Academic literature on the topic 'Nanostructured binary semiconductors'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanostructured binary semiconductors.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nanostructured binary semiconductors"

1

Sendi, Aymen, Philippe Menini, Myrtil L. Kahn, Katia Fajerwerg, and Pierre Fau. "Effect of Nanostructured Octahedral SnO2 Added with a Binary Mixture P-Type and N-Type Metal Oxide on CO Detection." Proceedings 2, no. 13 (December 3, 2018): 986. http://dx.doi.org/10.3390/proceedings2130986.

Full text
Abstract:
In this work, we study the effect of nanostructured octahedral SnO2 added with a binary mixture p-type and n-type metal oxide semiconductors of CuO and ZnO, on CO detection at two concentrations (100 ppm and 1000 ppm). These metal oxides (SnO2 and binary mixture of CuO75%/ZnO25%) are prepared in the form of a serigraphy paste and deposited on an optimized silicon micro-hotplate. The sensors can be operated at temperature of 550 °C with a low energy consumption of only 55 mW. The binary and ternary mixtures of metal oxide are operated at different working temperature to optimize their sensitivity to CO.
APA, Harvard, Vancouver, ISO, and other styles
2

Ma, Liang, Shuang Chen, Yun Shao, You-Long Chen, Mo-Xi Liu, Hai-Xia Li, Yi-Ling Mao, and Si-Jing Ding. "Recent Progress in Constructing Plasmonic Metal/Semiconductor Hetero-Nanostructures for Improved Photocatalysis." Catalysts 8, no. 12 (December 7, 2018): 634. http://dx.doi.org/10.3390/catal8120634.

Full text
Abstract:
Hetero-nanomaterials constructed by plasmonic metals and functional semiconductors show enormous potential in photocatalytic applications, such as in hydrogen production, CO2 reduction, and treatment of pollutants. Their photocatalytic performances can be better regulated through adjusting structure, composition, and components’ arrangement. Therefore, the reasonable design and synthesis of metal/semiconductor hetero-nanostructures is of vital significance. In this mini-review, we laconically summarize the recent progress in efficiently establishing metal/semiconductor nanomaterials for improved photocatalysis. The defined photocatalysts mainly include traditional binary hybrids, ternary multi-metals/semiconductor, and metal/multi-semiconductors heterojunctions. The underlying physical mechanism for the enhanced photocatalysis of the established photocatalysts is highlighted. In the end, a brief summary and possible future perspectives for further development in this field are demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
3

Durbach, Sebastien, Lars Schniedermeyer, Anna Marx, and Norbert Hampp. "Laser-Induced Au Catalyst Generation for Tailored ZnO Nanostructure Growth." Nanomaterials 13, no. 7 (April 2, 2023): 1258. http://dx.doi.org/10.3390/nano13071258.

Full text
Abstract:
ZnO nanostructures, semiconductors with attractive optical properties, are typically grown by thermal chemical vapor deposition for optimal growth control. Their growth is well investigated, but commonly results in the entire substrate being covered with identical ZnO nanostructures. At best a limited, binary growth control is achieved with masks or lithographic processes. We demonstrate nanosecond laser-induced Au catalyst generation on Si(100) wafers, resulting in controlled ZnO nanostructure growth. Scanning electron and atomic force microscopy measurements reveal the laser pulse’s influence on the substrate’s and catalyst’s properties, e.g., nanoparticle size and distribution. The laser-induced formation of a thin SiO2-layer on the catalysts plays a key role in the subsequent ZnO growth mechanism. By tuning the irradiation parameters, the width, density, and morphology of ZnO nanostructures, i.e., nanorods, nanowires, and nanobelts, were controlled. Our method allows for maskless ZnO nanostructure designs locally controlled on Si-wafers.
APA, Harvard, Vancouver, ISO, and other styles
4

Bouroushian, M., and T. Kosanovic. "Photoelectrochemical Measurements on Cathodically Electrodeposited Films of Cadmium and Zinc Chalcogenide Compounds." Materials Science Forum 480-481 (March 2005): 1–12. http://dx.doi.org/10.4028/www.scientific.net/msf.480-481.1.

Full text
Abstract:
A variety of electrochemical and electrical techniques is employed in order to determine useful parameters of the optical behaviour of thin semiconducting films. In particular, this work is intended to the characterization of cathodically electrodeposited binary and ternary cadmium and zinc selenides and tellurides by photoelectrochemical (PEC) tests. Typical solid-state techniques, such as reflection, laser assisted photoreflection, resistivity and Hall effect measurements are used as well. A plain relation between crystal structure/film morphology and PEC behavior is established so long as the electrochemical preparation method is capable to explicitly control the deposit structure. In certain cases, a particular charge transfer mechanism in the semiconductor, associated with the existence of a nanostructure, is shown to result in higher photoconversion efficiencies as compared to larger-grained films.
APA, Harvard, Vancouver, ISO, and other styles
5

Sheikh, Tahir Ali, Abdullah M. Asiri, Amna Siddique, Hadi M. Marwani, Md Rezaur Rahman, Muhammad Nadeem Akhtar, and Mohammed M. Rahman. "A Comprehensive Study of Electrocatalytic Degradation of M-Tolylhydrazine with Binary Metal Oxide (Er2O3@NiO) Nanocomposite Modified Glassy Carbon Electrode." Catalysts 13, no. 5 (May 19, 2023): 905. http://dx.doi.org/10.3390/catal13050905.

Full text
Abstract:
Generally, our ecosystem is continuously contaminated as a result of anthropogenic activities that form the basis of our comfort in our routine life. Thus, most scientists are engaged in the development of new technologies that can be used in environmental remediation. Herein, highly calcined binary metal oxide (Er2O3@NiO) semiconductor nanocomposite (NC) was synthesized using a classical wet chemical process with the intention to both detect and degrade the toxic chemicals in an aqueous medium using a novel electrochemical current–potential (I–V) approach for the first time. Optical, morphological, and structural properties of the newly synthesized semiconductor NC were also studied in detail using FT-IR, UV/Vis., FESEM-EDS, XPS, BET, EIS, and XRD techniques. Then, a modified glassy carbon electrode (GCE) based on the newly synthesized semiconductor nanocomposite (Er2O3@NiO-NC/Nafion/GCE) as a selective electrochemical sensor was fabricated with the help of 5% ethanolic-Nafion as the conducting polymer binder in order to both detect and electro-hydrolyze toxic chemicals in an aqueous medium. Comparative study showed that this newly developed Er2O3@NiO-NC/Nafion/GCE was found to be very selective against m-tolyl hydrazine (m-Tolyl HDZN) and to have good affinity in the presence of other interfering toxic chemicals. Analytical parameters were also studied in this approach to optimize the newly designed Er2O3@NiO-NC/Nafion/GCE as an efficient and selective m-Tolyl HDZN sensor. Its limit of detection (LOD) at an SNR of 3 was calculated as 0.066 pM over the linear dynamic range (LDR) of our target analyte concentration (0.1 pM–0.1 mM). The limit of quantification (LOQ) and sensitivity were also calculated as 0.22 pM and 14.50 µAµM−1cm−2, respectively. m-Tolyl HDZN is among the toxic chemicals in our ecosystem that have lethal effects in living beings. Therefore, this newly designed electrochemical sensor based on semiconductor nanostructure material offers, for the first time, a cost-effective technique, in addition to long-term stability, that can be used as an alternative for efficiently probing other toxic chemicals in real samples.
APA, Harvard, Vancouver, ISO, and other styles
6

Ikim, Mariya I., Genrikh N. Gerasimov, Vladimir F. Gromov, Olusegun J. Ilegbusi, and Leonid I. Trakhtenberg. "Synthesis, Structural and Sensor Properties of Nanosized Mixed Oxides Based on In2O3 Particles." International Journal of Molecular Sciences 24, no. 2 (January 13, 2023): 1570. http://dx.doi.org/10.3390/ijms24021570.

Full text
Abstract:
The paper considers the relationship between the structure and properties of nanostructured conductometric sensors based on binary mixtures of semiconductor oxides designed to detect reducing gases in the environment. The sensor effect in such systems is determined by the chemisorption of molecules on the surface of catalytically active particles and the transfer of chemisorbed products to electron-rich nanoparticles, where these products react with the analyzed gas. In this regard, the role is evaluated of the method of synthesizing the composites, the catalytic activity of metal oxides (CeO2, SnO2, ZnO), and the type of conductivity of metal oxides (Co3O4, ZrO2) in the sensor process. The effect of oxygen vacancies present in the composites on the performance characteristics is also considered. Particular attention is paid to the influence of the synthesis procedure for preparing sensitive layers based on CeO2–In2O3 on the structure of the resulting composites, as well as their conductive and sensor properties.
APA, Harvard, Vancouver, ISO, and other styles
7

Rovisco, Ana, Rita Branquinho, Jorge Martins, Elvira Fortunato, Rodrigo Martins, and Pedro Barquinha. "Growth Mechanism of Seed-Layer Free ZnSnO3 Nanowires: Effect of Physical Parameters." Nanomaterials 9, no. 7 (July 11, 2019): 1002. http://dx.doi.org/10.3390/nano9071002.

Full text
Abstract:
ZnSnO3 semiconductor nanostructures have several applications as photocatalysis, gas sensors, and energy harvesting. However, due to its multicomponent nature, the synthesis is far more complex than its binary counter parts. The complexity increases even more when aiming for low-cost and low-temperature processes as in hydrothermal methods. Knowing in detail the influence of all the parameters involved in these processes is imperative, in order to properly control the synthesis to achieve the desired final product. Thus, this paper presents a study of the influence of the physical parameters involved in the hydrothermal synthesis of ZnSnO3 nanowires, namely volume, reaction time, and process temperature. Based on this study a growth mechanism for the complex Zn:Sn:O system is proposed. Two zinc precursors, zinc chloride and zinc acetate, were studied, showing that although the growth mechanism is inherent to the material itself, the chemical reactions for different conditions need to be considered.
APA, Harvard, Vancouver, ISO, and other styles
8

Lebedev A. I. "First-principles calculations of vibrational spectra of CdSe/CdS superlattices." Physics of the Solid State 64, no. 14 (2022): 2312. http://dx.doi.org/10.21883/pss.2022.14.54328.156.

Full text
Abstract:
The vibrational spectra of CdSe/CdS superlattices (SLs) with different layer thicknesses are calculated from first principles within the density functional theory. It is shown that, along with folded acoustic and confined optical modes, a number of confined acoustic modes appear in SLs. In structures with a minimum thickness of one of the layers, microscopic interface modes similar to local and gap modes in crystals appear. An analysis of projections of the eigenvectors of vibrational modes in SLs onto the orthonormal basis of normal modes in binary compounds enables to establish the details of formation of these vibrational modes and, in particular, to determine the degree of intermixing of acoustic and optical modes. A comparison of the frequencies of vibrational modes in CdSe/CdS SLs and CdSe/CdS nanoplatelets enables to separate the influence of size quantization and surface relaxation on the vibrational frequencies in the nanoplatelets. Keywords: phonon spectra, semiconductor superlattices, cadmium selenide, cadmium sulfide, nanostructures.
APA, Harvard, Vancouver, ISO, and other styles
9

Adelifard, M., R. Salamatizadeh, and S. A. Ketabi. "Fabrication and characterization of nanostructural WS2/WO3 binary compound semiconductors prepared by the sulfurization of sprayed thin films." Journal of Materials Science: Materials in Electronics 27, no. 5 (February 1, 2016): 5243–50. http://dx.doi.org/10.1007/s10854-016-4420-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nadikatla, Santhosh Kumar, Vinod Babu Chintada, Thirumala Rao Gurugubelli, and Ravindranadh Koutavarapu. "Review of Recent Developments in the Fabrication of ZnO/CdS Heterostructure Photocatalysts for Degradation of Organic Pollutants and Hydrogen Production." Molecules 28, no. 11 (May 23, 2023): 4277. http://dx.doi.org/10.3390/molecules28114277.

Full text
Abstract:
Researchers have recently paid a lot of attention to semiconductor photocatalysts, especially ZnO-based heterostructures. Due to its availability, robustness, and biocompatibility, ZnO is a widely researched material in the fields of photocatalysis and energy storage. It is also environmentally beneficial. However, the wide bandgap energy and quick recombination of the photoinduced electron–hole pairs of ZnO limit its practical utility. To address these issues, many techniques have been used, such as the doping of metal ions and the creation of binary or ternary composites. Recent studies showed that ZnO/CdS heterostructures outperformed bare ZnO and CdS nanostructures in terms of photocatalytic performance when exposed to visible light. This review largely concentrated on the ZnO/CdS heterostructure production process and its possible applications including the degradation of organic pollutants and hydrogen evaluation. The importance of synthesis techniques such as bandgap engineering and controlled morphology was highlighted. In addition, the prospective uses of ZnO/CdS heterostructures in the realm of photocatalysis and the conceivable photodegradation mechanism were examined. Lastly, ZnO/CdS heterostructures’ challenges and prospects for the future have been discussed.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Nanostructured binary semiconductors"

1

Widmann, Frédéric. "Epitaxie par jets moléculaires de GaN, AlN, InN et leurs alliages : physique de la croissance et réalisation de nanostructures." Université Joseph Fourier (Grenoble), 1998. http://www.theses.fr/1998GRE10234.

Full text
Abstract:
Ce travail a porte sur la croissance epitaxiale des nitrures d'elements iii gan, aln, et inn, en utilisant l'epitaxie par jets moleculaires assistee par plasma d'azote. Nous avons optimise les premiers stades de la croissance de gan ou aln sur substrat al#2o#3 (0001). Le processus utilise consiste a nitrurer la surface du substrat a l'aide du plasma d'azote, afin de la transformer en aln, puis a faire croitre une couche tampon d'aln ou de gan a basse temperature, avant de reprendre la croissance de gan ou aln a haute temperature (680 a 750c). Nous avons en particulier etudie les proprietes d'une couche de gan en fonction de la temperature a laquelle est realisee l'etape de nitruration. Lorsque les conditions de demarrage de la croissance sont optimisees, nous avons pu observer des oscillations de rheed pendant la croissance de la couche de gan. Nous avons etudie l'effet du rapport v/iii sur la morphologie de surface et les proprietes optiques et structurales de cette couche. Nous avons propose l'utilisation de l'indium en tant que surfactant pour ameliorer ces proprietes. Nous avons ensuite aborde la realisation de superreseaux gan/aln dont nous avons optimise les interfaces. Les mecanismes de relaxation des contraintes de aln sur gan et gan sur aln ont ete etudies. Nous avons egalement elabore les alliages algan et ingan, comme barrieres quantiques dans les heterostructures. Nous avons montre que la relaxation elastique des contraintes de gan en epitaxie sur aln donne lieu a la formation d'ilots de tailles nanometriques, qui se comportent comme des boites quantiques. Leur densite et leur taille dependent de la temperature de croissance, et des conditions de murissement apres croissance. Les proprietes optiques de ces ilots sont gouvernees a la fois par les effets de confinement quantique et par le fort champ piezo-electrique induit par la contrainte dans les ilots.
APA, Harvard, Vancouver, ISO, and other styles
2

Gourgon, Cécile. "Fabrication et caractérisation optique de fils et boites quantiques CdTe/CdZnTe." Université Joseph Fourier (Grenoble), 1995. http://www.theses.fr/1995GRE10145.

Full text
Abstract:
Un certain nombre de techniques ont ete developpees ces dernieres annees pour fabriquer des nanostructures quantiques, principalement dans le domaine des semiconducteurs iii-v. Nous avons realise des fils et des boites quantiques de semiconducteurs ii-vi, a partir de puits quantiques cdte/cdznte, soit par nanolithographie et gravure de structures 2d, soit directement par epitaxie par jets moleculaires avec une croissance en deux etapes. Les proprietes optiques de ces nanostructures ont ete etudiees en photoluminescence a basse temperature (2k). Dans la premiere approche, les nanostructures ont ete obtenues par lithographie electronique et gravure seche. Nous avons developpe une etape de gravure supplementaire consistant en une oxydation anodique de la couche de surface. Cette etape permet de reduire la taille des fils et des boites et d'eliminer la couche de defauts introduite en surface par la premiere gravure. Les etudes optiques ont prouve l'existence de cette couche de defauts d'une epaisseur de 30 nm environ. Elle contient des centres radiatifs qui localisent les excitons et permet d'augmenter le rendement radiatif des structures de largeur superieure a 150 nm. Pour des tailles inferieures, les recombinaisons sur les defauts non radiatifs de surface font chuter l'intensite de luminescence. Pour s'affranchir des problemes dus a la gravure (fluctuations de largeur, defauts non radiatifs), nous avons developpe une autre approche basee sur une croissance epitaxiale directe. Un puits quantique cdte/cdznte est depose sur la face clivee 110 d'un superreseau contraint. Celui-ci induit une modulation de contrainte dans le plan de la recroissance, et donc un confinement lateral dans le puits 110. La luminescence de ces fils quantiques est decalee vers le rouge par rapport a celle du puits 2d. Ce decalage depend de la densite d'excitation, ce qui est explique par le champ piezoelectrique lateral dans les fils
APA, Harvard, Vancouver, ISO, and other styles
3

Tamilselvan, M. "Metal Sulphide Based Semiconductors for Solar Photon Energy Harvesting." Thesis, 2018. https://etd.iisc.ac.in/handle/2005/5372.

Full text
Abstract:
Sun light is a relatively infinite source of energy available on the earth compared to all other renewable and non-renewable energy sources put together. Harvesting solar photons in an effective and efficient manner can possibly meet the worldwide energy demand. The various photon harvesting processes and ideal characteristic properties for effective light absorbers have been discussed in detail in chapter 1. Metal sulphides with ns2np0 electronic states, especially antimony-based semiconductors are discussed in the context of a few applications viz. light absorber in heterojunction solar cell (converting solar photon to electricity), low band gap visible light photocatalysis (photodegradation of water pollutants), visible light absorber semiconductor as hole transport material in n-i-p perovskite solar cell. The scope of nanostructured binary semiconductors (CdS) is also discussed in the context of light to electricity conversion in liquid junction semiconductor sensitized solar cell by using mixed crystal phase nanocrystal. This chapter also discusses the photoelectron spectroscopy techniques which have been widely used in this thesis to analyse the semiconductor energy levels and specific parameters of solar cell device performances.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Nanostructured binary semiconductors"

1

Li, Jing, and Ruibo Zhang. "A New Class of Nanostructured Inorganic-Organic Hybrid Semiconductors Based on II-VI Binary Compounds." In Progress in Inorganic Chemistry, 445–504. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118148235.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Robinson Azariah John Chelliah, Cyril, and Rajesh Swaminathan. "Binary Metal Oxides Thin Films Prepared from Pulsed Laser Deposition." In Practical Applications of Laser Ablation. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96161.

Full text
Abstract:
The semiconductor industry flourished from a simple Si-based metal oxide semiconductor field effect transistor to an era of MOSFET-based smart materials. In recent decades, researchers have been replacing all the materials required for the MOSFET device. They replaced the substrate with durable materials, lightweight materials, translucent materials and so on. They have came up with the possibility of replacing dielectric silicon dioxide material with high-grade dielectric materials. Even then the channel shift in the MOSFET was the new trend in MOSFET science. From the bulk to the atomic level, transistors have been curiously researched across the globe for the use of electronic devices. This research was also inspired by the different semiconductor materials relevant to the replacement of the dielectric channel/gate. Study focuses on diverse materials such as zinc oxides (ZnO), electrochromic oxides such as molybdenum oxides (including MoO3 and MoO2) and other binary oxides using ZnO and MoO3. The primary objective of this research is to study pulsed laser deposited thin films such as ZnO, MoO3, binary oxides such as binary ZnO /MoO3, ZnO /TiO2 and ZnO/V2O5 and to analyse their IV properties for FET applications. To achieve the goal, the following working elements have been set: investigation of pulsed laser deposited thin film of metal oxides and thin film of binary metal oxide nanostructures with effects of laser repetition and deposition temperatures.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography