Academic literature on the topic 'Nanostructured materials applications'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanostructured materials applications.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nanostructured materials applications"
Yang, Ming, Xiaohua Chen, Zidong Wang, Yuzhi Zhu, Shiwei Pan, Kaixuan Chen, Yanlin Wang, and Jiaqi Zheng. "Zero→Two-Dimensional Metal Nanostructures: An Overview on Methods of Preparation, Characterization, Properties, and Applications." Nanomaterials 11, no. 8 (July 23, 2021): 1895. http://dx.doi.org/10.3390/nano11081895.
Full textChen, Huige, Run Shi, and Tierui Zhang. "Nanostructured Photothermal Materials for Environmental and Catalytic Applications." Molecules 26, no. 24 (December 13, 2021): 7552. http://dx.doi.org/10.3390/molecules26247552.
Full textMatteazzi, Paolo. "Nanostructured Titanium Based Materials." Materials Science Forum 539-543 (March 2007): 2878–83. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.2878.
Full textBechelany, Mikhael, Sebastien Balme, and Philippe Miele. "Atomic layer deposition of biobased nanostructured interfaces for energy, environmental and health applications." Pure and Applied Chemistry 87, no. 8 (August 1, 2015): 751–58. http://dx.doi.org/10.1515/pac-2015-0102.
Full textHan, Yang, and Zhien Zhang. "Nanostructured Membrane Materials for CO2 Capture: A Critical Review." Journal of Nanoscience and Nanotechnology 19, no. 6 (June 1, 2019): 3173–79. http://dx.doi.org/10.1166/jnn.2019.16584.
Full textMachín, Abniel, Kenneth Fontánez, Juan C. Arango, Dayna Ortiz, Jimmy De León, Sergio Pinilla, Valeria Nicolosi, Florian I. Petrescu, Carmen Morant, and Francisco Márquez. "One-Dimensional (1D) Nanostructured Materials for Energy Applications." Materials 14, no. 10 (May 17, 2021): 2609. http://dx.doi.org/10.3390/ma14102609.
Full textJortner, Joshua, and C. N. R. Rao. "Nanostructured advanced materials. Perspectives and directions." Pure and Applied Chemistry 74, no. 9 (January 1, 2002): 1491–506. http://dx.doi.org/10.1351/pac200274091491.
Full textNocua, José E., Fabrice Piazza, Brad R. Weiner, and Gerardo Morell. "High-Yield Synthesis of Stoichiometric Boron Nitride Nanostructures." Journal of Nanomaterials 2009 (2009): 1–6. http://dx.doi.org/10.1155/2009/429360.
Full textKamanina, N. V., P. Ya Vasilyev, S. V. Serov, V. P. Savinov, K. Yu Bogdanov, and D. P. Uskokovic. "Nanostructured Materials for Optoelectronic Applications." Acta Physica Polonica A 117, no. 5 (May 2010): 786–90. http://dx.doi.org/10.12693/aphyspola.117.786.
Full textChang, Shoou-Jinn, Teen-Hang Meen, Stephen D. Prior, Artde Donald Kin-Tak Lam, and Liang-Wen Ji. "Nanostructured Materials for Microelectronic Applications." Advances in Materials Science and Engineering 2014 (2014): 1. http://dx.doi.org/10.1155/2014/383041.
Full textDissertations / Theses on the topic "Nanostructured materials applications"
Kariuki, Nancy N. "Nanostructured materials for electroanalytical applications." Diss., Online access via UMI:, 2005.
Find full textLi, Yanguang. "Nanostructured Materials for Energy Applications." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1275610758.
Full textBuchholt, Kristina. "Nanostructured materials for gas sensing applications." Doctoral thesis, Linköpings universitet, Tillämpad Fysik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-69641.
Full textLatini, Alessandro. "Inorganic Nanostructured Materials for Technological Applications." Doctoral thesis, La Sapienza, 2006. http://hdl.handle.net/11573/917353.
Full textLi, Shanghua. "Fabrication of Nanostructured Materials for Energy Applications." Doctoral thesis, Kista : Division of Functional Materials, Department of Microelectronics and Applied Physics, School of Information and Communication Technology, Royal Institute o Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4807.
Full textFornara, Andrea. "Magnetic nanostructured materials for advanced bio-applications." Licentiate thesis, Stockholm : Informations- och kommunicationsteknik, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9569.
Full textBassett, David. "Synthesis and applications of bioinspired inorganic nanostructured materials." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97064.
Full textMalgré le fait que l'étude des biomatériaux remonte à plusieurs siècles, ce n'est que récemment que des principes biologiques furent appliqués à des systèmes synthétiques dans des procédés de "biomimetic" et "bioinspirés", permettant ainsi de nouveaux matériaux de synthèses tout en réduisant l'expansion d'énergie et/ou d'éliminer les résultantes toxiques. Plusieurs chercheurs se sont inspirés des formes inusuelles dès plus intéressantes créées par des organismes, formés par un procédé de biominéralisation, qui modifie la nanostructure des matériaux synthétiques. Toutefois, les champs d'études des synthèses de nanoparticules et de la biominéralisation demeurent grandement à part, et cette thèse tente d'appliquer de nouvelles études de biominéralisation par rapport à la science des nanomatériaux.Les protéines sériques qui influencent la biominéralisation sont chargées négativement de résidus d'aspartate. Cette recherche déterminera l'habileté de ces protéines et des diverses molécules bio–organiques qui stabilisent biologiquement d'important minéraux aux multiples formes qui influencent la formation de matériaux non biogènes sur une nano échelle; l'or et le dioxyde de titane ont permis de démontrer ce résultat. L'or fut transformé en nanoparticules de cristal par l'action des protéines sériques, et c'est l'utilité de ces nanoparticules en tant que biocapteurs qui fut explorée. L'influence des molécules bios-organiques sur le choix de la phase ainsi que sur la restriction de la grosseur du cristal de dioxyde de titane, un important semi-conducteur dans plusieurs applications, fut explorée. Les nanoparticules dérivant bio-organiquement du dioxyde de titane ont dès lors démontrées leur action hautement efficace comme photo catalyseur. Le carbonate de calcium, un biominéral commun, a su démontré sa capacité à auto-former des structures à multiples échelles ainsi que différents polymorphes cristallins sous l'influence d'une protéine modèle. De plus, la manipulation des structures à former divers arrangements est une variable qui fut démontrée. Finalement, la stabilité des nanoparticules du phosphate de calcium à se disperser dans le sérum de culture fut modifiée afin d'optimiser l'efficacité du transfert dans deux lignes de cellules.Plusieurs grandes recherches ont accomplis de façon significative; (i) l'évaluation de l'habileté relative du sérum, le dérivé des protéines sériques et de leur capacité à stabiliser les phases de leurs multiples formes, (ii) la formation simple cristalline de l'or former par un anticorps, (iii) la formation de nanoparticules très actives photocatalytiquement d'anatase formées par un ester cyclique phosphorylée, (iv) la formation de structures coniques à l'interface air liquide par la capacité de gabarits d'une protéine, (iv) l'optimisation de transfection médiation par des nanoparticules de phosphate de calcium dans deux lignées cellulaires par filtration méchanique.
Renard, Laëtitia. "Nanostructured tin-based materials : sensing and optical applications." Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14183/document.
Full textClass II hybrid materials were prepared from ditin hexaalkynides. Two families of precursors, including either hydrocarbon or oligothiophene-based spacers, were obtained and led by the sol-gel process to self-assembled organotin-based hybrid materials made of planes of oxide separated by organic bridges. Thus, the rigid thienyl spacer gave rise to a “pseudo-lamellar” structure that showed a monomer emission band with a rather small red-shift compared with to the emission of the precursor in solution. However more disordered thienyl xerogels led to broad emission features assigned to excimer or dimer formation. Moreover, thin films containing alkylene- and arylalkylene bridged have been prepared and showed a “pseudoparticulate” porous morphology and a short-range hierarchical order in the organic-inorganic SnOx pseudoparticles. Unexpectedly these hybrid thin films detect hydrogen gas at a temperature as low as 50 °C at the 200-10000 ppm level. From these hybrid thin films, crystalline tin dioxide (SnO2) were prepared by a thermal post-treatment. As expected, cassiterite SnO2 films detected H2 and to a less extent CO with a best operating temperature comprised between 300 and 350 °C
E, Peisan. "Nanostructured electroactive materials : applications in electroanalysis and electrocatalysis." Thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/89561/.
Full textRISPLENDI, FRANCESCA. "Nanostructured Materials for Photovoltaic Applications: a Theoretical Study." Doctoral thesis, Politecnico di Torino, 2014. http://hdl.handle.net/11583/2533099.
Full textBooks on the topic "Nanostructured materials applications"
Balakumar, Subramanian, Valérie Keller, and M. V. Shankar, eds. Nanostructured Materials for Environmental Applications. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72076-6.
Full textLogothetidis, Stergios, ed. Nanostructured Materials and Their Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22227-6.
Full textSwain, Bibhu Prasad, ed. Nanostructured Materials and their Applications. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8307-0.
Full textBergmann, Carlos Pérez, and Mônica Jung de Andrade, eds. Nanostructured Materials for Engineering Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19131-2.
Full textservice), SpringerLink (Online, ed. Nanostructured Materials and Their Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textJung, Andrade Mônica, and SpringerLink (Online service), eds. Nanostructured Materials for Engineering Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
Find full textC, Koch C., ed. Nanostructured materials: Processing, properties, and applications. 2nd ed. Norwich, NY: William Andrew Pub., 2007.
Find full textValiev, Ruslan Z. Bulk nanostructured materials: Fundamentals and applications. Hoboken, New Jersey: TMS-Wiley, 2014.
Find full textReithmaier, Johann Peter. Nanostructured Materials for Advanced Technological Applications. Dordrecht: Springer Netherlands, 2009.
Find full textReithmaier, Johann Peter, Plamen Petkov, Wilhelm Kulisch, and Cyril Popov, eds. Nanostructured Materials for Advanced Technological Applications. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9916-8.
Full textBook chapters on the topic "Nanostructured materials applications"
Thangadurai, T. Daniel, N. Manjubaashini, Sabu Thomas, and Hanna J. Maria. "Miscellaneous Applications of Nanostructures." In Nanostructured Materials, 187–93. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-26145-0_16.
Full textThangadurai, T. Daniel, N. Manjubaashini, Sabu Thomas, and Hanna J. Maria. "Nanomaterials, Properties and Applications." In Nanostructured Materials, 11–28. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-26145-0_2.
Full textThangadurai, T. Daniel, N. Manjubaashini, Sabu Thomas, and Hanna J. Maria. "Nanostructured Materials for Photonic Applications." In Nanostructured Materials, 171–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-26145-0_14.
Full textProvenzano, V. "Nanostructured Materials for Gas-Reactive Applications." In Nanostructured Materials, 335–59. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5002-6_17.
Full textVenturini, Janio. "Nanostructured Thermoelectric Materials." In Technological Applications of Nanomaterials, 35–45. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86901-4_2.
Full textThangadurai, T. Daniel, N. Manjubaashini, Sabu Thomas, and Hanna J. Maria. "Nanostructured Materials for Optical and Electronic Applications." In Nanostructured Materials, 149–59. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-26145-0_12.
Full textMayo, M. J. "Nanocrystalline Ceramics for Structural Applications: Processing and Properties." In Nanostructured Materials, 361–85. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5002-6_18.
Full textClement, Kristin, Angela Iseli, Dennis Karote, Jessica Cremer, and Shyamala Rajagopalan. "Nanostructured Materials: Industrial Applications." In Handbook of Industrial Chemistry and Biotechnology, 265–306. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-4259-2_9.
Full textIcten, O. "Functionalized Magnetic Nanoparticles for Biomedical Applications (Treatment, Imaging, and Separation and Detection Applications)." In Nanostructured Magnetic Materials, 67–96. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003335580-4.
Full textKamaraj, Sathish-Kumar, Arun Thirumurugan, Sebastián Díaz de la Torre, Suresh Kannan Balasingam, and Shanmuga Sundar Dhanabalan. "Functionalized Magnetic Nanomaterials and Their Applications." In Nanostructured Magnetic Materials, 1–13. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003335580-1.
Full textConference papers on the topic "Nanostructured materials applications"
González, J. M. "Nanostructured Magnetic Materials." In INDUSTRIAL APPLICATIONS OF THE MOSSBAUER EFFECT: International Symposium on the Industrial Applications of the Mossbauer Effect. AIP, 2005. http://dx.doi.org/10.1063/1.1923649.
Full textFattakhova-Rohlfing, Dina. "Nanostructured Materials for Electrochemical Applications." In The World Congress on Recent Advances in Nanotechnology. Avestia Publishing, 2016. http://dx.doi.org/10.11159/icnnfc16.1.
Full textPrasad, Narasimha S., Patrick Taylor, and David Nemir. "Shockwave consolidation of nanostructured thermoelectric materials." In SPIE Optical Engineering + Applications, edited by Edward W. Taylor and David A. Cardimona. SPIE, 2014. http://dx.doi.org/10.1117/12.2063852.
Full textSaxena, Ashok, Rahul Rajgarhia, and Shubhra Bansal. "Design of Nanocrystalline Materials for Structural Applications." In 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2008. http://dx.doi.org/10.1115/micronano2008-70012.
Full textSwaminathan, Srinivasan, M. Ravi Shankar, Balkrishna C. Rao, Travis L. Brown, Srinivasan Chandrasekar, W. Dale Compton, Alexander H. King, and Kevin P. Trumble. "Nanostructured Materials by Machining." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81242.
Full textGoldoni, Andrea. "Nanostructured carbon-based materials for Gas sensor applications." In 2014 AEIT Annual Conference - From Research to Industry: The Need for a More Effective Technology Transfer (AEIT). IEEE, 2014. http://dx.doi.org/10.1109/aeit.2014.7002033.
Full textRea, I., M. Terracciano, J. Politi, A. Calio, P. Dardano, M. Gioffre, A. Lamberti, I. Rendina, and L. De Stefano. "Natural and synthetic nanostructured materials for biomedical applications." In 2015 AEIT International Annual Conference (AEIT). IEEE, 2015. http://dx.doi.org/10.1109/aeit.2015.7415279.
Full textBalaya, P., K. Saravanan, S. Hariharan, V. Ramar, H. S. Lee, M. Kuezma, S. Devaraj, D. H. Nagaraju, K. Ananthanarayanan, and C. W. Mason. "Nanostructured mesoporous materials for lithium-ion battery applications." In SPIE Defense, Security, and Sensing, edited by Nibir K. Dhar, Priyalal S. Wijewarnasuriya, and Achyut K. Dutta. SPIE, 2011. http://dx.doi.org/10.1117/12.884460.
Full textZhang, Zhihui, Zhiyue Xu, and Bobby J. Salinas. "High Strength Nanostructured Materials and Their Oil Field Applications." In SPE International Oilfield Nanotechnology Conference and Exhibition. Society of Petroleum Engineers, 2012. http://dx.doi.org/10.2118/157092-ms.
Full textMaranchi, Jeffrey, Il-Seok Kim, Aloysius Hepp, and Prashant Kumta. "Nanostructured Electrochemically Active Materials: Opportunities for Aerospace Power Applications." In 1st International Energy Conversion Engineering Conference (IECEC). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-5952.
Full textReports on the topic "Nanostructured materials applications"
Braterman, Paul S., Phillip Isabio Phol, Zhi-Ping Xu, C. Jeffrey Brinker, Yi Yang, Charles R. Bryan, Kui Yu, Huifang Xu, Yifeng Wang, and Huizhen Gao. Potential applications of nanostructured materials in nuclear waste management. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/917460.
Full textOhuchi, Fumio, and Rajandra Bordia. Precursor-Derived Nanostructured Silicon Carbide Based Materials for Magnetohydrodynamic Electrode Applications. Office of Scientific and Technical Information (OSTI), July 2019. http://dx.doi.org/10.2172/1542886.
Full textOhuchi, Fumio, and Rajandra Bordia. Precursor-Derived Nanostructured Silicon Carbide Based Materials for Magnetohydrodynamic Electrode Applications. Office of Scientific and Technical Information (OSTI), December 2018. http://dx.doi.org/10.2172/1489149.
Full textBordia, Rajendra, Vikas Tomar, and Chuck Henager. Precursor Derived Nanostructured Si-C-X Materials for Nuclear Applications. Final Report, October 2010 - September 2014. Office of Scientific and Technical Information (OSTI), April 2015. http://dx.doi.org/10.2172/1179802.
Full textPanfil, Yossef E., Meirav Oded, Nir Waiskopf, and Uri Banin. Material Challenges for Colloidal Quantum Nanostructures in Next Generation Displays. AsiaChem Magazine, November 2020. http://dx.doi.org/10.51167/acm00008.
Full textLong, Chiang. Ultrafast Photoresponsive Starburst and Dendritic Fullerenyl Nanostructures for Broadband Nonlinear Photonic Material Applications. Fort Belvoir, VA: Defense Technical Information Center, August 2014. http://dx.doi.org/10.21236/ada608881.
Full textWang, Haiyan. 2014 TMS RF Mehl Medal Symposium on Frontiers in Nanostructured Electronic and Structural Materials and Their Application. Fort Belvoir, VA: Defense Technical Information Center, April 2015. http://dx.doi.org/10.21236/ad1001061.
Full textWang, Xiaohua. Characterization of Mesoscopic Fluid Films for Applications in SPM Imaging and Fabrication of Nanostructures on Responsive Materials. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.1068.
Full textRappe, Andrew M. Materials Design of Core-Shell Nanostructure Catalysts and New Quantum Monte Carlo Methods, with Application to Combustion. Fort Belvoir, VA: Defense Technical Information Center, February 2010. http://dx.doi.org/10.21236/ada589588.
Full textBarbee, T. W., and W. Yee. Development and Implementaton of Advanced Materials for Aircraft Engine Applications Development and Implementation of Nanostructure Laminates Final Report CRADA No. TC-0497-93-B. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1426102.
Full text