Academic literature on the topic 'Nanostructures - Surfaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanostructures - Surfaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nanostructures - Surfaces"
Reddy, G. S., Mallikarjuna N. Nadagouda, and Jainagesh A. Sekhar. "Nanostructured Surfaces that Show Antimicrobial, Anticorrosive, and Antibiofilm Properties." Key Engineering Materials 521 (August 2012): 1–33. http://dx.doi.org/10.4028/www.scientific.net/kem.521.1.
Full textCho, Seong J., Se Yeong Seok, Jin Young Kim, Geunbae Lim, and Hoon Lim. "One-Step Fabrication of Hierarchically Structured Silicon Surfaces and Modification of Their Morphologies Using Sacrificial Layers." Journal of Nanomaterials 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/289256.
Full textHariharalakshmanan, Ranjitha K., Fumiya Watanabe, and Tansel Karabacak. "In Situ Growth and UV Photocatalytic Effect of ZnO Nanostructures on a Zn Plate Immersed in Methylene Blue." Catalysts 12, no. 12 (December 16, 2022): 1657. http://dx.doi.org/10.3390/catal12121657.
Full textWang, Yuliang, Xiaolai Li, Shuai Ren, Hadush Tedros Alem, Lijun Yang, and Detlef Lohse. "Entrapment of interfacial nanobubbles on nano-structured surfaces." Soft Matter 13, no. 32 (2017): 5381–88. http://dx.doi.org/10.1039/c7sm01205e.
Full textMansurov, Z. A., M. Nazhipkyzy, B. T. Lesbayev, N. G. Prikhodko, M. Auyelkhankyzy, and I. K. Puri. "Synthesis of Superhydrophobic Carbon Surface during Combustion Propane." Eurasian Chemico-Technological Journal 14, no. 1 (December 15, 2011): 19. http://dx.doi.org/10.18321/ectj94.
Full textSpiecker, Erdmann, Stefan Hollensteiner, Wolfgang Jäger, Hans Haselier, and Herbert Schroeder. "Self-Assembled Nanostructures on VSe2Surfaces Induced by Cu Deposition." Microscopy and Microanalysis 11, no. 5 (September 28, 2005): 456–71. http://dx.doi.org/10.1017/s1431927605050373.
Full textLi, Xin, Yiming Guo, and Hai Cao. "Nanostructured surfaces from ligand-protected metal nanoparticles." Dalton Transactions 49, no. 41 (2020): 14314–19. http://dx.doi.org/10.1039/d0dt02822c.
Full textRanjan, A., N. Pothayee, M. N. Seleem, N. Sriranganathan, R. Kasimanickam, M. Makris, and J. S. Riffle. "In Vitro Trafficking and Efficacy of Core-Shell Nanostructures for Treating Intracellular Salmonella Infections." Antimicrobial Agents and Chemotherapy 53, no. 9 (July 13, 2009): 3985–88. http://dx.doi.org/10.1128/aac.00009-09.
Full textMills, Christopher A., Elena Martinez, Abdelhamid Errachid, Elisabeth Engel, Miriam Funes, Christian Moormann, Thorsten Wahlbrink, Gabriel Gomila, Josep Planell, and Josep Samitier. "Nanoembossed Polymer Substrates for Biomedical Surface Interaction Studies." Journal of Nanoscience and Nanotechnology 7, no. 12 (December 1, 2007): 4588–94. http://dx.doi.org/10.1166/jnn.2007.18110.
Full textChen, Cheng-Ying, Ming-Wei Chen, Jr-Jian Ke, Chin-An Lin, José R. D. Retamal, and Jr-Hau He. "Surface effects on optical and electrical properties of ZnO nanostructures." Pure and Applied Chemistry 82, no. 11 (August 6, 2010): 2055–73. http://dx.doi.org/10.1351/pac-con-09-12-05.
Full textDissertations / Theses on the topic "Nanostructures - Surfaces"
Jackson, Richard James. "Engineering nanostructures for biological sensor surfaces." Thesis, University of Newcastle Upon Tyne, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.430773.
Full textNemitz, Ian R. "Liquid Crystals: Surfaces, Nanostructures, and Chirality." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1480686661255562.
Full textNemitz, Ian Robert. "Cristaux liquides : surfaces, nanostructures et chiralité." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066586/document.
Full textThis dissertation focuses on liquid crystals (LCs), specifically their chiral properties and interactions with surfaces and nanostructures. Nematic twist cells were filled with a LC doped with the chiral molecule CB15, which compensates for the imposed twist. Using the electroclinic effect (ECE), results indicate that an ECE always exists near the surface in twist cells containing conformationally deracemizable molecules. ECE measurements were also performed to determine the source of the ECE response in a LC doped with chiral periodic mesoporous organosilica (PMO). The data show that the main source of the signal emanates from outside the PMO, and not inside the PMO pores. An ECE also is reported for chiral LCs above their bulk chiral isotropic–nematic phase transition, and is observable in the paranematic layers induced by the planar-aligning substrates. Optical microscopy measurements were performed on smectic-A oily streaks doped with CB15. When chirally doped, the stripe orientation rotated by a temperature dependent angle: This angle increased with concentration, was largest just below the nematic – smectic-A transition, and stabilized to near zero within ~1C below TNA. This is explained as a manifestation of a surface ECE. Finally, a novel structure in a hybrid aligned system was observed below the Smectic-A – Smectic-C transition. The structure appeared as periodic dark and light streaks running perpendicular to the oily streaks, and formed by extending discretely from one oily streak to the next, eliminating optical evidence of the oily streaks. At lower temperatures the streaks undulated in a 2D chiral pattern. A possible origin of these streaks is presented
Nolan, John William. "Contacting and imaging nanostructures on silicon surfaces." Thesis, University of Nottingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275970.
Full textBergman, Kathryn N. "Biomineralization of inorganic nanostructures using protein surfaces." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22674.
Full textCommittee Chair: Tsukruk, Vladimir; Committee Member: Kalaitzidou, Kyriaki; Committee Member: Valeria Milam.
Ramasubramaniam, Ashwin. "Dynamics and stability of nanostructures on crystal surfaces /." View online version; access limited to Brown University users, 2005. http://wwwlib.umi.com/dissertations/fullcit/3174661.
Full textWieland, Maria B. "Formation and deposition of polymer nanostructures on surfaces." Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/30689/.
Full textHamid, Firas Abdel. "Surfaces d’alliages métalliques complexes : nanostructures et croissance moléculaire." Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0155.
Full textComplex metallic alloys (CMAs) are intermetallics with a unit cell characterized by a large number of atoms and a substructure of atomic clusters of high symmetry. Quasicrystals and their periodic approximants are part of this class of materials. Here, we have investigated the atomic and electronic structure of the (100) surface of a cage compound Ce3Pd20Si6 which can be also considered as a CMA. The assembly of Pd12Si6 and Pd16 cages in which guest Ce atoms are located describes its structure. The surface is analyzed using experimental methods under ultrahigh vacuum as well as atomistic simulations based on density functional theory (DFT). The surface forms at corrugated planes of the bulk structure that preserve intact the Pd12Si6 cages, with additional Pd surface atoms. It is concluded that despite this Pd-based cage compound being clearly metallic, stronger interactions between Pd and Si atoms on the host cage structure significantly influence its surface structure. Due to the cage preservation, the surface presents an intrinsic nanostructuration with a periodicity slightly less than one nanometer. This surface is further used as a pattern in an attempt to form self-organized molecular films. First results are presented concerning the self-assembly of C60 and its derivative (PTBC) on different substrates, including Ce3Pd20Si6(100) but also 5-fold surfaces of icosahedral phases i-AlCuFe and i-AgInYb and simple Cu (111) and Au (111) surfaces. Simple models are proposed to describe the structures formed by PTBC on Cu (111) and Au (111). C60 deposited on Ce3Pd20Si6(100) leads to the formation of hexagonal nanodomains,while PTBC leads to amorphous films. For PTBC deposited on quasicrystalline surfaces, preferential adsorption occurs at low coverage at 5-fold symmetric sites, dictated by symmetry matching between molecules and substrates. When the monolayer is saturated however, the film is either amorphous on i-AlCuFe or quasiperiodic on i-AgInYb, but with a large amount of disorder
Rohart, Stanislas. "Croissance et magnétisme de nanostructures organisées sur surfaces cristallines." Phd thesis, Université Paris-Diderot - Paris VII, 2005. http://tel.archives-ouvertes.fr/tel-00010738.
Full textBasagni, Andrea. "Covalent stabilization of 2D self-assembled nanostructures on surfaces." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424495.
Full textLa scoperta del grafene ha suscitato grande interesse verso i materiali a bassa dimensionalità (0D, 1D e 2D) e uno sforzo congiunto tra i diversi rami della scienza è orientato verso la produzione di nuovi materiali con proprietà analoghe a quelle del grafene, ma controllabili. La sintesi su superficie in condizioni di ultra-alto vuoto (UHV) sembra essere promettente per la produzione di nanostrutture organiche. Infatti, in queste condizioni, è possibile avere un’ampia varietà di materiali, un perfetto controllo delle condizioni di reazione, della simmetria della superficie e della sua corrugazione. Questi sono solo alcuni dei vantaggi che l’UHV offre. Sebbene varie reazioni siano state testate negli ultimi anni, sembra chiaro che per realizzare monostrati polimerici ordinati siano necessiari approcci più complessi. In questo lavoro di Tesi, la sintesi di nanostrutture polimeriche su superficie è stata studiata per diverse reazioni, substrati e condizioni di reazione. La microscopia ad effetto tunnel e la spettroscopia di fotoemissione a raggi X sono state utilizzate per la caratterizzazione dei diversi sistemi permettendo un'analisi complementare delle strutture molecolari e dei loro stati chimici. In particolare, le reazioni attivate termicamente sono state utilizzate per polimerizzare gradualmente il 4,4"-dibromo-terfenile e ottenere, in un primo step di reazione, per mezzo della reazione di Ullmann su Au (111), il poli-parafenilene, ,e poi nanoribbons di grafene dopo l'attivazione del legami C-H. Un delicato equilibrio tra l'attività catalitica della superficie, la mobilità molecolare e l’organizzazione molecolare ha permesso di ottenere strutture ordinate estese. Inoltre, sfruttando questa metodica, sono stati ottenuti tre differenti polimeri 1D, caratterizzati da un crescente contenuto di azoto. Campioni macroscopicamente anisotropici sono stati preparati sfruttando l'effetto templante delle superfici vicinali e, grazie alla spettroscopia di fotoemizzione risolta in angolo, è stato rivelato che la struttura elettronica dei polimeri drogati è rigidamente spostata verso energie minori rispetto al livello di Fermi del metallo all'aumentare del contenuto di azoto. Infine, è stata esplorata l'attivazione fotochimica di diversi gruppi funzionali. Questi studi rappresentano un passo avanti verso l’applicazione della fotochimica alla sintesi su superficie, che attualmente sfrutta solo gruppi diacetilenici, e apre nuove opportunità per l'utilizzo di diversi gruppi funzionali organici come centri fotoattivi.
Books on the topic "Nanostructures - Surfaces"
Vancso, G. Julius, ed. Ordered Polymeric Nanostructures at Surfaces. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11605294.
Full textShchukin, Vitaly A. Epitaxy of Nanostructures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
Find full textH, Fendler Janos, Dékány Imre, North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Research Workshop on Nanoparticles in Solids and Solutions--an Integrated Approach to Their Preparation and Characterization (1996 : Szeged, Hungary), eds. Nanoparticles in solids and solutions. Dordrecht: Kluwer Academic Publishers, 1996.
Find full textDieter, Bimberg, ed. Semiconductor nanostructures. Berlin: Springer, 2008.
Find full textNanostructured thin films and surfaces. Weinheim: Wiley-VCH, 2010.
Find full textCiobanu, Cristian V., Cai-Zhuang Wang, and Kai-Ming Ho. Atomic Structure Prediction of Nanostructures, Clusters and Surfaces. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527655021.
Full text1964-, Berakdar J., and Kirschner Jürgen, eds. Correlation spectroscopy of surfaces, thin films, and nanostructures. Weinheim: Wiley-VCH, 2004.
Find full textKalt, Heinz. Optics of Semiconductors and Their Nanostructures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
Find full textTopical Meeting Microphysics of Surfaces: Nanoscale Processing (1995 Santa Fe, N.M.). Microphysics of surfaces: Nanoscale processing : summaries of the papers presented at the topical meeting Microphysics of Surfaces: Nanoscale Processing, February 9-11, 1995, Santa Fe, New Mexico. Washington, DC: Optical Society of America, 1995.
Find full text1943-, Schwarz James A., and Contescu Cristian I. 1948-, eds. Surfaces of nanoparticles and porous materials. New York: Marcel Dekker, 1999.
Find full textBook chapters on the topic "Nanostructures - Surfaces"
Jiang, Hong. "Theoretical Models for Bimetallic Surfaces and Nanoalloys." In Bimetallic Nanostructures, 23–60. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119214618.ch2.
Full textSydorenko, Alexander. "Nanostructures in Thin Films from Nanostructured Polymeric Templates: Self-Assembly." In Polymer Surfaces and Interfaces, 261–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-73865-7_13.
Full textJärrendahl, Kenneth, and Hans Arwin. "Polarizing Natural Nanostructures." In Ellipsometry of Functional Organic Surfaces and Films, 155–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40128-2_8.
Full textJärrendahl, Kenneth, and Hans Arwin. "Polarizing Natural Nanostructures." In Ellipsometry of Functional Organic Surfaces and Films, 247–68. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75895-4_11.
Full textSauvage-Simkin, M. "4.2.3 Semiconductor surfaces, interfaces, and nanostructures." In Physics of Solid Surfaces, 123–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47736-6_46.
Full textHossain, Md Zakir, and Maki Kawai. "Formation of Organic Nanostructures on Semiconductor Surfaces." In Functionalization of Semiconductor Surfaces, 277–300. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118199770.ch10.
Full textde Jeu, Wim H., Yaëlle Séréro, and Mahmoud Al-Hussein. "Liquid Crystallinity in Block Copolymer Films for Controlling Polymeric Nanopatterns." In Ordered Polymeric Nanostructures at Surfaces, 71–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/12_006.
Full textAlbrecht, Krystyna, Ahmed Mourran, and Martin Moeller. "Surface Micelles and Surface-Induced Nanopatterns Formed by Block Copolymers." In Ordered Polymeric Nanostructures at Surfaces, 57–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/12_007.
Full textSchönherr, Holger, Geerten H. Degenhart, Barbara Dordi, Chuan Liang Feng, Dorota I. Rozkiewicz, Alexander Shovsky, and G. Julius Vancso. "Organic and Macromolecular Films and Assemblies as (Bio)reactive Platforms: From Model Studies on Structure–Reactivity Relationships to Submicrometer Patterning." In Ordered Polymeric Nanostructures at Surfaces, 169–208. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/12_014.
Full textSommer, Jens-Uwe, and Günter Reiter. "The Formation of Ordered Polymer Structures at Interfaces: A Few Intriguing Aspects." In Ordered Polymeric Nanostructures at Surfaces, 1–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/12_015.
Full textConference papers on the topic "Nanostructures - Surfaces"
Ignácio, Isabela, Elaine Maria Cardoso, José Luiz Gasche, and Gherhardt Ribatski. "A State-of-the-Art Review on Pool Boiling on Nanostructure Surfaces." In ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/icnmm2015-48120.
Full textChen, Min, Bing-Yang Cao, and Zeng-Yuan Guo. "Micro/Nano-Scale Fluid Flows on Structured Surfaces." In ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62023.
Full textWarren, A. W., and Y. B. Guo. "The Influence of Residual Stress and Tip Geometry on the Measurement of Surface Property Using Nanoindentation: Experimental Study and Numerical Analysis." In 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2008. http://dx.doi.org/10.1115/micronano2008-70156.
Full textEnright, Ryan, Nicholas Dou, Nenad Miljkovic, Youngsuk Nam, and Evelyn N. Wang. "Condensation on Superhydrophobic Copper Oxide Nanostructures." In ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75277.
Full textKing, S. M., Md M. Rahman, A. K. Krick, L. D. Branco, E. Olceroglu, and M. McCarthy. "Biotemplated Nanostructured Surfaces for Enhanced Phase Change Heat Transfer." In ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/icnmm2012-73190.
Full textSu, Junwei, Hamed Esmaeilzadeh, Chefu Su, Majid Charmchi, Marina Ruths, and Hongwei Sun. "Characterization of Jumping-Droplet Condensation on Nanostructured Surfaces With Quartz Crystal Microbalance." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72315.
Full textNolan, Eric, Russell Rioux, and Calvin Hong Li. "Experimental Study of Critical Heat Flux and Heat Transfer Coefficient Enhancements in Pool Boiling Heat Transfer With Nanostructure Modified Active Nucleation Site and Contact Angle." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89903.
Full textHerman, Irving P. "Optical Diagnostics during Film Processing of Micro- and Nanostructures." In Microphysics of Surfaces: Nanoscale Processing. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/msnp.1995.mfa1.
Full textWang, Evelyn N., Rong Xiao, Kuang-Han Chu, and Ryan Enright. "Nanoengineered Surfaces for Efficient Energy Systems." In ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2011. http://dx.doi.org/10.1115/icnmm2011-58300.
Full textDemir, Ebru, Muhsincan Sesen, Turker Izci, Wisam Khudhayer, Tansel Karabacak, and Ali Kosar. "Subcooled Flow Boiling Over Nanostructured Plate Integrated Into a Rectangular Channel." In ASME 2013 11th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icnmm2013-73154.
Full textReports on the topic "Nanostructures - Surfaces"
Zewail, Ahmed H. Imaging Surfaces and Nanostructures. Fort Belvoir, VA: Defense Technical Information Center, February 2011. http://dx.doi.org/10.21236/ada564109.
Full textBozhko, S. I., A. N. Chaika, and A. M. Ionov. Vicinal Si(hhm) surfaces: templates for nanostructures fabrication. Edited by Lotfia Elnai and Ramy Mawad. Journal of Modern trends in physics research, December 2014. http://dx.doi.org/10.19138/mtpr/(14)58-64.
Full textYnzunza, R. X., E. D. Tober, Z. Wang, F. J. Palomares, J. Morais, R. Denecke, S. Ryce, et al. Advanced photoelectron spectrometer/diffractometer for studies of the atomic, electronic, and magnetic structure of surfaces, interfaces, and nanostructures. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/603637.
Full textPicraux, Samuel Thomas, Marcin Piech, John F. Schneider, Sean Vail, Mark A. Hayes, Anthony A. Garcia, Nelson Simmons Bell, D. Gust, and Dongqing Yang. Nanostructured surfaces for microfluidics and sensing applications. Office of Scientific and Technical Information (OSTI), January 2007. http://dx.doi.org/10.2172/902205.
Full textBenderskii, Alexander V. Nonlinear Spectroscopies of Nanostructured Surfaces and Interfaces. Fort Belvoir, VA: Defense Technical Information Center, November 2009. http://dx.doi.org/10.21236/ada563142.
Full textMurphy, Catherine J. Nanoparticles and Nanostructured Surfaces: Novel Reporters with Biological Applications. Fort Belvoir, VA: Defense Technical Information Center, January 2001. http://dx.doi.org/10.21236/ada409010.
Full textVoter, A. F., and N. Stanciu. Decay of surface nanostructures via long-time-scale dynamics. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/674862.
Full textArmstrong, Robert. (Theme 2 Quantum Computing) Nanostructured Surface Plasmon Resonators. Fort Belvoir, VA: Defense Technical Information Center, April 2008. http://dx.doi.org/10.21236/ada481080.
Full textDavids, P. S., F. Intravia, and Diego A. Dalvit. Geometrically induced surface polaritons in planar nanostructured metallic cavities. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1114411.
Full textOsgood, Jr., Richard. Dynamic Studies of Photo- and Electron-Induced Reactions on Nanostructured Surfaces. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1467566.
Full text