Academic literature on the topic 'Nanostructured metal'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanostructured metal.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nanostructured metal"
Yang, Ming, Xiaohua Chen, Zidong Wang, Yuzhi Zhu, Shiwei Pan, Kaixuan Chen, Yanlin Wang, and Jiaqi Zheng. "Zero→Two-Dimensional Metal Nanostructures: An Overview on Methods of Preparation, Characterization, Properties, and Applications." Nanomaterials 11, no. 8 (July 23, 2021): 1895. http://dx.doi.org/10.3390/nano11081895.
Full textMaciulis, Vincentas, Almira Ramanaviciene, and Ieva Plikusiene. "Recent Advances in Synthesis and Application of Metal Oxide Nanostructures in Chemical Sensors and Biosensors." Nanomaterials 12, no. 24 (December 10, 2022): 4413. http://dx.doi.org/10.3390/nano12244413.
Full textChen, Hongjun, and Lianzhou Wang. "Nanostructure sensitization of transition metal oxides for visible-light photocatalysis." Beilstein Journal of Nanotechnology 5 (May 23, 2014): 696–710. http://dx.doi.org/10.3762/bjnano.5.82.
Full textLi, Xin, Yiming Guo, and Hai Cao. "Nanostructured surfaces from ligand-protected metal nanoparticles." Dalton Transactions 49, no. 41 (2020): 14314–19. http://dx.doi.org/10.1039/d0dt02822c.
Full textGnawali, Guna Nidha, Shankar P. Shrestha, Khem N. Poudyal, Indra B. Karki, and Ishwar Koirala. "Study on the effect of growth-time and seed-layers of Zinc Oxide nanostructured thin film prepared by the hydrothermal method for liquefied petroleum gas sensor application." BIBECHANA 16 (November 22, 2018): 145–53. http://dx.doi.org/10.3126/bibechana.v16i0.21557.
Full textLI, WEN, DAISUKE ISHIKAWA, and HIROKAZU TATSUOKA. "SYNTHESES OF NANOSTRUCTURE BUNDLES BASED ON SEMICONDUCTING METAL SILICIDES." Functional Materials Letters 06, no. 05 (October 2013): 1340011. http://dx.doi.org/10.1142/s1793604713400110.
Full textErb, Denise J., Kai Schlage, and Ralf Röhlsberger. "Uniform metal nanostructures with long-range order via three-step hierarchical self-assembly." Science Advances 1, no. 10 (November 2015): e1500751. http://dx.doi.org/10.1126/sciadv.1500751.
Full textLIU, FEI, and DONGFENG XUE. "CHEMICAL DESIGN OF COMPLEX NANOSTRUCTURED METAL OXIDES IN SOLUTION." International Journal of Nanoscience 08, no. 06 (December 2009): 571–88. http://dx.doi.org/10.1142/s0219581x09006407.
Full textValero-Navarro, Angel, Jorge F. Fernandez-Sanchez, Antonio Segura-Carretero, Ursula E. Spichiger-Keller, Alberto Fernandez-Gutierrez, Pascual Oña, and Ignacio Fernandez. "Iron-phthalocyanine complexes immobilized in nanostructured metal oxide as optical sensors of NOx and CO: NMR and photophysical studies." Journal of Porphyrins and Phthalocyanines 13, no. 04n05 (April 2009): 616–23. http://dx.doi.org/10.1142/s1088424609000796.
Full textChen, Huige, Run Shi, and Tierui Zhang. "Nanostructured Photothermal Materials for Environmental and Catalytic Applications." Molecules 26, no. 24 (December 13, 2021): 7552. http://dx.doi.org/10.3390/molecules26247552.
Full textDissertations / Theses on the topic "Nanostructured metal"
Eskhult, Jonas. "Electrochemical Deposition of Nanostructured Metal/Metal-Oxide Coatings." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8186.
Full textLi, Li. "Versatile applications of nanostructured metal oxides." Thesis, University of Cambridge, 2014. https://www.repository.cam.ac.uk/handle/1810/245303.
Full textAstuti, Yeni. "Bio-functionalised nanostructured metal oxide electrodes." Thesis, Imperial College London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.429459.
Full textPopov, M. Yu, A. P. Volkov, S. G. Buga, V. S. Bormashov, K. V. Kondrashov, R. L. Lomakin, N. V. Lyparev, V. V. Medvedev, S. A. Tarelkin, and S. A. Perfilov. "Nanostructured metal-fullerene field emission cathode." Thesis, Sumy State University, 2011. http://essuir.sumdu.edu.ua/handle/123456789/20585.
Full text杨纯臻 and Chunzhen Yang. "Metal/metal oxide nanoparticles supported on nanostructured carbons for electrochemical applications." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/193414.
Full textpublished_or_final_version
Chemistry
Doctoral
Doctor of Philosophy
Zuo, Yong. "Nanostructured Metal Sulfides for Electrochemical Energy Conversion." Doctoral thesis, Universitat de Barcelona, 2020. http://hdl.handle.net/10803/670925.
Full textEn esta tesis, se produjeron y optimizaron cuatro catalizadores nanoestructurados basados en Cu2S y SnS2 para mejorar su rendimiento hacia la conversión de energía electroquímica. El Capítulo 1 presentó una introducción general para explicar la motivación del tema de tesis. En el capítulo 2, las matrices de las nanovarillas de Cu2S se sintetizaron in situ sobre un sustrato de cobre metálico para la reacción electroquímica de evolución de oxígeno (OER). Se aplicaron herramientas de caracterización adecuadas para investigar la transformación en la operación OER, durante la cual las matrices iniciales de las nanovarillas Cu2S in situ cambió a nanohilos de CuO. En particular, el CuO derivado de Cu2S mostró un rendimiento de OER significativamente mejor cuando comparado al de CuO preparado mediante el recocido. En el capítulo 3, se detalló un proceso basado en una solución de inyección en caliente para producir nanoplacas ultrafinas SnS2 (NPL). Posteriormente, se cultivóPt en su superficie mediante la reducción in situ de una sal de Pt. Posteriormente se probó el rendimiento fotoelectroquímico (PEC) de los fotoanodes hacia la oxidación del agua. Los fotoanodes de SnS2-Pt optimizados proporcionaron densidades de fotocorriente significativamente más altas que el SnS2 desnudo (seis veces). Se analizó el efecto de Pt. En el capítulo 4, se informó una tinta molecular simple para cultivar capas de SnS2 nanoestructuradas directamente sobre sustratos conductores. Tales capas nanoestructuradas en FTO se caracterizaron por excelentes densidades de fotocorriente. Se utilize la misma estrategia para producir compuestos de grafeno-SnS2, recubrimientos ternarios SnS2-xSex, capas de SnSe2 de fase pura e incluso polvo de SnS2 a gran escala. En el capítulo 5, el SnS2 nanoestructurado con diferentes morfologías se probaron como ánodos LIB en primer lugar para encontrar que los NPL de SnS2 delgados proporcionaban el mayor rendimiento. Posteriormente, se desarrolló una estrategia de síntesis coloidal para cultivar los mismos NPL de SnS2 dentro de una matriz de g-C3N4 (CN) poroso y placas de grafito (GP) y se probaron para la aplicación LIB. Tales compuestos jerárquicos SnS2/CN/GP mostraron excelentes propiedades electroquímicas, lo que se atribuye a la sinergia creada entre los tres componentes como se investigó.
Paul, Blain. "Nanostructured metal oxides as adsorbents and photocatalysts." Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/41758/1/Blain_Paul_Thesis.pdf.
Full textGu, Yanjuan, and 谷艳娟. "Nanostructure of transition metal and metal oxide forelectrocatalysis." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B37774396.
Full textGu, Yanjuan. "Nanostructure of transition metal and metal oxide for electrocatalysis." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B37774396.
Full textCruickshank, Amy Clare. "Nanostructured Metal Electrodes for Wool Processing and Electroanalysis." Thesis, University of Canterbury. Chemistry, 2007. http://hdl.handle.net/10092/3853.
Full textBooks on the topic "Nanostructured metal"
Jayaraj, M. K., ed. Nanostructured Metal Oxides and Devices. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3314-3.
Full textEnrico, Traversa, ed. Nanostructured metal oxides: Processing and applications. Pennington, N.J: Electrochemical Society, 2006.
Find full textEnrico, Traversa, ed. Nanostructured metal oxides: Processing and applications. Pennington, N.J: Electrochemical Society, 2006.
Find full textEnrico, Traversa, ed. Nanostructured metal oxides: Processing and applications. Pennington, N.J: Electrochemical Society, 2006.
Find full textLuigi, Nicolais, and Carotenuto Gianfranco, eds. Metal-polymer nanocomposites. Hoboken, N.J: Wiley-Interscience, 2005.
Find full textAma, Onoyivwe Monday, and Suprakas Sinha Ray, eds. Nanostructured Metal-Oxide Electrode Materials for Water Purification. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43346-8.
Full textMaterials Research Society. Meeting. Symposium V, ed. Functional metal-oxide nanostructures: Symposium held April 14-17, San Francisco, California, U.S.A. Warrendale, Pa: Materials Research Society, 2009.
Find full textInternational, Workshop on Clusters and Nanostructured Materials (1st 1996 Puri India). Clusters and nanostructured materials. Commack, N.Y: Nova Science Publishers, 1996.
Find full textNanostructured Anodic Metal Oxides. Elsevier, 2020. http://dx.doi.org/10.1016/c2017-0-04824-3.
Full textProperties of Metal Nanostructures. SPIE Society of Photo-Optical Instrumentation Engi, 2002.
Find full textBook chapters on the topic "Nanostructured metal"
McMahon, Jeffrey Michael. "Nanostructured Metal Films." In Topics in Theoretical and Computational Nanoscience, 83–111. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-8249-0_6.
Full textMori, Kohsuke, and Hiromi Yamashita. "Silica-Supported Metal Complex Photocatalysts." In Nanostructured Photocatalysts, 465–77. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26079-2_26.
Full textWen, Meicheng, Yasutaka Kuwahara, Kohsuke Mori, and Hiromi Yamashita. "Nanometal-Loaded Metal-Organic-Framework Photocatalysts." In Nanostructured Photocatalysts, 507–22. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26079-2_29.
Full textDebRoy, T., and H. K. D. H. Bhadeshia. "First Bulk Nanostructured Metal." In Innovations in Everyday Engineering Materials, 85–94. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-57612-7_8.
Full textSun, Dengrong, and Zhaohui Li. "Metal-Organic Frameworks (MOFs) for Photocatalytic Organic Transformations." In Nanostructured Photocatalysts, 523–35. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26079-2_30.
Full textReedijk, Jan. "Macromolecular Metal Complexes in Biological Systems." In Macromolecular Nanostructured Materials, 244–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08439-7_15.
Full textJaleh, Babak, Samira Naghdi, Nima Shahbazi, and Mahmoud Nasrollahzadeh. "Fabrication and Application of Graphene Oxide-based Metal and Metal Oxide Nanocomposites." In Advances in Nanostructured Composites, 25–52. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2018] | Series: Advances in nanostructured composites ; volume 2 | “A science publishers book.»: CRC Press, 2019. http://dx.doi.org/10.1201/9780429021718-2.
Full textChandra Sekhar, S., Bhimanaboina Ramulu, and Jae Su Yu. "Transition Metal Oxides for Supercapacitors." In Nanostructured Materials for Supercapacitors, 267–92. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99302-3_13.
Full textHoriuchi, Yu, Takashi Toyao, and Masaya Matsuoka. "Metal–Organic Framework (MOF) and Porous Coordination Polymer (PCP)-Based Photocatalysts." In Nanostructured Photocatalysts, 479–89. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26079-2_27.
Full textMalvadkar, Niranjan A., Michael A. Ulizio, Jill Lowman, and Melik C. Demirel. "Functional Nanostructured Polymer–Metal Interfaces." In Virtual Testing and Predictive Modeling, 357–69. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-95924-5_12.
Full textConference papers on the topic "Nanostructured metal"
FRUTOS, Emilio, Miroslav KARLÍK, José Antonio JIMÉNEZ, and Tomáš POLCAR. "MICROSTRUCTURE AND MECHANICAL PROPERTIES OF NANOSTRUCTURED Ti-22Nb-10Zr COATINGS." In METAL 2020. TANGER Ltd., 2020. http://dx.doi.org/10.37904/metal.2020.3540.
Full textKolesov, V., N. Petrova, A. Fionov, I. Dotsenko, and G. Yurkov. "Metal-Polymeric Nanostructured Materials." In 2006 16th International Crimean Microwave and Telecommunication Technology. IEEE, 2006. http://dx.doi.org/10.1109/crmico.2006.256154.
Full textCabrera, Samuel, and Van P. Carey. "Exploration of ZnO Nanostructure Growth on Various Metal Substrates for Enhancement of Surface Wettability and Evaporation Processes." In ASME 2020 Heat Transfer Summer Conference collocated with the ASME 2020 Fluids Engineering Division Summer Meeting and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/ht2020-9114.
Full textSingh, Rajendra K. "Acoustical characterization of nanostructured metal." In International Congress on Ultrasonics. Vienna University of Technology, 2007. http://dx.doi.org/10.3728/icultrasonics.2007.vienna.1021_singh.
Full textOshikane, Yasushi. "Asymmetric metal-insulator-metal (MIM) structure formed by pulsed Nd:YAG laser deposition with titanium nitride (TiN) and aluminum nitride (AlN)." In Nanostructured Thin Films X, edited by Tom G. Mackay, Akhlesh Lakhtakia, and Yi-Jun Jen. SPIE, 2017. http://dx.doi.org/10.1117/12.2273483.
Full textAyyub, Pushan. "Superhydrophobicity in hierarchically nanostructured metal surfaces." In Proceedings of the International Conference on Nanotechnology for Better Living. Singapore: Research Publishing Services, 2016. http://dx.doi.org/10.3850/978-981-09-7519-7nbl16-rps-242.
Full textAbdulhalim, Ibrahim. "Ultrahigh field enhancements from nanostructured metal thin films (Conference Presentation)." In Nanostructured Thin Films X, edited by Tom G. Mackay, Akhlesh Lakhtakia, and Yi-Jun Jen. SPIE, 2017. http://dx.doi.org/10.1117/12.2272143.
Full textLapicki, Adam, Toni Barstis, Todd Engstrom, Erin Reichart, and Dennis Jacobs. "Cold-Cathode Electron Emission from Nanostructured Metal-Insulator-Metal Devices." In 41st Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-1050.
Full textKiriakidis, G., D. Dovinos, and M. Suchea. "Sensing using nanostructured metal oxide thin films." In Optics East 2006, edited by Nibir K. Dhar, Achyut K. Dutta, and M. Saif Islam. SPIE, 2006. http://dx.doi.org/10.1117/12.685369.
Full textElliott, J., G. Wurtz, R. Pollard, I. I. Smolyaninov, C. C. Davis, N. I. Zheludev, and A. V. Zayats. "Spectral analysis of periodically nanostructured metal surfaces." In OPTO-Ireland, edited by John G. McInerney, Gerard Farrell, David M. Denieffe, Liam P. Barry, Harold S. Gamble, Padraig J. Hughes, and Alan Moore. SPIE, 2005. http://dx.doi.org/10.1117/12.605415.
Full textReports on the topic "Nanostructured metal"
Craig E. Barnes. NANOSTRUCTURED METAL OXIDE CATALYSTS VIA BUILDING BLOCK SYNTHESES. Office of Scientific and Technical Information (OSTI), March 2013. http://dx.doi.org/10.2172/1067473.
Full textLiu, Li, and David Wayne Goodman. The physical and chemical properties of nanostructured mixed-metal catalysts. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1251398.
Full textTalu, Orhan, and Surendra N. Tewari. Sub-Nanostructured Non Transition Metal Complex Grids for Hydrogen Storage. Office of Scientific and Technical Information (OSTI), October 2007. http://dx.doi.org/10.2172/918886.
Full textNastasi, Michael, Michael Demkowicz, Lin Shao, and Don Lucca. Radiation Tolerance and Mechanical Properties of Nanostructured Amorphous-Ceramic/Metal Composites. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1572151.
Full textMorris, John R. Adsorption and Decomposition of CWA Simulants on Single Crystal and Nanostructured Metal Oxides. Fort Belvoir, VA: Defense Technical Information Center, January 2009. http://dx.doi.org/10.21236/ada517975.
Full textLarsen, George K., Simona E. H. Murph, Lucas M. Angelette, and Kaitlin J. Lawrence. Final Report For PDRD SR16009: Durable Water Splitting Using Thermochemical Cycles Of Nanostructured Metal Oxides. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1512420.
Full textNikolla, Eranda. Final Report: Nanostructured, Targeted Layered Metal Oxides as Active and Selective Heterogeneous Electrocatalysts for Oxygen Electrocatalysis. Office of Scientific and Technical Information (OSTI), January 2021. http://dx.doi.org/10.2172/1763600.
Full textYang, Chih-Chung. Metal Nanostructures for Detection and Imaging Enhancements. Fort Belvoir, VA: Defense Technical Information Center, January 2011. http://dx.doi.org/10.21236/ada535765.
Full textMcWatters, Bruce Ray, Rion A. Causey, Ryan J. DePuit, Nancy Y. C. Yang, and Markus D. Ong. Nanostructures from hydrogen implantation of metals. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/993629.
Full textShelnutt, John A., Zhongchun Wang, and Craig J. Medforth. Growth of metal and semiconductor nanostructures using localized photocatalysts. Office of Scientific and Technical Information (OSTI), March 2006. http://dx.doi.org/10.2172/919279.
Full text