Academic literature on the topic 'Nanostructured hybrid material'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanostructured hybrid material.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nanostructured hybrid material"
Koufos, Evan, and Meenakshi Dutt. "Designing Nanostructured Hybrid Inorganic-biological Materials via the Self-assembly." MRS Proceedings 1569 (2013): 51–56. http://dx.doi.org/10.1557/opl.2013.764.
Full textAversa, Raffaella, Roberto Sorrentino, and Antonio Apicella. "New Biomimetic Hybrid Nanocomposites for early Fixation Prostheses." Advanced Materials Research 1088 (February 2015): 487–94. http://dx.doi.org/10.4028/www.scientific.net/amr.1088.487.
Full textKatayama, Mitsuhiro, Shin-ichi Honda, Takashi Ikuno, Kuei-Yi Lee, Masaru Kishida, Yuya Murata, and Kenjiro Oura. "Synthesis of Nanostructured Hybrid between Carbon Nanotube and Inorganic Material towards Nanodevice Application." e-Journal of Surface Science and Nanotechnology 2 (2004): 244–55. http://dx.doi.org/10.1380/ejssnt.2004.244.
Full textZhu, Shaoli, and Wei Zhou. "Topical Review: Design, Fabrication, and Applications of Hybrid Nanostructured Array." Journal of Nanomaterials 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/206069.
Full textMahmood, Khalid, Bhabani S. Swain, Ahmad R. Kirmani, and Aram Amassian. "Highly efficient perovskite solar cells based on a nanostructured WO3–TiO2core–shell electron transporting material." Journal of Materials Chemistry A 3, no. 17 (2015): 9051–57. http://dx.doi.org/10.1039/c4ta04883k.
Full textBui, Hoa, Nguyen Duc Lam, Bui Xuan Khuyen, Bui Son Tung, Man Hoai Nam, Nguyen Thi Ngoc Anh, Do Chi Linh, Duong Thi Huong, and Pham Thi San. "Synthesis and characterization of in-situ MoS2-graphene hybrid nanostructured material." Journal of Military Science and Technology, no. 81 (August 26, 2022): 122–27. http://dx.doi.org/10.54939/1859-1043.j.mst.81.2022.122-127.
Full textPiticescu, Roxana M., Gabrielle Charlotte Chitanu, Aurelia Meghea, Maria Giurginca, Gabriela Negroiu, and Laura Madalina Popescu. "Comparative Study of In Situ Interactions between Maleic Anhydride Based Copolymers with Hydroxyl Apatite." Key Engineering Materials 361-363 (November 2007): 387–90. http://dx.doi.org/10.4028/www.scientific.net/kem.361-363.387.
Full textLyuksyutov, I. F., and D. G. Naugle. "Magnet/Superconductor Nanostructures." International Journal of Modern Physics B 17, no. 18n20 (August 10, 2003): 3441–44. http://dx.doi.org/10.1142/s0217979203021162.
Full textWang, Hualan, Qingli Hao, Xujie Yang, Lude Lu, and Xin Wang. "A nanostructured graphene/polyaniline hybrid material for supercapacitors." Nanoscale 2, no. 10 (2010): 2164. http://dx.doi.org/10.1039/c0nr00224k.
Full textMcDonald, Calum, Chengsheng Ni, Paul Maguire, Paul Connor, John Irvine, Davide Mariotti, and Vladimir Svrcek. "Nanostructured Perovskite Solar Cells." Nanomaterials 9, no. 10 (October 18, 2019): 1481. http://dx.doi.org/10.3390/nano9101481.
Full textDissertations / Theses on the topic "Nanostructured hybrid material"
BERETTA, MARIO. "Nanostructured mesoporous materials obtained by template synthesis and controlled shape replica." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/7502.
Full textWeißhuhn, J., T. Mark, M. Martin, P. Müller, A. Seifert, and S. Spange. "Ternary organic–inorganic nanostructured hybrid materials by simultaneous twin polymerization." Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-220068.
Full textDieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Göring, M., A. Seifert, K. Schreiter, P. Müller, and S. Spange. "A non-aqueous procedure to synthesize amino group bearing nanostructured organic–inorganic hybrid materials." Universitätsbibliothek Chemnitz, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-152006.
Full textDieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Renard, Laëtitia. "Nanostructured tin-based materials : sensing and optical applications." Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14183/document.
Full textClass II hybrid materials were prepared from ditin hexaalkynides. Two families of precursors, including either hydrocarbon or oligothiophene-based spacers, were obtained and led by the sol-gel process to self-assembled organotin-based hybrid materials made of planes of oxide separated by organic bridges. Thus, the rigid thienyl spacer gave rise to a “pseudo-lamellar” structure that showed a monomer emission band with a rather small red-shift compared with to the emission of the precursor in solution. However more disordered thienyl xerogels led to broad emission features assigned to excimer or dimer formation. Moreover, thin films containing alkylene- and arylalkylene bridged have been prepared and showed a “pseudoparticulate” porous morphology and a short-range hierarchical order in the organic-inorganic SnOx pseudoparticles. Unexpectedly these hybrid thin films detect hydrogen gas at a temperature as low as 50 °C at the 200-10000 ppm level. From these hybrid thin films, crystalline tin dioxide (SnO2) were prepared by a thermal post-treatment. As expected, cassiterite SnO2 films detected H2 and to a less extent CO with a best operating temperature comprised between 300 and 350 °C
Möllmann, Alexander [Verfasser]. "Nanostructured Metal Oxide Thin Films as Electron Transport Material for Inorganic-Organic Hybrid Perovskite Solar Cells / Alexander Möllmann." München : Verlag Dr. Hut, 2020. http://d-nb.info/1219478067/34.
Full textKim, Wun-Gwi. "Nanoporous layered oxide materials and membranes for gas separations." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47591.
Full textChang, Sehoon. "Organic/inorganic hybrid nanostructures for chemical plasmonic sensors." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39545.
Full textDalmases, Solé Mariona. "Design of novel compositionally controlled hybrid and ternary nanostructures." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/666576.
Full textEn els últims anys, els materials ternaris i híbrids han començat a sorgir gràcies al gran ventall de composicions i, per tant, de propietats que ofereixen i que els donen la possibilitat d’aplicar-se en diversos camps, com ara l’emmagatzematge d’energia, l’optoelectrònica o la biomedicina. Aquesta tesis està centrada en el disseny de noves nanoestructures ternàries i híbrides basades en materials amb una toxicitat baixa. En primer lloc, s’ha descrit un procediment simple a temperatura ambient per la síntesi de nanoestructures ternàries i híbrides d’Ag-Au-Se i d’Ag-Au-S que consisteix en la reacció entre nanopartícules d’Ag2Se i Ag2S sintetitzades prèviament i un precursor d’Au(III). El temps de reacció, la concentració del precursor d’or, la naturalesa del tensioactiu i la relació Ag:Au són els quatre paràmetres clau que permeten el control del producte final. Addicionalment, dos compostos del sistema Ag-Au-Se van ser caracteritzats termoelèctricament i com a agents de contrast en tomografia computada. En segon lloc, s’ha estudiat un altre sistema ternari, format per Ag-Cu-S. El mètode d’injecció en calent proposat en aquesta tesi permet la formació del material amb estequiometria AgCuS. El material va ser caracteritzat termoelèctricament, tot i que no mostra resultats satisfactoris degut a la seva baixa conductivitat elèctrica. En tercer lloc, es presenten quatre nanoestructures noves basades en Cu, Pt i Se, sintetitzades mitjançant una reacció a alta temperatura entre NPs de Cu2-xSe sintetitzades prèviament i un precursor de Pt(II). L’impacte de la relació Pt:Cu utilitzada en la síntesi en el producte final va ser estudiada. A mesura que la quantitat de platí augmenta en l’estructura, aquest es va introduint més eficientment en la xarxa cristal·lina del semiconductor de coure i seleni, expulsant gradual i lentament el seleni fins a la totalitat, augmentant així el caràcter metàl·lic de les nanoestructures finals. Finalment, es descriuen uns compostos híbrids hidrofílics, formats a partir de NPs inorgàniques (Au, Ag, Ag3AuSe2 i Au@Fe3O4) i un complex d’Au(I) de baix pes molecular i altament fluorescent. El seu acoblament està basat, essencialment, en interaccions aurofíliques/metal·lofíques entre els àtoms de la superfície de la nanopartícula i els àtoms d’Au(I) del complex.
Guo, Yi Wei Yen. "Electroactive nanostructured polymers and organic-inorganic hybrid materials /." Philadelphia, Pa. : Drexel University, 2007. http://hdl.handle.net/1860/1861.
Full textGupta, Maneesh Kumar. "Stimuli-responsive hybrid nanomaterials: spatial and temporal control of multifunctional properties." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45920.
Full textBooks on the topic "Nanostructured hybrid material"
Hybrid nanomaterials: Synthesis, characterization, and applications. Hoboken, N.J: Wiley, 2011.
Find full textLi, Quan, ed. Functional Organic and Hybrid Nanostructured Materials. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527807369.
Full text1934-, Mark James E., Lee C. Y.-C. 1947-, Biancini P. A. 1957-, and American Chemical Society. Division of Polymeric Materials: Science and Engineering., eds. Hybrid organic-inorganic composites. Washington, D.C: American Chemical Society, 1995.
Find full textPedro, Gómez-Romero, and Sanchez Clément, eds. Functional hybrid materials. Weinheim: Wiley-VCH, 2004.
Find full textJ, Brunner Simon, and Egger Julian W, eds. Research in hybrid materials. New York: Nova Science Publishers, Inc., 2008.
Find full textGuido, Kickelbick, ed. Hybrid materials: Synthesis, characterization, and applications. Weinheim: Wiley - VCH, 2007.
Find full textQuantum materials: Lateral semiconductor nanostructures, hybrid systems and nanocrystals. Berlin: Springer, 2010.
Find full textHeitmann, Detlef, ed. Quantum Materials, Lateral Semiconductor Nanostructures, Hybrid Systems and Nanocrystals. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10553-1.
Full textC, Klein Lisa, ed. Organic/inorganic hybrid materials II. Warrendale, Penn: Materials Research Society, 1999.
Find full textKnut, Rurack, and Martínez-Máñez Ramón, eds. The supramolecular chemistry of organic-inorganic hybrid materials. Hoboken, N.J: Wiley, 2010.
Find full textBook chapters on the topic "Nanostructured hybrid material"
Sakaushi, Ken. "Two-Dimensional Organic and Hybrid Porous Frameworks as Novel Electronic Material Systems: Electronic Properties and Advanced Energy Conversion Functions." In Functional Organic and Hybrid Nanostructured Materials, 419–44. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527807369.ch11.
Full textThangadurai, T. Daniel, N. Manjubaashini, Sabu Thomas, and Hanna J. Maria. "Semiconductors, Organic and Hybrid Nanostructures." In Nanostructured Materials, 69–76. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-26145-0_6.
Full textYang, Sha, and Wei Liu. "Nanostructured Hybrid Magnetic Materials." In Fundamentals of Low Dimensional Magnets, 111–24. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003197492-7.
Full textChoudhury, Soumyadip, and Manfred Stamm. "Hybrid Nanostructured Materials for Advanced Lithium Batteries." In Hybrid Nanomaterials, 1–78. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119160380.ch1.
Full textSrivastava, Suneel Kumar, and Vikas Mittal. "Advanced Nanostructured Materials in Electromagnetic Interference Shielding." In Hybrid Nanomaterials, 241–320. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119160380.ch5.
Full textRajakumari, R., Abhimanyu Tharayil, Sabu Thomas, and Nandakumar Kalarikkal. "Hybrid Nanostructures for Biomedical Applications." In Hybrid Phosphor Materials, 275–301. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90506-4_12.
Full textEldabagh, Noor, Jessica Czarnecki, and Jonathan J. Foley. "Nanophotonics with Hybrid Nanostructures." In Novel Nanoscale Hybrid Materials, 201–38. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119156253.ch6.
Full textKim, Kyung-Min, and Yoshiki Chujo. "Organic-Inorganic Hybrid Materials Based on Silsesquioxanes." In Macromolecular Nanostructured Materials, 197–208. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08439-7_12.
Full textShea, K. J., J. Moreau, D. A. Loy, R. J. P. Corriu, and B. Boury. "Bridged Polysilsesquioxanes. Molecular-Engineering Nanostructured Hybrid Organic-Inorganic Materials." In Functional Hybrid Materials, 50–85. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602372.ch3.
Full textMatsushita, Satoshi, Benedict San Jose, and Kazuo Akagi. "Functional Nanostructured Conjugated Polymers." In Functional Organic and Hybrid Nanostructured Materials, 547–73. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527807369.ch15.
Full textConference papers on the topic "Nanostructured hybrid material"
M, Mladenov, Petrov T, Petrov N, Budinova T, Tsyntsarski B, Saliyski N, Kovacheva D, and Raicheff R. "Nanostructured Electrode Materials for Hybrid Li Battery-capacitor Systems." In 7th International Conference on Multi-Material Micro Manufacture. Singapore: Research Publishing Services, 2010. http://dx.doi.org/10.3850/978-981-08-6555-9_166.
Full textShuvo, Mohammad Arif Ishtiaque, Md Ashiqur Rahaman Khan, Miguel Mendoza, Matthew Garcia, and Yirong Lin. "Synthesis and Characterization of Nanowire-Graphene Aerogel for Energy Storage Devices." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86431.
Full textRani, Mamta, and S. K. Tripathi. "Color-sensitive photoconductivity of nanostructured ZnO/fast green dye hybrid films." In PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS AND MATERIAL SCIENCE: RAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4810459.
Full textLima, R. S., C. Moreau, and B. R. Marple. "HVOF-Sprayed Al2O3-TiO2 Coatings Using Hybrid (Nano+Submicron) Powders: An Enhanced Wear Performance." In ITSC2007, edited by B. R. Marple, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima, and G. Montavon. ASM International, 2007. http://dx.doi.org/10.31399/asm.cp.itsc2007p0638.
Full textKannan, Balaji, and Arun Majumdar. "Novel Microfabrication Techniques for Highly Specific Programmed Assembly of Nanostructures." In ASME 2004 3rd Integrated Nanosystems Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/nano2004-46053.
Full textStellman, Paul, and George Barbastathis. "Actuation Control for Nanostructured Origami™." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-16319.
Full textHou, Huidong, Jocelyn Veilleux, François Gitzhofera, Quansheng Wang, and Ying Liu. "Hybrid Suspension/Solution Precursor Plasma Spraying of a Complex Ban (Mg1/3Ta2/3)O3 Perovskite: Effects of Processing Parameters and Precursor Chemistry on Phase Formation and Decomposition." In ITSC2018, edited by F. Azarmi, K. Balani, H. Li, T. Eden, K. Shinoda, T. Hussain, F. L. Toma, Y. C. Lau, and J. Veilleux. ASM International, 2018. http://dx.doi.org/10.31399/asm.cp.itsc2018p0105.
Full textWolff, Niklas. "Nanostructure of Semiconductor Hybrid Aero-Materials." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.563.
Full textAbdollahramezani, Sajjad, Hossein Taghinejad, Ali A. Eftekhar, and Ali Adibi. "Reconfigurable metasurfaces in a hybrid material platform through integration of plasmonic nanostructures with phase-change materials (Conference Presentation)." In Photonic and Phononic Properties of Engineered Nanostructures VIII, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2018. http://dx.doi.org/10.1117/12.2300979.
Full textKubo, T., H. Wang, and H. Segawa. "Solution-processed solar cells with nanostructured hybrid materials." In 2017 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2017. http://dx.doi.org/10.7567/ssdm.2017.b-5-01.
Full textReports on the topic "Nanostructured hybrid material"
Haddad, Tim, and Shawn Phillips. Nanostructured Hybrid Organic/Inorganic Materials. Silsesquioxane Modified Plastics. Fort Belvoir, VA: Defense Technical Information Center, December 1998. http://dx.doi.org/10.21236/ada409298.
Full textHaddad, Timothy S., Russell Stapleton, Hong G. Jeon, Patrick T. Mather, and Joseph D. Lichtenhan. Nanostructured Hybrid Organic/Inorganic Materials, Silsesquioxane Modified Plastics. Fort Belvoir, VA: Defense Technical Information Center, January 1996. http://dx.doi.org/10.21236/ada386916.
Full textLambrecht, Walter R. Magneto-Optical Properties of Hybrid Magnetic Material Semiconductor Nanostructures. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada472402.
Full textBulovic, Vladimir. PECASE: Nanostructure Hybrid Organic/Inorganic Materials for Active Opto-Electronic Devices. Fort Belvoir, VA: Defense Technical Information Center, January 2011. http://dx.doi.org/10.21236/ada547102.
Full text