Academic literature on the topic 'Nanostructured CoFe2O4-Magnetic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanostructured CoFe2O4-Magnetic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nanostructured CoFe2O4-Magnetic"

1

Makido, Olena, Galyna Khovanets’, Viktoria Kochubei, and Iryna Yevchuk. "Nanostructured Magnetically Sensitive Catalysts for the Fenton System: Obtaining, Research, Application." Chemistry & Chemical Technology 16, no. 2 (June 15, 2022): 227–36. http://dx.doi.org/10.23939/chcht16.02.227.

Full text
Abstract:
Nanostructured “shell-shell” type catalysts, which consist of a magnetically sensitive core of cobalt ferrite and a protective layer of porous SiO2, have been synthesized. On the surface of porous SiO2 clusters of copper oxide are situated playing the role of catalytic centers. The structure of CoFe2O4 / SiO2 / CuO catalyst was confirmed by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Studies of the catalytic activity of the obtained catalysts were performed in the Fenton system on a model solution of methylene blue (MB). The catalytic activity of the composite in MB destruction reaches 99%. The high magnetic sensitivity of the obtained catalysts ensures their easy removal from the reaction medium. The catalysts demonstrated the possibility of reusability without loss of activity.
APA, Harvard, Vancouver, ISO, and other styles
2

Bigham, Ashkan, Amir Hamed Aghajanian, Shima Behzadzadeh, Zahra Sokhani, Sara Shojaei, Yeganeh Kaviani, and S. A. Hassanzadeh-Tabrizi. "Nanostructured magnetic Mg2SiO4-CoFe2O4 composite scaffold with multiple capabilities for bone tissue regeneration." Materials Science and Engineering: C 99 (June 2019): 83–95. http://dx.doi.org/10.1016/j.msec.2019.01.096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Xu, Yanhong, Hui Zhang, Xue Duan, and Yaping Ding. "Preparation and investigation on a novel nanostructured magnetic base catalyst MgAl–OH-LDH/CoFe2O4." Materials Chemistry and Physics 114, no. 2-3 (April 2009): 795–801. http://dx.doi.org/10.1016/j.matchemphys.2008.10.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Redón, Rocío, Miriam D. Aviles-Avila, Leopoldo Ruiz-Huerta, Herlinda Montiel, Alex Elías-Zúñiga, Lucy-Caterine Daza-Gómez, and Oscar Martínez-Romero. "Inducing Magnetic Properties with Ferrite Nanoparticles in Resins for Additive Manufacturing." International Journal of Molecular Sciences 24, no. 14 (July 24, 2023): 11838. http://dx.doi.org/10.3390/ijms241411838.

Full text
Abstract:
Additive manufacturing and nanotechnology have been used as fundamental tools for the production of nanostructured parts with magnetic properties, expanding the range of applications in additive processes through tank photopolymerization. Magnetic cobalt ferrite (CoFe2O4) and barium ferrite (BaFe12O19) nanoparticles (NPs) with an average size distribution value (DTEM) of 12 ± 2.95 nm and 37 ± 12.78 nm, respectively, were generated by the hydroxide precipitation method. The dispersion of the NPs in commercial resins (Anycubic Green and IRIX White resin) was achieved through mechanochemical reactions carried out in an agate mortar for 20 min at room temperature, with limited exposure to light. The resulting product of each reaction was placed in amber vials and stored in a box to avoid light exposure. The photopolymerization process was carried out only at low concentrations (% w/w NPs/resin) since high concentrations did not result in the formation of pieces, due to the high refractive index of ferrites. The Raman spectroscopy of the final pieces showed the presence of magnetic NPs without any apparent chemical changes. The electron paramagnetic resonance (EPR) results of the pieces demonstrated that their magnetic properties were maintained and not altered during the photopolymerization. Although significant differences were observed in the dispersion process of the NPs in each piece, we determined that the photopolymerization did not affect the structure and superparamagnetic behavior of ferrite NPs during processing, successfully transferring the magnetic properties to the final 3D-printed piece.
APA, Harvard, Vancouver, ISO, and other styles
5

Galizia, Pietro, Carlo Baldisserri, Elisa Mercadelli, Claudio Capiani, Carmen Galassi, and Miguel Algueró. "A Glance at Processing-Microstructure-Property Relationships for Magnetoelectric Particulate PZT-CFO Composites." Materials 13, no. 11 (June 6, 2020): 2592. http://dx.doi.org/10.3390/ma13112592.

Full text
Abstract:
In this work, we investigated the processing-microstructure-property relationships for magnetoelectric (ME) particulate composites consisting of hard ferromagnetic CoFe2O4 (CFO) particles dispersed in a Nb-doped PbZrxTi1-xO3 (PZT) soft ferroelectric matrix. Several preparation steps, namely PZT powder calcination, PZT-CFO mixture milling and composite sintering were tailored and a range of microstructures was obtained. These included open and closed porosities up to full densification, PZT matrices with decreasing grain size across the submicron range down to the nanoscale and well dispersed CFO particles with bimodal size distributions consisting of submicron and micron sized components with varying weights. All samples could be poled under a fixed DC electric field of 4 kV/mm and the dielectric, piezoelectric and elastic coefficients were obtained and are discussed in relation to the microstructure. Remarkably, materials with nanostructured PZT matrices and open porosity showed piezoelectric charge coefficients comparable with fully dense composites with coarsened microstructure and larger voltage coefficients. Besides, the piezoelectric response of dense materials increased with the size of the CFO particles. This suggests a role of the conductive magnetic inclusions in promoting poling. Magnetoelectric coefficients were obtained and are discussed in relation to densification, piezoelectric matrix microstructure and particle size of the magnetic component. The largest magnetoelectric coefficient α33 of 1.37 mV cm−1 Oe−1 was obtained for submicron sized CFO particles, when closed porosity was reached, even if PZT grain size remained in the nanoscale.
APA, Harvard, Vancouver, ISO, and other styles
6

Freire, Rafael M., Evelyn Silva-Moreno, Christian Robles-Kelly, Claudia D. Infante, Juliano C. Denardin, and Sebastian Michea. "Straightforward synthesis of monodisperse Co/Zn-based nanoparticles and their antifungal activities on Botrytis cinerea." AIP Advances 13, no. 3 (March 1, 2023): 035001. http://dx.doi.org/10.1063/9.0000534.

Full text
Abstract:
Herein, we have displayed an easy way to produce monodisperse spinel nanoparticles (NPs) and the antifungal activity of CoFe2O4, Co0.5Zn0.5Fe2O4 and ZnFe2O4 nanostructures. Firstly, the structural, morphological and magnetic properties of each NP were investigated through x-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometer (VSM). The XRD data showed diffraction peaks related to the crystalline spinel phase. The TEM micrographs displayed monodisperse NPs with spherical morphology. The average sizes of CoFe2O4, Co0.5Zn0.5Fe2O4 and ZnFe2O4 NPs were 6.87 ± 0.05 nm, 5.18 ± 0.01 nm and 11.52 ± 0.09 nm, respectively. The VSM data indicated that the nanostructures are superparamagnetic at room temperature. Afterward, the antifungal properties of the Co/Zn-based ferrite NPs against Botrytis cinerea were tested. So, the inhibition of mycelial growth by different concentrations (45 – 360 ppm) of NPs was measured. The most effective nanostructure was CoFe2O4, with an EC50 value of 265 ppm. Further, to elucidate how the NPs are affecting B. cinerea, reactive oxygen species (ROS) production was measured. The results indicated that the CoFe2O4 monodisperse NPs could induce a burst of ROS in B. cinerea, promoting cellular damage.
APA, Harvard, Vancouver, ISO, and other styles
7

Dinh, Quang Thanh, Van Tuan Dinh, Hoai Nam Nguyen, Tien Anh Nguyen, Xuan Truong Nguyen, Luong Lam Nguyen, Thi Mai Thanh Dinh, Hong Nam Pham, and Van Quynh Nguyen. "Synthesis of magneto-plasmonic hybrid material for cancer hyperthermia." Journal of Military Science and Technology, no. 81 (August 26, 2022): 128–37. http://dx.doi.org/10.54939/1859-1043.j.mst.81.2022.128-137.

Full text
Abstract:
Magnetic nanoparticle CoFe2O4-based hyperthermia is a promising non-invasive approach for cancer therapy. However, CoFe2O4 nanoparticles (NPs) have a low heat transfer efficiency, which limits their practical clinical applications. Hence, it is necessary to investigate the higher-performance magnetic NPs-based hybrid nanostructures to enhance their magnetic hyperthermia efficiency. This work presents a facile in situ approach for synthesizing cobalt ferrite (CoFe2O4) silver (Ag) hybrid NPs as optical-magnetic hyperthermia heat mediators. The prepared cobalt ferrite silver hybrid NPs exhibit a higher heat generation than that of individual Ag or CoFe2O4 NPs under simultaneous exposure to an alternating current magnetic field and laser source. The obtained results confirm that the hybridization of CoFe2O4 and Ag NPs could significantly enhance the hyperthermia efficiency of the prepared NPs. Therefore, the CoFe2O4-Ag hybrid NPs are considered as potential candidates for a high-performance hyperthermia mediator based on a simple and effective synthesis approach.
APA, Harvard, Vancouver, ISO, and other styles
8

JIN, HONGXIAO, LIANG LI, MIN CHEN, JINGCAI XU, BO HONG, BAO HUANG, DINGFENG JIN, HONGLIANG GE, and XINQING WANG. "SYNTHESIS OF MAGNETIC SBA-15 AND Fe–SBA-15 MESOPOROUS NANOCOMPOSITES WITH COBALT FERRITES." Nano 06, no. 03 (June 2011): 287–93. http://dx.doi.org/10.1142/s1793292011002512.

Full text
Abstract:
A new nanocomposite based on SBA-15 mesoporous materials combined with Fe2O3 and CoFe2O4 nanoparticles was prepared via sol–gel growth. The nanostructures and magnetic properties of the SBA-15 nanocomposite were investigated by X-ray diffraction topography, high resolution transmission electron microscopy, and vibrating sample magnetometer. Results indicate that α- Fe2O3 nanoparticles are present in the frame or micropores of SBA-15 (denoted as Fe –SBA-15 below) and that CoFe2O4 nanoparticles are confined in the mesoporous channels of Fe –SBA-15. Our results also reveal that the addition of CoFe2O4 and α- Fe2O3 magnetic nanoparticles critically affects their magnetic properties. The saturation magnetization of the SBA-15 nanocomposite is attributed to ferrimagnetic CoFe2O4 nanoparticles and antiferromagnetic α- Fe2O3 nanoparticles, whereas the coercivity increases with the content of CoFe2O4 . Moreover, the presence of the couple exchange interaction between the magnetic nanoparticles is confirmed, which can enhance the magnetic properties of the SBA-15 nanocomposite.
APA, Harvard, Vancouver, ISO, and other styles
9

Kumar, Shalendra, Faheem Ahmed, Nagih M. Shaalan, Rajesh Kumar, Adil Alshoaibi, Nishat Arshi, Saurabh Dalela, Fatima Sayeed, Sourabh Dwivedi, and Kavita Kumari. "Structural, Magnetic, and Electrical Properties of CoFe2O4 Nanostructures Synthesized Using Microwave-Assisted Hydrothermal Method." Materials 15, no. 22 (November 10, 2022): 7955. http://dx.doi.org/10.3390/ma15227955.

Full text
Abstract:
Magnetic nanostructures of CoFe2O4 were synthesized via a microwave-assisted hydrothermal route. The prepared nanostructures were investigated using X-ray diffraction (XRD), field emission electron microscopy (FE-SEM), energy dispersive X-ray (EDX) spectroscopy, high-resolution transmission electron microscopy (HR-TEM), selective area electron diffraction (SAED) pattern, DC magnetization, and dielectric spectroscopy measurements. The crystal structure studied using HR-TEM, SAED, and XRD patterns revealed that the synthesized nanostructures had a single-phase nature and ruled out the possibility of any secondary phase. The lattice parameters and unit cell volume determined from the XRD data were found to be 8.4821 Å and 583.88 Å3. The average crystallite size (~7.0 nm) was determined using Scherrer’s equation. The FE-SEM and TEM micrographs revealed that the prepared nanostructures had a spherical shape morphology. The EDX results showed that the major elements present in the samples were Co, Fe, and O. The magnetization (M) versus temperature (T) measurements specified that the CoFe2O4 nanostructures showed ferromagnetic ordering at room temperature. The blocking temperature (TB) determined using the M-T curve was found to be 315 K. The magnetic hysteresis (M-H) loop of the CoFe2O4 nanostructures recorded at different temperatures showed the ferromagnetic behavior of the CoFe2O4 nanostructures at temperatures of 200 K and 300 K, and a superparamagnetic behavior at 350 K. The dielectric spectroscopy studies revealed a dielectric constant (ε′) and loss tangent (tanδ) decrease with the increase in the frequency, as well as demonstrating a normal dispersion behavior, which is due to the Maxwell–Wagner type of interfacial polarization. The values of ε′ and tanδ were observed to increase with the increase in the temperature.
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Ji-Ning, Wei-Li Li, Xiao-Liang Li, and W. D. Fei. "In situ X-ray diffraction analysis of Pb(Zr0.52Ti0.48)O3 phase transition in CoFe2O4/Pb(Zr0.52Ti0.48)O3 2-2-type bilayer films." Powder Diffraction 25, S1 (September 2010): S45—S47. http://dx.doi.org/10.1154/1.3478981.

Full text
Abstract:
A 2-2-type nanostructure bilayer film of CoFe2O4/Pb(Zr0.52Ti0.48)O3 was successfully prepared on the (111)Pt/Ti/SiO2/Si substrate. The Pb(Zr0.52Ti0.48)O3 layer in the bilayer film is (111) oriented and is a mixture of tetragonal and monoclinic phases. The results from an in situ X-ray diffraction analysis of the multiferroic bilayer film under statistic magnetic field indicate that the monoclinic-tetragonal phase transition was induced by magnetostriction of the CoFe2O4 layer. A large magnetoelectric effect was obtained probably because of the different polarization directions of the tetragonal and monoclinic phases.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Nanostructured CoFe2O4-Magnetic"

1

Aguesse, Frederic. "Structural, electrical and magnetic properties of CoFe2O4 and BaTiO3 layered nanostructures on conductive metal oxides." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9300.

Full text
Abstract:
Multiferroic materials exhibit simultaneously, magnetic and electric order. In a magnetoelectric composite structure, a coupling is induced via an interfacial elastic interaction between magnetostrictive and piezoelectric materials enabling the control of the magnetisation by applying an electric field and vice versa. However, despite the potential of such coupling, experimental limits of theoretical models were observed. This work sheds some light on these limits by focusing the research on the chemistry of nanocomposite CoFe2O4 and BaTiO3, particularly at the interfaces where the coupling predominates. A comparison of the most common conductive oxides, Nb doped SrTiO3 and SrRuO3, was made for the bottom electrode application. The variation of conductive properties in Nb-SrTiO3 thin films at high temperature has been quantified when artificially strained and 60 nm SrRuO3 film was found to be the best bottom electrode choice for room temperature use. Epitaxial growth of magnetic CoFe2O4 was achieved on various metal oxide substrates despite large lattice mismatches. Crystallographic properties and strain evaluation were investigated and a Stranski-Krastanov growth mechanism, arising from the PLD deposition, was predominant. A notable drop of magnetisation was observed depending on the growth template, particularly on BaTiO3 substrates, the piezoelectric counterpart of the magnetoelectric structures. However, an encouraging magnetoelectric coupling induced by thermal phase transition of BaTiO3 was revealed. For BaTiO3, a control of the growth direction was realised by varying the deposition pressure, and the existence of both 180° and 90° ferroelectric domains was observed for films up to 300 nm in thickness. However, both the ferroelectric and piezoelectric properties were reduced in the thin films due to the clamping effect of the substrate. Finally, highly crystalline multilayers of CoFe2O4 and BaTiO3 were prepared on SrRuO3 buffered SrTiO3 substrates. It was found that the degradation of both magnetic and ferroelectric properties was proportional to the increase in the number of interfaces. A thorough microscopic study revealed interdiffusion and chemical instability occurring between CoFe2O4 and BaTiO3 at the interface. This undesired effect was partially recovered by the insertion of an ultra thin layer of SrTiO3, acting as a barrier layer at every interface. This research shows how interfacial chemistry need to be understood to achieve high magnetoelectric coupling in these types of epitaxial engineered structures.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Nanostructured CoFe2O4-Magnetic"

1

Singh, Devinder, and Kuldeep Chand Verma. "Magnetic Properties of Heusler Alloys and Nanoferrites." In Magnetic Skyrmions. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95466.

Full text
Abstract:
In this chapter, results of our recent investigations on the structural, microstructural and magnetic properties of Cu-based Heusler alloys and MFe2O4 (M = Mn, Fe, Co, Ni, Cu, Zn) nanostructures will be discussed. The chapter is divided into two parts, the first part describes growth and different characterizations of Heusler alloys while in the second part magnetic properties of nano-ferrites are discussed. The Cu50Mn25Al25-xGax (x = 0, 2, 4, 8 and 10 at %) alloys have been synthesized in the form of ribbons. The alloys with x ≤ 8 show the formation of Heusler single phase of the Cu2MnAl structure. Further increase of Ga content gives rise to the formation of γ-Cu9Al4 type phase together with Cu2MnAl Heusler phase. The alloys are ferromagnetically ordered and the saturation magnetization (Ms) decreases slightly with increasing Ga concentration. Annealing of the ribbons significantly changes the magnetic properties of Cu50Mn25Al25-xGax alloys. The splitting in the zero field cooled (ZFC) and field cooled (FC) magnetization curves at low temperature has been observed for alloys. Another important class of material is Nanoferrites. The structural and magnetization behaviour of spinel MFe2O4 nanoferrites are quite different from that of bulk ferrites. X-ray diffraction study revealed spinel structure of MFe2O4 nanoparticles. The observed ferromagnetic behaviour of MFe2O4 depends on the nanostructural shape as well as ferrite inversion degree. The magnetic interactions in Ce doped CoFe2O4 are antiferromagnetic that was confirmed by zero field/field cooling measurements at 100 Oe. Log R (Ω) response measurement of MgFe2O4 thin film was taken for 10–90% relative humidity (% RH) change at 300 K.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nanostructured CoFe2O4-Magnetic"

1

Provenzano, V., I. Levin, R. D. Shull, L. H. Bennett, J. Li, and A. L. Royburd. "Magnetic properties of Self-Assembled CoFe2O4-PbTiO3 Multiferroic Nanostructures." In INTERMAG 2006 - IEEE International Magnetics Conference. IEEE, 2006. http://dx.doi.org/10.1109/intmag.2006.376467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ren, Shenqiang, and Manfred Wuttig. "Self-Assembled Highly Tunable Magnetoelectric." In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-417.

Full text
Abstract:
A magnetoelectric (ME) composite with controlled nanostructures is synthesized using co-assembly of two inorganic precursors with a block copolymer. This solution processed material consists of hexagonally arranged ferromagnetic cobalt ferrite [CoFe2O4, CFO] nano-cylinders within a matrix of ferroelectric lead zirconium titanate [Pb1.1(Zr0.53Ti0.47)O3, PZT] when thin films were prepared by spin coating. The initial magnetic permeability of the self-assembled CFO/PZT nano-composite changes by a factor of five through the application of 2.5 V.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography