic and glyphosate and with or without seeding plus mulch. With treatments nested within each of three plant communities, ranging from annual- to perennial-dominated communities, in four blocks per community, plant characteristics (percentage of cover and plant density), soil moisture availability, and seed-predation losses were measured along a plant community gradient within one season at two locations. A combination of broadcast herbicide application and seeding with mulching was found to be more effective in reducing annual grasses and enhancing the establishment of native grass species in predominately annual and mixed communities (annuals and perennials). Spot herbicide application was effective in predominately perennial communities, whereas only seeding native species did not improve recruitment. Although seed predation reduced seedling recruitment, mulch provided seed protection and enhanced soil moisture retention. Plant community response to imposed treatments differed among communities, suggesting that a decision support tool would facilitate management decisions tailored for each plant community. The decision tool would be useful to ensure that appropriate treatments are applied and that specific factors affecting recruitment, such as seed predation and soil moisture, are addressed.
APA, Harvard, Vancouver, ISO, and other styles
11

Boschma, S. P., G. M. Lodge, and S. Harden. "Establishment and persistence of perennial grass and herb cultivars and lines in a recharge area, North-West Slopes, New South Wales." Crop and Pasture Science 60, no. 8 (2009): 753. http://dx.doi.org/10.1071/cp08357.

Full text
Abstract:
Two adjacent sites, one previously cropped and the other a native pasture, were sown with perennial temperate and tropical grasses and herbs (Expt 1), Phalaris aquatica (phalaris) and Festuca arundinacea (tall fescue) cultivars or lines (Expt 2), and perennial tropical grasses (Expt 3) near Manilla, NSW. Establishment, herbage mass and plant frequency were assessed in 2003–06 to (i) identify cultivars/lines with superior persistence, (ii) detect possible mechanisms required for successful production and persistence in a summer-dominant rainfall environment, and (iii) examine the comparative performance of the species groups when sown into previously cropped and native pasture areas. Plots were fertilised annually and grazed or mown at least seasonally. Most cultivars/lines persisted at the previously cropped site, while those on the native pasture site had to be resown and generally failed to persist beyond the first year. At the previously cropped site, summer-dormant tall fescue cv. Resolute MaxP® was the most persistent of the grasses evaluated in Expt 1. Grasses such as Lolium perenne cv. Avalon and Bromus stamineus cv. Gala did not perenneate, but regenerated annually from seed. Native grasses generally had poor establishment; however, Austrodanthonia richardsonii and A. fulva tended to increase in plant frequency over time. Chloris gayana (Rhodes grass) cv. Katambora and Panicum maximum (panic) cv. Gatton were the only tropical grasses that established in Expt 1, and both had plant frequencies similar (P > 0.05) to the temperate grasses at the final assessment. In Expt 2, Resolute MaxP again was the most persistent cultivar/line. Several experimental lines of phalaris (e.g. T39 and M225) had high herbage mass and good persistence compared with commercial cultivars. In Expt 3, Katambora Rhodes grass and Digitaria eriantha ssp. eriantha (digit grass) cv. Premier were the most persistent cultivars and had the highest herbage mass. These data highlighted summer dormancy in temperate grasses and frost tolerance in tropical grasses as two possible mechanisms important for persistence of grasses on the North-West Slopes of NSW and the risks associated with sowing perennial grasses into established native pastures.
APA, Harvard, Vancouver, ISO, and other styles
12

Young, Stephen L., and Victor P. Claassen. "Native Perennial Grasses in Highway Medians: Pre- and Postplant Techniques for Establishment in a Mediterranean Climate." Invasive Plant Science and Management 1, no. 4 (October 2008): 368–75. http://dx.doi.org/10.1614/ipsm-08-077.1.

Full text
Abstract:
AbstractWithin highway rights-of-way, native perennial grasses provide desirable services to support natural and human constructed ecosystems. However, native perennial grass establishment in annual grass dominated roadsides of semiarid and Mediterranean climates of the western United States requires specific cultural and chemical management treatments to control weeds. In 2004, field studies were conducted in Sacramento Valley, California to determine the effect of herbicide, disc cultivation, and species selection on native perennial grass establishment and annual weed persistence. Perennial grass species mixes common to drier and wetter upland areas in northern California were drill seeded at two sites (I-5 North and I-5 South) that had been burned in 2003 and received weed control (i.e., herbicide, cultivation, mowing) in spring 2004. Herbicides were the most important treatments for native perennial grass establishment and weed reduction. Native perennial grass species persistence was largely unaffected by cultivation or native plant accessions at these sites. Native perennial grass density increased at I-5 North in the second year of growth (2006) resulting in a plant density totaled across all herbicide regimes of 3.9 plants m−1 compared to 2.5 plants m−1 at I-5 South. Vigorous native perennial grass growth in the more fertile and less droughty soils of I-5 North helped to limit annual weeds through competition, which is anticipated to reduce the need for chemical and mechanical control in years following early establishment.
APA, Harvard, Vancouver, ISO, and other styles
13

Thapa, R., D. R. Kemp, D. L. Michalk, W. B. Badgery, and A. T. Simmons. "Seedling recruitment of native perennial grasses within existing swards." Crop and Pasture Science 62, no. 7 (2011): 591. http://dx.doi.org/10.1071/cp10212.

Full text
Abstract:
Two field experiments, one each on Austrodanthonia spp. and Bothriochloa macra, investigated the effects of biomass manipulation, seed level modification, site preparation and pasture composition on the recruitment of native perennial grass seedlings. The experiments coincided with drier than average years and although successful emergence of seedlings occurred, survival was extremely low. In the Austrodanthonia experiment, control treatments resulted in the emergence of only 1 seedling/m2, whereas there were 130/m2 in the best treatment which had biomass cut with plant material removed, seed added, and the soil surface scarified. Insecticide treatments increased emergence as seed-harvesting ants are common in these systems, but the benefits were small. Similarly, B. macra had no emergence in the control treatment compared with 73 seedlings/m2 in the best treatment, which was pasture cropped, and had seed added and herbicide applied. Availability of microsites may be a major constraint to B. macra emergence, as soil disturbance through pasture cropping substantially increased seedling numbers (279/m2). The effects of herbicide on emergence were small with the largest being related to bare ground and litter biomass. Austrodanthonia seedling numbers at emergence were related to bare ground, litter and green biomass. Survival of young Austrodanthonia plants 24 weeks after emergence was negatively related to plant cover, but only in treatments where plant material was cut and removed. The success of survival was determined at 52 weeks after emergence and the number of young plants that survived in both experiments seemed to have been influenced by the presence of competitive biomass of existing plants.
APA, Harvard, Vancouver, ISO, and other styles
14

Kim, Sumin, Amber Williams, James R. Kiniry, and Christine V. Hawkes. "Simulating diverse native C4 perennial grasses with varying rainfall." Journal of Arid Environments 134 (November 2016): 97–103. http://dx.doi.org/10.1016/j.jaridenv.2016.07.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

LaFantasie, Jordana J., and Stephen F. Enloe. "Competitive Ability of Black Henbane (Hyoscyamus niger) When Grown with Three Native Grasses." Invasive Plant Science and Management 4, no. 1 (March 2011): 159–65. http://dx.doi.org/10.1614/ipsm-09-049.1.

Full text
Abstract:
AbstractBlack henbane is a poisonous, invasive plant in the family Solanaceae, and is typically associated with highly disturbed environments, such as pipelines, roadsides, and mammalian burrows. Often, such disturbances require reseeding for successful restoration; thus, the potential exists for competition between henbane and perennial grasses commonly used in restoration projects. These competitive interactions have not, to our knowledge, been evaluated. We conducted a greenhouse study to compare the response of henbane when grown alone and in combination with three common, cool season, perennial, northern mixed prairie grass species. We examined both seedling and mature grass response to the presence or absence of henbane and the response of henbane to the grasses. Using the relative neighbor-effect index, black henbane was found to be a very poor competitor with mature grasses and two out of three seedling grasses tested. All measures of henbane growth were significantly lower among plants grown with a mature grass pot companion. Total biomass of henbane was up to 99% lower when grown with mature grasses. Mature grasses were not negatively affected when grown in combination with henbane. Western wheatgrass (Pascopyrum smithii) was the only seedling grass that was competitive with henbane but was also the only seedling grass negatively affected by henbane in both biomass and tiller production. These experiments suggest that henbane is not well suited for invasion of mature grass stands but may negatively influence some perennial grass seedlings in restoration situations.
APA, Harvard, Vancouver, ISO, and other styles
16

Badgery, W. B., D. R. Kemp, D. L. Michalk, and W. McG King. "Studies of competition between Nassella trichotoma (Nees) Hack. ex Arechav. (serrated tussock) and native pastures. 1. Adult plants." Australian Journal of Agricultural Research 59, no. 3 (2008): 226. http://dx.doi.org/10.1071/ar07112.

Full text
Abstract:
Nassella trichotoma (serrated tussock) is a hardy perennial grass weed that rapidly invades disturbed areas. Pasture competition is an important component of an integrated weed-management system for native pastures. This paper reports on a field experiment to ascertain the level of competition from native grasses for adult N. trichotoma plants. Native grasses prevented N. trichotoma plants from increasing in biomass and basal area when rotationally grazed or when grazing was removed and fertiliser was withheld. Smaller N. trichotoma plants (<500 mm2) were more likely to vary in size with very little change in larger plants. Flupropanate efficiently killed all N. trichotoma plants but caused considerable damage to perennial native species, resulting in an uncompetitive pasture dominated by broadleaf weeds.
APA, Harvard, Vancouver, ISO, and other styles
17

Jacot, Jacqueline, Amber S. Williams, and James R. Kiniry. "Biofuel Benefit or Bummer? A Review Comparing Environmental Effects, Economics, and Feasibility of North American Native Perennial Grass and Traditional Annual Row Crops When Used for Biofuel." Agronomy 11, no. 7 (July 20, 2021): 1440. http://dx.doi.org/10.3390/agronomy11071440.

Full text
Abstract:
While biofuels have been touted as a benefit for growers—with the ability to be planted on marginal lands, for improved wildlife habitat, to sustain soils, and to reduce runoff—there remains to be a general summary of how beneficial they really are. This paper aims to review the environmental effects, feasibility, and economic aspects of using native perennial grasses in North America as biofuels as opposed to traditional annual crops. The Scopus database was used to search for manuscripts relating to each topic. In some instances, very few results appeared, so a second database, Digitop, was also used. Native perennial grasses have been found to sequester carbon and cultivating them can create a carbon sink in the soil. Overall, wildlife benefit more by having native perennial grass for biofuels planted than annual maize and having fewer harvests a season is better for wildlife over the entire year. Economically, growing native perennial grasses can be advantageous especially on marginal land, where it has a comparatively high yield. Although the second-generation biofuel supply chain is susceptible to changing market prices, it can be made more resilient and has advantages, for example resistance against the impacts of drought. Although there are many cultivars to choose from, factors like climate, soil, and genetics can provide pertinent information to match each specimen’s ideal growing conditions to the right location.
APA, Harvard, Vancouver, ISO, and other styles
18

Wilson, Rob G., Debra Boelk, Guy B. Kyser, and Joseph M. DiTomaso. "Integrated Management of Perennial Pepperweed (Lepidium latifolium)." Invasive Plant Science and Management 1, no. 1 (January 2008): 17–25. http://dx.doi.org/10.1614/ipsm-07-004.1.

Full text
Abstract:
AbstractPerennial pepperweed is invasive throughout California. It thrives in a wide range of environments and is a common weed in floodplains, pastures, wetlands, and roadsides. In disturbed areas, perennial pepperweed rapidly forms monotypic stands with a thick litter layer. These infestations not only out-compete other vegetation, but prevent re-establishment of desirable species even after perennial pepperweed control. This experiment examined integrated management strategies with the goal of maximizing perennial pepperweed control and establishment of desirable native vegetation. The experiment was conducted at two sites in Lassen County, CA. Both sites were heavily infested with perennial pepperweed and lacked competing vegetation. The experimental design was a split-split-randomized block with four replications. Site preparation treatments included winter burning, summer and fall mowing, winter grazing, and fall disking. These treatments were designed to remove thatch to facilitate herbicide application and reseeding of desirable perennial grasses. Herbicide treatments included chlorsulfuron, 2,4-D, or glyphosate applied at the flower bud stage. Revegetation treatments included no seeding and no-till seeding of native perennial grasses. Most site preparation plus herbicide combinations reduced perennial pepperweed cover > 85% compared to the untreated control, although treatment efficacy was variable between sites and years. Burning, grazing, mowing, or disking in combination with herbicide treatment and no-till seeding was necessary for successful native perennial grass establishment. Burning or mowing with yearly 2,4-D applications for 3 yr gave the best combination of perennial pepperweed control and native grass establishment. Chlorsulfuron caused chlorosis and stunting to western wheatgrass, basin wildrye, and beardless wildrye at both sites when applied the spring before seeding. No treatment offered complete weed control, suggesting follow-up spot herbicide applications are needed for long-term perennial pepperweed suppression. These results provide several successful integrated strategies for control of perennial pepperweed and revegetation to a desired native perennial grass community.
APA, Harvard, Vancouver, ISO, and other styles
19

Endress, Bryan A., Catherine G. Parks, Bridgett J. Naylor, Steven R. Radosevich, and Mark Porter. "Grassland Response to Herbicides and Seeding of Native Grasses 6 Years Posttreatment." Invasive Plant Science and Management 5, no. 3 (September 2012): 311–16. http://dx.doi.org/10.1614/ipsm-d-11-00050.1.

Full text
Abstract:
AbstractHerbicides are the primary method used to control exotic, invasive plants. This study evaluated restoration efforts applied to grasslands dominated by an invasive plant, sulfur cinquefoil, 6 yr after treatments. Of the five herbicides we evaluated, picloram continued to provide the best control of sulfur cinquefoil over 6 yr. We found the timing of picloram applications to be important to the native forb community. Plots with picloram applied in the fall had greater native forb cover. However, without the addition of native perennial grass seeds, the sites became dominated by exotic grasses. Seeding resulted in a 20% decrease in exotic grass cover. Successful establishment of native perennial grasses was not apparent until 6 yr after seeding. Our study found integrating herbicide application and the addition of native grass seed to be an effective grassland restoration strategy, at least in the case where livestock are excluded.
APA, Harvard, Vancouver, ISO, and other styles
20

Mavromihalis, J. A., J. Dorrough, S. G. Clark, V. Turner, and C. Moxham. "Manipulating livestock grazing to enhance native plant diversity and cover in native grasslands." Rangeland Journal 35, no. 1 (2013): 95. http://dx.doi.org/10.1071/rj12074.

Full text
Abstract:
Temperate perennial grasslands globally have been subject to extensive biodiversity loss. Identifying livestock grazing regimes that maintain and enhance the diversity and cover of native plant species in these ecosystems remains a key challenge. The responses of vegetation to different sheep grazing regimes were assessed over 3 years in grasslands of south-eastern Australia. An open communal experimental design was used to assess the effects of varying season and duration of exclusion of grazing by sheep, replicated at three locations. Manipulation of season and duration of exclusion of grazing led to few major changes in the cover of native perennial grasses or forbs, although seasonal variation was considerable. Exclusion of grazing in the spring did increase the likelihood of occurrence of grazing-sensitive native forb species but also lead to an increase in the cover of exotic annual species. However, cover of exotic annual species tended to decline with increasing duration of exclusion, while the abundance of native, grazing-sensitive forbs and the cover of perennial grasses increased. Small-scale richness of native perennial forb species increased with a 3-month period of exclusion of grazing, but declined with year-round exclusion of sheep. Total species richness also declined in response to year-round exclusion of sheep and rates of decline were correlated with the rate at which herbage mass accumulated. While strategic grazing did not result in major vegetation changes in the short term, it is suggested that some grazing exclusion may enhance the survival of infrequent species most sensitive to sheep grazing. Caution, however, should be taken when grazing regimes implemented benefit both desirable (native forbs) and undesirable (exotic annuals) species. Having a mosaic of flexible grazing management regimes across the landscape is likely to be beneficial for native plant diversity.
APA, Harvard, Vancouver, ISO, and other styles
21

Torres, Yanina A., Carlos A. Busso, Oscar A. Montenegro, Leticia Ithurrart, Hugo D. Giorgetti, Gustavo Rodríguez, Diego Bentivegna, et al. "Root proliferation in native perennial grasses of arid Patagonia, Argentina." Journal of Arid Land 6, no. 2 (September 6, 2013): 195–204. http://dx.doi.org/10.1007/s40333-013-0201-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Waldron, Blair L., Thomas A. Monaco, Kevin B. Jensen, R. Deane Harrison, Antonio J. Palazzo, and James D. Kulbeth. "Coexistence of Native and Introduced Perennial Grasses following Simultaneous Seeding." Agronomy Journal 97, no. 3 (May 2005): 990–96. http://dx.doi.org/10.2134/agronj2004.0265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Alemseged, Y., R. B. Hacker, W. J. Smith, and G. J. Melville. "Temporary cropping in semi-arid shrublands increases native perennial grasses." Rangeland Journal 33, no. 1 (2011): 67. http://dx.doi.org/10.1071/rj10022.

Full text
Abstract:
Thickening of native shrubs is a major problem in many ‘semi-arid woodlands’ as significant increase in shrub density is often negatively correlated with herbaceous vegetation and leads to reduced pasture production and soil erosion. This project aimed to test the hypothesis that temporary cropping (up to three crops in 15 years) consistently increases the density of native perennial grasses following the removal of shrubs. A total of 30 paddocks that had been cropped during the last 20 years were randomly selected using a satellite-based database that documented annual clearing and cropping history from 1987 to 2003. Paddocks were classified into four types based on clearing and cropping history and grazing management – not cleared (shrubs), regrowth (re-invaded by shrubs), set stocked (cropped and grazed), light/rotationally grazed (cropped and grazed). The responses of vegetation and soil (chemical and physical) properties to clearing and cropping were evaluated. Results indicated that ground cover, native perennial grass cover and standing dry matter were highest under light/rotationally grazed conditions. The shrub state represents a stable state within the Cobar pediplain brought about due to land-use change in the form of overgrazing and/or the removal of fire from the system. An alternative stable state was achieved as a result of disturbance in the form of clearing, cropping and grazing management thereby directly altering the shrub population. The resilience of this state is largely dependent on the grazing management system used and on the prevention of shrub from re-establishing while failure to control shrubs could lead to the re-emergence of the Shrub State. We conclude that native grasslands do regenerate following cropping after removal of shrubs. The importance of grazing management for restoring perennial ground cover following removal of shrubs and temporary cropping has been clearly demonstrated by the study.
APA, Harvard, Vancouver, ISO, and other styles
24

Johnson, Dustin D., and Kirk W. Davies. "Effects of Integrating Mowing and Imazapyr Application on African Rue (Peganum harmala) and Native Perennial Grasses." Invasive Plant Science and Management 7, no. 4 (December 2014): 617–23. http://dx.doi.org/10.1614/ipsm-d-13-00019.1.

Full text
Abstract:
AbstractAfrican rue is a poisonous, perennial forb that readily invades salt-desert shrub and sagebrush-steppe rangelands. Information detailing options for integrated management of African rue is lacking. To date, a few studies have researched the efficacy of different herbicides for controlling African rue, but none have investigated integrated approaches to its management. Broadcast applications of imazapyr at three rates (0.275, 0.55, and 0.85 kg ae ha−1) were made, with and without a prior mowing treatment, to African rue when it was in full bloom. Imazapyr resulted in significant reductions in both the cover and density of African rue, regardless of application rate or mowing treatment (P < 0.05). Mowing had no effect on African rue cover or density (P > 0.05). Higher rates of imazapyr resulted in significant reductions in the cover of native perennial bunchgrasses (P < 0.05), whereas the low rate did not affect perennial grass cover, regardless of mowing treatment (P > 0.05). Integrating a mowing treatment with imazapyr applications was less effective for controlling African rue than applying herbicide alone. Mowing before imazapyr application did not increase survival of perennial grasses. Our results suggest that the recommended rate of imazapyr for controlling African rue (0.85 kg ae ha−1) could be reduced by as much as one-third on dry floodplain ecological sites within the northern Great Basin without comprising its effectiveness for controlling African rue. This lower rate would reduce nontarget damage to native perennial grasses, which are the dominant functional group in the herbaceous understory. Less damage to native perennial grasses would probably accelerate understory recovery and help prevent invasion by other invasive species.
APA, Harvard, Vancouver, ISO, and other styles
25

Asay, K. H., W. H. Horton, K. B. Jensen, and A. J. Palazzo. "Merits of native and introduced Triticeae grasses on semiarid rangelands." Canadian Journal of Plant Science 81, no. 1 (January 1, 2001): 45–52. http://dx.doi.org/10.4141/p99-131.

Full text
Abstract:
Experiments were conducted on four semiarid range sites to compare stand establishment, productivity, and persistence of several introduced perennial Triticeae grasses with that of their native counterparts. On Intermountain sites with severe water limitations (< 300 mm), native grasses were more difficult to establish, less productive, and less persistent than the introduced grasses. Stands of native grasses declined most rapidly under defoliation. At locations where moisture conditions were more favorable, particularly where more summer precipitation occurred, native Triticeae grasses established and persisted relatively well compared with the introduced entries. Although difficult to establish, stands of the rhizomatous native, western wheatgrass [Pascopyrum smithii (Rydb.) A. Löve] in creased during the seasons after establishment. Choice of plant materials to be used in range seeding programs should be based on objective criteria. To do otherwise will perpetuate degradation of soil resources, especially on sites that are dominated by weedy annual species such as cheatgrass (Bromus tectorum) and medusahead rye (Taeniatherum asperum). It is proposed that adapted introduced grasses be equally considered along with native grasses as a component of seed mixtures on environmentally harsh sites that have been burned, infested with competitive weedy species, or otherwise degraded. Key words: Grass breeding, revegetation, introduced grasses, Triticeae, cheatgrass, seedling vigor, plant persistence
APA, Harvard, Vancouver, ISO, and other styles
26

Hacker, R. B., I. D. Toole, and G. J. Melville. "Effects of nitrogen and phosphorus on vegetation dynamics of a degraded native grassland in semi-arid south-eastern Australia." Rangeland Journal 33, no. 1 (2011): 87. http://dx.doi.org/10.1071/rj10030.

Full text
Abstract:
The roles of nitrogen (N) and phosphorus (P) in controlling vegetation transitions in a degraded semi-arid grassland were investigated in a factorial experiment that combined two initial levels of perennial plant density (low and high), three levels of N (N+, N0 and N–) and two levels of P (P+ and P0). Increased levels of both N and P were achieved by fertiliser addition while sucrose was used to reduce the level of N. Vegetation dynamics were driven primarily by soil N rather than P. Addition of sucrose, which was inferred to result in the immobilisation of mineral N, reduced the growth of annual species and facilitated the establishment and growth of native perennial grasses. Addition of P generally had no significant effect on dry matter production, either in total or for species grouped as forbs, annual grasses and perennial grasses, or on recruitment and mortality of perennial grasses. However, at some times of observation addition of P increased ground cover and/or the basal circumference of some perennial grass species. Basal circumference for Enteropogon acicularis was also increased by addition of N. Soil biological activity, measured by decomposition of cotton strips, was increased by addition of N, which maintained vegetation in an annual-dominated condition, and was not affected by addition of P. Carbon addition has the potential to assist restoration of this grassland. However, the capacity of some native grass species to respond to increased fertility suggests that once restoration is achieved some increase in fertility may be beneficial for pastoral production.
APA, Harvard, Vancouver, ISO, and other styles
27

Sheley, Roger L., and Jeremy James. "Resistance of Native Plant Functional Groups to Invasion by Medusahead (Taeniatherum caput-medusae)." Invasive Plant Science and Management 3, no. 3 (November 2010): 294–300. http://dx.doi.org/10.1614/ipsm-d-09-00056.1.

Full text
Abstract:
AbstractUnderstanding the relative importance of various functional groups in minimizing invasion by medusahead is central to increasing the resistance of native plant communities. The objective of this study was to determine the relative importance of key functional groups within an intact Wyoming big sagebrush–bluebunch wheatgrass community type on minimizing medusahead invasion. Treatments consisted of removal of seven functional groups at each of two sites, one with shrubs and one without shrubs. Removal treatments included (1) everything, (2) shrubs, (3) perennial grasses, (4) taprooted forbs, (5) rhizomatous forbs, (6) annual forbs, and (7) mosses. A control where nothing was removed was also established. Plots were arranged in a randomized complete block with 4 replications (blocks) at each site. Functional groups were removed beginning in the spring of 2004 and maintained monthly throughout each growing season through 2009. Medusahead was seeded at a rate of 2,000 seeds m−2 (186 seeds ft−2) in fall 2005. Removing perennial grasses nearly doubled medusahead density and biomass compared with any other removal treatment. The second highest density and biomass of medusahead occurred from removing rhizomatous forbs (phlox). We found perennial grasses played a relatively more significant role than other species in minimizing invasion by medusahead. We suggest that the most effective basis for establishing medusahead-resistant plant communities is to establish 2 or 3 highly productive grasses that are complementary in niche and that overlap that of the invading species.
APA, Harvard, Vancouver, ISO, and other styles
28

Costello, Michael J. "Growth and Yield of Cultivated Grape with Native Perennial Grasses Nodding Needlegrass or California Barley as Cover Crops." HortScience 45, no. 1 (January 2010): 154–56. http://dx.doi.org/10.21273/hortsci.45.1.154.

Full text
Abstract:
Two California native perennial grasses, nodding needlegrass [Nassella cernua (Stebbins & R.M. Love) Barkworth] and California barley [Hordeum brachyantherum Nevski ssp. californicum (Covas & Stebbins) Bothmer, N. Jacobsen & Seberg], were compared with a conventional grass cover crop, ‘Blando’ brome (Bromus hordeaceus L.), as well as resident (weedy) vegetation and a clean cultivated control for effects on growth and yield of cultivated grape (Vitis vinifera L. cv. Barbera). Statistical analyses did not reveal yield differences between treatments with floor vegetation (the native grasses, ‘Blando’ brome, and resident vegetation) and clean cultivation, the cover crop treatments (the native grasses and ‘Blando brome’) and clean cultivation, nor the native grass treatments versus treatments with non-native floor vegetation (‘Blando’ brome and resident vegetation). However, there was a significant difference between the two native grasses with the average yield of nodding needlegrass 26.2% higher than that of California barley. Treatments did not differ in °Brix, berry weight, or pruning weight. At the end of the study, vine trunk diameter was 7.1% higher under the cover crop treatments than resident vegetation. Given these results, in vineyards where a neutral effect on growth or yield is desired, nodding needlegrass would be suitable as a permanent cover crop, whereas California barley would not.
APA, Harvard, Vancouver, ISO, and other styles
29

Bolger, T. P., A. R. Rivelli, and D. L. Garden. "Drought resistance of native and introduced perennial grasses of south-eastern Australia." Australian Journal of Agricultural Research 56, no. 11 (2005): 1261. http://dx.doi.org/10.1071/ar05075.

Full text
Abstract:
Perennial grasses are the key to the economic and environmental sustainability of pastures for livestock grazing in south-eastern Australia. Mortality of perennial grasses can occur during drought periods and there is anecdotal evidence of differences in drought resistance among species, but information on the basic ecophysiological responses of these species to drought is lacking. An experiment was conducted to determine the responses of 7 native and 3 introduced perennial grass species to continuous drought. Leaf survival during severe drought varied among the species nearly 4-fold, from 11 to 40 days, and was considered a measure of their overall drought resistance. All of the species had good dehydration tolerance, so the differences in drought resistance were related more to their dehydration avoidance traits, specifically to the amount of water available to the plant at the point where plant transpiration became minimal. The native species had both the longest and shortest leaf survival periods, with the introduced species ranking intermediate. Species exhibited various morphological traits that contributed to dehydration avoidance during severe drought, including leaf folding or rolling, rapid leaf shedding, and large amounts of cuticular wax. The results are discussed in terms of their implications for perennial grass persistence in south-eastern and in south-western Australia.
APA, Harvard, Vancouver, ISO, and other styles
30

Burnett, Shayla A., and Brian A. Mealor. "Imazapic Effects on Competition Dynamics Between Native Perennial Grasses and Downy Brome (Bromus tectorum)." Invasive Plant Science and Management 8, no. 1 (March 2015): 72–80. http://dx.doi.org/10.1614/ipsm-d-14-00032.1.

Full text
Abstract:
AbstractDowny brome inhibits revegetation efforts following ecosystem disturbance. Imazapic is a commonly used herbicide for downy brome management, but more information is needed regarding effective application timing for restoration efforts. We wished to determine (1) if native species establishment exhibited a tradeoff between downy brome competition and injury from herbicide and (2) if this differed between pre- and postemergent applications of imazapic. We used a standard replacement series design and overlaid herbicide treatments. Nine weeks after planting, aboveground biomass was harvested and relative yield (RY) indices calculated. Both imazapic applications reduced downy brome biomass by 91% or more (P < 0.05). Imazapic caused drastic reductions in native biomass but less than what was caused by downy brome competition (P < 0.05). Natives were less injured by a pre- than postemergent application (P < 0.05). In situations where downy brome may impact restoration efforts, pre-emergent applications of imazapic at 70 g ai ha−1 (0.06 lb ai ac−1) may reduce downy brome with less negative impacts on newly-seeded native grasses than post-emergent applications. Ensuring sufficient proportions of native species seeds on restoration sites may reduce downy brome.
APA, Harvard, Vancouver, ISO, and other styles
31

Hill, J. O., R. J. Simpson, A. D. Moore, P. Graham, and D. F. Chapman. "Impact of phosphorus application and sheep grazing on the botanical composition of sown pasture and naturalised, native grass pasture." Australian Journal of Agricultural Research 55, no. 12 (2004): 1213. http://dx.doi.org/10.1071/ar04090.

Full text
Abstract:
Botanical composition (basal cover) was measured in 4 replicated pasture treatments based on Phalaris aquatica and Trifolium subterraneum at Hall, ACT (unfertilised with low and high stocking rate; fertilised with low and high stocking rate) and in 2 unreplicated pasture treatments based on native perennial grasses (Austrodanthonia spp. and Microlaena stipoides) and T. subterraneum at Bookham, NSW (unfertilised and low stocking rate; fertilised and high stocking rate). Current economic pressures are encouraging graziers to increase their use of phosphorus (P) fertiliser and to adopt higher stocking rates. The objective of the research was to determine the changes in botanical composition that may result from these changes in grazing systems management. At Hall, annual species differed in their responses to P fertility. Notably, basal cover of Bromus spp. increased significantly with P application, whereas Vulpia spp. decreased significantly. Basal cover of T. subterraneum also increased significantly with P application when stocking rate was high, but was reduced by P application if stocking rate was low. Basal cover of perennial grasses (P. aquatica and Holcus lanatus) was significantly higher at low stocking rate when P was applied. The botanical composition of high stocking rate treatments was relatively stable over time, which contrasted with less stable composition at low stocking rate. At Bookham, fertilised pasture in unreplicated paddocks appeared to have a higher basal cover of productive annual species (i.e. Bromus spp. and T. subterraneum), but native perennial grasses appeared to have lower basal cover in comparison with the unfertilised area. These results indicated that in some cases, the influence of P fertiliser and high stocking rates on botanical composition was favourable (i.e. increased basal cover of P. aquatica and T. subterraneum) and in others it could be detrimental (i.e. lower basal cover of native perennial grasses).
APA, Harvard, Vancouver, ISO, and other styles
32

Wilson, Rob G., Steve B. Orloff, Donald L. Lancaster, Donald W. Kirby, and Harry L. Carlson. "Integrating Herbicide Use and Perennial Grass Revegetation to Suppress Weeds in Noncrop Areas." Invasive Plant Science and Management 3, no. 1 (May 2010): 81–92. http://dx.doi.org/10.1614/ipsm-09-008.1.

Full text
Abstract:
AbstractNoncropland such as levees, roadsides, field borders, fencerows, and wildlife areas are vulnerable to weed invasion. Many sites have undergone frequent human disturbance, such as manipulation from surrounding land uses, and lack competitive, desirable vegetation. This study addressed the importance of revegetation in an integrated weed management program including revegetation for noncrop areas. The study evaluated 14 cool-season perennial grasses (seven native species and eight introduced species) for their establishment, vigor, and ability to suppress weeds. It also evaluated the impact of herbicides on weed control and grass establishment. Treatments were applied at three noncrop sites in Northeast California that were heavily infested with weeds. Chemical weed control during the year of seeding and the following year was critical for perennial grass establishment. Weed cover was greater than 50% whereas average seeded grass cover was less than 6% in untreated plots at all sites 2 yr after seeding. In contrast, average seeded grass cover at all sites was 22 to 31% 2 yr after seeding for treatments where herbicide use resulted in wide-spectrum weed control and grass safety. Increasing perennial grass cover decreased total weed cover across perennial grass species 1and 2 yr after seeding. Individual grass species' cover differed among sites. Two introduced grasses (tall wheatgrass and crested wheatgrass) and three native grasses (western wheatgrass, bluebunch wheatgrass, and thickspike wheatgrass) showed broad adaptation and had > 20% cover at all sites 2 yr after seeding. In herbicide-treated plots, these grasses reduced total weed cover by 43 to 98% compared to unseeded plots 2 yr after seeding.
APA, Harvard, Vancouver, ISO, and other styles
33

Young, S. L., and V. P. Claassen. "Release of Roadside Native Perennial Grasses following Removal of Yellow Starthistle." Ecological Restoration 26, no. 4 (November 17, 2008): 357–64. http://dx.doi.org/10.3368/er.26.4.357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Goergen, Erin M., Elizabeth A. Leger, and Erin K. Espeland. "Native Perennial Grasses Show Evolutionary Response to Bromus tectorum (Cheatgrass) Invasion." PLoS ONE 6, no. 3 (March 30, 2011): e18145. http://dx.doi.org/10.1371/journal.pone.0018145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hardegree, Stuart P. "Matric Priming Increases Germination Rate of Great Basin Native Perennial Grasses." Agronomy Journal 86, no. 2 (March 1994): 289–93. http://dx.doi.org/10.2134/agronj1994.00021962008600020015x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Waitman, Benjamin A., Trent M. Draper, and Todd C. Esque. "The effects of seeding sterile triticale on a native plant community after wildfire in a pinyon pine - mountain mahogany woodland." International Journal of Wildland Fire 18, no. 6 (2009): 659. http://dx.doi.org/10.1071/wf07157.

Full text
Abstract:
Post-fire seeding with grasses is a common practice for emergency rehabilitation of burned woodlands. However, most post-seeding monitoring does not address consequences to native flora. In November 2004, the US Forest Service hand-seeded triticale (×Triticosecale Wittm. ex A. Camus), a sterile wheat–rye hybrid, on a small burned area in the Spring Mountains of southern Nevada, United States. A monitoring project using paired plots was designed to quantify the effects of seeding triticale on density and species richness of native annual and perennial plants, cover of perennial plants, and aboveground production of annual plants. We did not find any effects of triticale seeding on annual plant species or most responses of perennial plants. However, the density of woody perennial seedlings was significantly lower 2 years after triticale was added. Although we found a smaller impact from seeding with exotic grass than other studies, quantifiable costs to native vegetation were observed. We caution against the use of non-native grass for seeding in areas with naturally low perennial recruitment.
APA, Harvard, Vancouver, ISO, and other styles
37

Lodge, G. M. "Effects of continuous grazing and seasonal closures on the performance and persistence of some sown temperate perennial grasses, North-West Slopes New South Wales." Australian Journal of Experimental Agriculture 42, no. 4 (2002): 431. http://dx.doi.org/10.1071/ea01114.

Full text
Abstract:
A split-plot experiment was sown at Tamworth in 1992 to examine the effects of continuous sheep grazing and seasonal closures (autumn, spring, spring + autumn, and summer + winter) on the herbage mass, plant frequency and basal cover of 5 perennial grasses, when sown as monocultures or with a perennial (Trifolium repens cv. Haifa) or annual legume (Trifolium subterraneum var. subterraneum cv. Seaton Park). Plant basal area and crown density data were also collected. The perennial grasses were Phalaris aquatica cv. Sirosa, Festuca arundinacea, cv.� Demeter, Lolium perenne cv. Kangaroo Valley, Austrodanthonia richardsonii (syn. Danthonia richardsonii) cv.�Taranna, and A. bipartita (syn. D. linkii) cv. Bunderra. There was no significant effect of legume presence on the herbage mass or persistence of the perennial grasses. The only treatment that had a significant effect (P< 0.05) on either herbage mass, plant frequency or basal cover data was the grazing treatment × perennial grass interaction in each of the years 1993-98, except for herbage mass in December 1993 and basal cover in October 1998. In all of the grazing treatments examined, Kangaroo Valley ryegrass failed to persist after spring 1994; Demeter fescue had failed by spring 1997 and Sirosa phalaris by spring 1998. Six years after sowing the only temperate grass cultivars that were persisting in all grazing treatments were the native perennials, Taranna and Bunderra. Hence, the data represent the entire stand life from sowing to eventual failure for the 3 introduced cultivars. While grazing treatment effects within years for individual species were significant, overall grazing had little effect on the rate of decline in herbage mass and persistence of Kangaroo Valley, Demeter and Sirosa. By 1998, grazing treatment had no significant effect on the herbage mass and basal cover of Taranna and Bunderra, but their plant frequencies were lowest in the spring rest and summer + winter rest treatments.
APA, Harvard, Vancouver, ISO, and other styles
38

Badgery, W. B., D. R. Kemp, D. L. Michalk, and W. McG King. "Studies of competition between Nassella trichotoma (Nees) Hack. ex Arechav. (serrated tussock) and native pastures. 2. Seedling responses." Australian Journal of Agricultural Research 59, no. 3 (2008): 237. http://dx.doi.org/10.1071/ar07113.

Full text
Abstract:
Native perennial grass competition can substantially reduce the invasion of Nassella trichotoma (serrated tussock), a major perennial grass weed problem in south-eastern Australia. This paper reports on a field experiment that investigated the recruitment of N. trichotoma seedlings, and determined what level of native grass competition was needed to prevent establishment in the central-west of NSW. Grasslands that maintained >2 t dry matter (DM)/ha and 100% ground cover (measured in spring) prevented N. trichotoma seedling recruitment. Relatively small amounts of perennial grass (>0.5 t DM/ha measured in spring) resulted in mortality of N. trichotoma seedlings that had recruited earlier in the year, through the next summer. Flupropanate also markedly reduced native perennial grasses and substantially increased N. trichotoma seedling establishment 12 months after application. Rotational grazing to maintain adequate levels of DM was an important management tactic that prevented N. trichotoma establishment and survival.
APA, Harvard, Vancouver, ISO, and other styles
39

Uselman, Shauna M., Keirith A. Snyder, Elizabeth A. Leger, and Sara E. Duke. "First-Year Establishment, Biomass and Seed Production of Early vs. Late Seral Natives in Two Medusahead (Taeniatherum caput-medusae) Invaded Soils." Invasive Plant Science and Management 7, no. 2 (June 2014): 291–302. http://dx.doi.org/10.1614/ipsm-d-13-00068.1.

Full text
Abstract:
AbstractRe-seeding efforts to restore or rehabilitate Great Basin rangelands invaded by exotic annual grasses are expensive and have generally achieved limited success. There is a need to identify new strategies to improve restoration outcomes. We tested the performance of a native early seral seed mix (annual forbs, early seral grasses and shrubs) with that of a native late seral mix representative of species commonly used in restoration when growing with medusahead in soils of contrasting texture (sandy loam and clay loam) through the first growing season after seeding. Natives were also seeded without medusahead. We found that the grasses and forbs in the early seral mix established significantly better than those in the late seral mix, and the early seral mix significantly reduced aboveground biomass and seed production of medusahead by 16 and 17% respectively, likely because of competition with the early seral native forb, bristly fiddleneck. Medusahead performance was reduced in both soil types, suggesting utility of bristly fiddleneck in restoration is not limited to only one soil type. In contrast, the late seral mix did not suppress medusahead establishment, aboveground biomass or seed production. Although the native perennial grasses, particularly early seral species, were able to establish with medusahead, these grasses did not appear to have a suppressive effect on medusahead during the first growing season. Medusahead was able to establish and produce seeds on both soil types, demonstrating an ability to expand its current range in the Intermountain West, though aboveground biomass and seed production was higher in the clay loam. Our results suggest that certain species may play a key role in restoration, and that targeting early seral species in particular to find additional native species with the ability to suppress exotic annual grasses is an important next step in improving restoration outcomes in desert ecosystems.
APA, Harvard, Vancouver, ISO, and other styles
40

Johnston, W. H., D. L. Garden, A. Rančić, T. B. Koen, K. B. Dassanayake, C. M. Langford, N. J. S. Ellis, et al. "The impact of pasture development and grazing on water-yielding catchments in the Murray - Darling Basin in south-eastern Australia." Australian Journal of Experimental Agriculture 43, no. 8 (2003): 817. http://dx.doi.org/10.1071/ea02236.

Full text
Abstract:
Experiments conducted from November 1996 to June 2002 in adjacent small catchments near Wagga Wagga, New South Wales, compared the productivity and hydrology of a heavily fertilised (about 30 kg phosphorus/ha.year) Phalaris aquatica (phalaris) pasture with that of a lightly fertilised (about 14 kg phosphorus/ha every second year) native grassland that contained a mixture of C3 and C4 perennial grasses, dominantly C4 Bothriochloa macra (redgrass).In summer, the native catchment was dominated by C4 perennial grasses while the phalaris catchment was dominated by annual C4 weedy species. During the cooler months, the phalaris pasture contained higher proportions of Vulpia spp., and other less-desirable annual grasses. Throughout the experiment, the native catchment was dominated by redgrass, whereas in the phalaris catchment the persistence of phalaris declined. Redgrass became prominent on the more arid aspects of the phalaris catchment as the experiment progressed.Pasture production in the phalaris catchment was higher in most seasons than the native catchment, which resulted in an overall stocking rate advantage of about 80%. The productivity gain per unit of P input was 0.4 for the phalaris catchment compared with 1 for the native catchment, implying that phosphorus was applied to the phalaris catchment at an excessive rate.During wet periods the native catchment produced substantially more runoff than the phalaris catchment, while in dry times it developed substantially larger soil water deficits. Runoff from the phalaris catchment was higher in suspended and dissolved nitrogen and phosphorus than for the native catchment. Higher runoff from the native catchment combined with its drier soil profile in summer indicated that its deep drainage potential was less than in the phalaris catchment.
APA, Harvard, Vancouver, ISO, and other styles
41

Huxtable, C. H. A., T. B. Koen, and D. Waterhouse. "Establishment of native and exotic grasses on mine overburden and topsoil in the Hunter Valley, New South Wales." Rangeland Journal 27, no. 2 (2005): 73. http://dx.doi.org/10.1071/rj05006.

Full text
Abstract:
Native grasses have an important role to play in mine rehabilitation throughout Australia, but there have been few scientifically designed studies of field establishment of native grasses from sown seed in this country. Current recommendations for rehabilitation of open-cut coal mines in the Hunter Valley involve the sowing of exotic pasture species to reinstate mined land to Class IV and V under the Rural Land Capability System. Despite the importance of native grasses in the pre-mined landscape, they are currently not widely included in mine rehabilitation. To address this issue a project was conducted between 1994 and 2000 to research the use of native grasses for rehabilitation of open-cut coal mines in the Hunter Valley. This paper reports on 2 mine site experiments that aimed to assess establishment and persistence of a broad range of native and exotic grass species from an autumn sowing in both topsoil and raw spoil over a period of 61 months. The most promising natives in terms of early establishment, persistence and spread over time, included six C3 accessions (five Austrodanthonia spp. and Austrostipa bigeniculata) and one C4 accession (Cynodon dactylon). Persistence of these accessions was better in raw spoil than topsoil, despite initial low numbers, due to a lack of weed competition and their ability to spread by self-seeding. In topsoil, and in the absence of any biomass reduction, native species were mostly out-competed by vigorous exotic perennial grasses which were sown in these experiments and from seed influx from adjacent rehabilitation areas or from the soil seed bank. The effects of climatic conditions and differences in soil physical, chemical and seed bank characteristics at the 2 mine sites are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
42

Hamilton, J. G., Claus Holzapfel, and Bruce E. Mahall. "Coexistence and interference between a native perennial grass and non-native annual grasses in California." Oecologia 121, no. 4 (December 10, 1999): 518–26. http://dx.doi.org/10.1007/s004420050958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

James, Jeremy J., L. Ziegenhagen, and Z. T. Aanderud. "Exploitation of Nutrient-Rich Soil Patches by Invasive Annual and Native Perennial Grasses." Invasive Plant Science and Management 3, no. 2 (August 2010): 169–77. http://dx.doi.org/10.1614/ipsm-d-09-00033.1.

Full text
Abstract:
AbstractInvasion of nutrient-poor habitats might be related to the ability of a species to exploit nutrient-rich microsites. Recent research suggests fast-growing species might have a greater ability to allocate root biomass to nutrient-rich microsites (root foraging precision) than slow-growing species. We examined if differences in relative growth rate (RGR) between invasive and native species were related to differences in foraging precision. We hypothesized that invasive species would: (1) have greater foraging precision than native species but (2) greater foraging precision would come at a cost in terms of root nutrient uptake rate. Foraging precision was evaluated on plants growing in soils with uniform or patchy nutrient distribution. Plants were harvested at a common time and a common developmental stage to separate indirect effects of RGR on foraging. Nutrient uptake rate was examined by exposing plants to a low or high nitrogen pulse. Invasives foraged more precisely than natives but had lower nitrogen uptake rate. Although these results support the idea of a positive relationship between RGR and foraging precision, biomass production in heterogeneous soils showed no relationship to foraging precision. Instead, species with greater RGR produced more biomass and root length across all treatments, allowing greater nutrient capture in heterogeneous soils. Although these results do not exclude a role for proliferation in influencing invasion of nutrient-poor systems or the potential for heterogeneity to influence population processes, these results suggest other traits may have an overriding importance in determining invader success in these systems.
APA, Harvard, Vancouver, ISO, and other styles
44

Mitchell, M. L., M. R. McCaskill, and R. D. Armstrong. "Phosphorus fertiliser management for pastures based on native grasses in south-eastern Australia." Crop and Pasture Science 70, no. 12 (2019): 1044. http://dx.doi.org/10.1071/cp19217.

Full text
Abstract:
Approximately 3.1 Mha (22%) of the agricultural area of south-eastern Australia can be classified as native pasture. There is the assumption that, owing to the widespread occurrence of low-fertility soils in Australia, native grass species do not respond to increased phosphorus (P) fertility. Currently, there are no industry recommendations of target soil-test P values for native-grass-based pastures. This paper reviews the responses of perennial native pasture species endemic to south-eastern Australia to P application in controlled environments, surveys, replicated experiments and paired-paddock trials. Eighty-seven site-years of trial data where different levels of P were applied, conducted over the last two decades, on native-based pastures in south-eastern Australia are reviewed. Data indicate that application of P fertilisers to native grass pastures can increase dry matter (DM) production and maintain pasture stability. However, minimum targets for herbage mass (800 kg DM/ha) and groundcover (80%) are required to ensure persistence of perennial native grasses. Stocking rates also need to match carrying capacity of the pasture. Based on previous research, we recommend target soil-test (Olsen; 0–10 cm) P levels for fertility-tolerant native grass pastures, based on Microlaena stipoides, Rytidosperma caespitosum, R. fulvum, R. richardsonii, R. duttonianum and R. racemosum, of 10–13 mg/kg, whereas for pastures based on fertility-intolerant species such as Themeda triandra, lower levels of &lt;6 mg/kg are required to ensure botanical stability.
APA, Harvard, Vancouver, ISO, and other styles
45

Vere, D. T., R. E. Jones, and M. H. Campbell. "The economics of temperate pasture systems on the central and southern Tablelands of New South Wales." Rangeland Journal 23, no. 2 (2001): 159. http://dx.doi.org/10.1071/rj01003.

Full text
Abstract:
Pastures are the basis of most forms of agricultural production on the New South Wales central and southern tablelands. Pastures occupy the bulk of the region's landmass and pasture-based livestock production annually contributes more than three-quarters of the regional gross value of rural production. Throughout the region, there is substantial variation in pasture composition, ranging from high quality introduced perennial grasses and legumes to pastures comprising mainly low quality native species. This paper examines the economics of the main categories of temperate pastures over a range of soil fertility-rainfall environments on the south-eastern tablelands areas of New South Wales. Using a linear programming model and discounted development budgets, the results demonstrate the strong influence of the environment on the economics of the individual pasture systems. The highest economic returns in both the short and longer-terms were to the introduced perennial grass pastures in most of the environments. Pastures based on introduced legumes and the high quality native species also generated sound economic returns, although there are recognised problems with the persistence of the legume pastures. Over time, the returns to the better quality native pastures compare favourably with the introduced legumes and are better suited to acidic soils than the perennial grasses. Low quality native species produced relatively poor economic returns in all environments and unfortunately, are the main pasture type in the region's less favourable environments.
APA, Harvard, Vancouver, ISO, and other styles
46

Henneman, C., N. E. Seavy, and T. Gardali. "Restoring Native Perennial Grasses by Changing Grazing Practices in Central Coastal California." Ecological Restoration 32, no. 4 (November 7, 2014): 352–54. http://dx.doi.org/10.3368/er.32.4.352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Brown, Cynthia S., and Robert L. Bugg. "Effects of Established Perennial Grasses on Introduction of Native Forbs in California." Restoration Ecology 9, no. 1 (March 2001): 38–48. http://dx.doi.org/10.1046/j.1526-100x.2001.009001038.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Guevara, J. C., J. M. Gonnet, and O. R. Estevez. "Biomass estimation for native perennial grasses in the plain of Mendoza, Argentina." Journal of Arid Environments 50, no. 4 (April 2002): 613–19. http://dx.doi.org/10.1006/jare.2001.0915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Malmstrom, Carolyn M., April J. McCullough, Hope A. Johnson, Linsey A. Newton, and Elizabeth T. Borer. "Invasive annual grasses indirectly increase virus incidence in California native perennial bunchgrasses." Oecologia 145, no. 1 (May 4, 2005): 153–64. http://dx.doi.org/10.1007/s00442-005-0099-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Nie, Z. N., S. Miller, G. A. Moore, B. F. Hackney, S. P. Boschma, K. F. M. Reed, M. Mitchell, et al. "Field evaluation of perennial grasses and herbs in southern Australia. 2. Persistence, root characteristics and summer activity." Australian Journal of Experimental Agriculture 48, no. 4 (2008): 424. http://dx.doi.org/10.1071/ea07136.

Full text
Abstract:
Field experiments were carried out at seven sites in southern Australia from 2002 to 2006 to measure changes in plant frequency, root characteristics and summer activity for a range of grass and herb species or cultivars. Annual rainfall during the experimental period was on average 75 mm lower than the long-term average. Plant frequency differed significantly between species and between sites. Temperate grasses generally had higher frequencies than subtropical grasses, native grasses and herbs. Cocksfoot (Dactylis glomerata cvv. Currie, Porto), tall wheat grass (Thinopyrum ponticum cv. Dundas), winter-active tall fescue (Festuca arundinacea cvv. Fraydo, Resolute MaxP) and phalaris (Phalaris aquatica cvv. Atlas PG, Australian) were the most persistent of the temperate perennial species over the experimental period. The frequency of most cultivars declined from year 2 to year 4 after establishment, but the frequency of kikuyu (Pennisetum clandestinum cv.Whittet) and wallaby grass (Austrodanthonia richardsonii cv. Taranna) increased by over 5% from year 2 to year 3, and cocksfoot (cv. Currie) increased from year 3 to year 4. At two sites where measurements were made, there were significant differences in rooting depth between species. Whittet kikuyu was the deepest among all species with a rooting depth of up to 2 m, followed by phalaris, tall fescue, grazing brome (Bromus stamineus) and tall wheat grass. Root density was affected by plant genotype and soil structure. Root density of the species varied significantly in the subsoil (0.1–1.1 m) and deeper subsoil (1.1–2 m) but not in the topsoil (0–0.1 m). Green-leafiness over summer was generally higher for subtropical grasses, native grasses, herbs and some summer-active temperate grasses, than most temperate grasses with high summer dormancy.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography