Academic literature on the topic 'Nanosecond high-Voltage generator'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanosecond high-Voltage generator.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nanosecond high-Voltage generator"

1

Pang Lei, 庞磊, 陈纲亮 Chen Gangliang, 何堃 He Kun, 任保忠 Ren Baozhong, and 张乔根 Zhang Qiaogen. "Compact repetitive high voltage nanosecond pulse generator." High Power Laser and Particle Beams 24, no. 4 (2012): 898–902. http://dx.doi.org/10.3788/hplpb20122404.0898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gorbachev, K. V., Yu I. Isaenkov, A. V. Klyuchnik, V. I. Mizhiritskii, V. M. Mikhaylov, E. V. Nesterov, and V. A. Stroganov. "A Repetitive High-Voltage Nanosecond Pulse Generator." Instruments and Experimental Techniques 62, no. 3 (June 10, 2019): 340–42. http://dx.doi.org/10.1134/s0020441219020180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yao, Xue Ling, Tian Yu Lin, and Jing Liang Chen. "Research for High-Voltage Nanosecond Rectangular Pulse Generator." Advanced Materials Research 718-720 (July 2013): 1691–95. http://dx.doi.org/10.4028/www.scientific.net/amr.718-720.1691.

Full text
Abstract:
In order to calibrate the response characteristic of voltage dividers, the article presents a potable high-voltage nanosecond rectangular pulse generator based on the transmission-line theory. The generator consists of DC high-voltage source, pulse forming line (PFL), special high-voltage switch, pulse transmission line (PTL), resistive load and coaxial voltage divider. The compact charging and discharging circuit is developed coaxially and the interference proof performance is excellent. The voltage amplitude and the pulse width can vary from the output of the DC high-voltage source and the length of PFL respectively. In the article the theory of pulse forming process, the design and the key devices of the generator are investigated theoretically and experimentally. The experimental results demonstrate that the generator can meet the measurement demands and export well-defined rectangular pulses with the rise time less than 751.738ps and the voltage amplitude up to 2kV.
APA, Harvard, Vancouver, ISO, and other styles
4

Korotkov, S. V., Yu V. Aristov, and A. L. Zhmodikov. "A High Voltage Diode-Transistor Generator of Nanosecond High Voltage Pulses." Instruments and Experimental Techniques 63, no. 1 (January 2020): 53–57. http://dx.doi.org/10.1134/s0020441220010042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gamaleev, Vladislav, Naohiro Shimizu, and Masaru Hori. "Nanosecond-scale impulse generator for biomedical applications of atmospheric-pressure plasma technology." Review of Scientific Instruments 93, no. 5 (May 1, 2022): 053503. http://dx.doi.org/10.1063/5.0082175.

Full text
Abstract:
This study proposes an improved high-voltage fast impulse generator based on an inductive energy storage system with a 4 kV static induction thyristor. Nanosecond-scale impulses with pulse widths below 100 ns and a peak voltage of up to 15 kV can be generated by modifying the high-voltage transformer in the circuit and tuning the circuit capacitor. The resulting device is highly stable and can perform continuously if the discharge parameters are chosen within the recommended range. A plasma jet was operated using the generator at low temperature (below 37 °C). Together with its high stability and potential for continuous operation, the proposed generator offers promise for use in biomedical and agricultural applications. Furthermore, the nanosecond-scale high-voltage impulses produced by the generator enable it to achieve an electron density in the plasma one order of magnitude higher than the commercially available radio frequency plasma jet analog. We also show how to reduce the total cost of the generator.
APA, Harvard, Vancouver, ISO, and other styles
6

Gubanov, V. P., S. D. Korovin, I. V. Pegel, A. M. Roitman, V. V. Rostov, and A. S. Stepchenko. "Compact 1000 pps high-voltage nanosecond pulse generator." IEEE Transactions on Plasma Science 25, no. 2 (April 1997): 258–65. http://dx.doi.org/10.1109/27.602497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sun, Jinru, Qin Qing, Haoliang Liu, Xueling Yao, Zijiao Jiao, and Yiheng Wu. "A Compact High-Stability Nanosecond Pulse Test System Using Corona-Stabilized Switch and Coaxial Resistance Divider." Energies 16, no. 11 (June 5, 2023): 4534. http://dx.doi.org/10.3390/en16114534.

Full text
Abstract:
Due to the lack of a standard nanosecond high-voltage pulse generator for sensor calibration, a high-stability nanosecond high-voltage pulse test system was developed in terms of circuit analysis, structural design, and performance test. By establishing the equivalent circuit model of the nanosecond pulse generator, the circuit component parameters of the five-stage Marx loop and the one-stage compression steepening unit were simulated. The influence of the action performance of the steepening gap on the characteristics of output nanosecond pulse was analyzed. The nanosecond pulse test system was established through the structural design of the nanosecond pulse-generating circuit, the development of a high-performance corona-stabilized switch, and the measurement of a fast-response resistance divider made of metal oxide thin-film resistors. The nanosecond pulse test system has the capability to output a double exponential nanosecond pulse voltages in the amplitude range of 10–60 kV with a rise time of 2.3 ± 0.5 ns and a half-peak time of 23 ± 5 ns. In addition, the output pulse voltage has a high consistency and stability in the full amplitude range. The maximum relative standard deviation of the peak value is 1.517%, and the relative standard uncertainty is less than 5‰.
APA, Harvard, Vancouver, ISO, and other styles
8

Voronkov, V. B., I. V. Grekhov, A. K. Kozlov, S. V. Korotkov, and A. L. Stepanyants. "A high-frequency semiconductor generator of high-voltage nanosecond pulses." Instruments and Experimental Techniques 50, no. 3 (May 2007): 353–55. http://dx.doi.org/10.1134/s0020441207030098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Voronkov, V. B., I. V. Grekhov, A. K. Kozlov, S. V. Korotkov, A. L. Stepanyants, and D. V. Khristyuk. "A high-frequency semiconductor generator of high-voltage nanosecond pulses." Instruments and Experimental Techniques 50, no. 3 (May 2007): 356–58. http://dx.doi.org/10.1134/s0020441207030104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Voronkov, V. B., I. V. Grekhov, A. K. Kozlov, S. V. Korotkov, A. L. Stepanyants, and D. V. Khristyuk. "“A high-frequency semiconductor generator of high-voltage nanosecond pulses”." Instruments and Experimental Techniques 50, no. 4 (July 2007): 578. http://dx.doi.org/10.1134/s002044120704029x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Nanosecond high-Voltage generator"

1

Moreau, Nicolas. "Decharge nanoseconde dans l'air et en melange air / propane. Application au declenchement de combustion." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00633260.

Full text
Abstract:
Cette étude a pour objet les décharges haute-tension nanoseconde dans l'air à des pressions supérieures ou égale à la pression atmosphérique, en géométrie pointe-plan, et leur application au déclenchement de combustion en mélange air/propane. Ces décharges fortement hors-équilibres sont susceptibles de former une concentration significative d'espèces réactives et nous analysons leur capacité à allumer un mélange combustible. Le générateur conçu est capable de fournir une impulsion de tension carrée de 40 à 80 kV avec un front de montée raide de 3 ns. A la pression atmosphérique, nous observons un type de décharge peu commun dans les précédentes études expérimentales de décharges couronnes : la décharge diffuse. On retrouve une décharge de type filamentaire en augmentant la distance pointe-plan ou en augmentant la pression, toutes choses égales par ailleurs. Nous mettons en avant par imagerie CCD rapide deux phases de développement de ces décharges, également analysées à l'aide de simulations COMSOL. Pour une pression de 1 bar, l'application de ces décharges à un mélange combustible air/propane provoque un allumage à la pointe, avec une énergie minimale de décharge de 8±2 mJ. L'inflammation est obtenue pour une impulsion de tension unique, et la richesse minimum pour l'obtenir est 0,7. La question de la contribution de l'apport radicalaire en comparaison de l'apport thermique à l'apparition du noyau de flamme se pose. L'analyse paramétrique basée sur l'effet de l'atome d'oxygène sur les délais d'inflammation montre qu'il est nécessaire de convertir entre 0,5 et 0,8% d'oxygène moléculaire pour pouvoir allumer à délai équivalent et avec 100 K de moins par rapport à une auto-inflammation. Par ailleurs, la température du gaz à 1 mm de la pointe a été mesurée par spectroscopie Raman spontanée, en collaboration avec le laboratoire CORIA (Rouen) : cette température reste proche de l'ambiante pour une énergie de 30 mJ et une concentration de propane de 1,7 %. Ainsi les radicaux jouent probablement un rôle non négligeable dans le déclenchement de combustion par décharge nanoseconde mono-impulsionnelle.
APA, Harvard, Vancouver, ISO, and other styles
2

Degnon, Mawuena. "Étude des commutateurs semi-conducteurs à ouverture destinés à des applications de puissance pulsée avec des tensions de sortie allant jusqu'à 500 kV." Electronic Thesis or Diss., Pau, 2024. https://theses.hal.science/tel-04685830.

Full text
Abstract:
Dans les systèmes de hautes puissances pulsées, le stockage inductif présente un avantage indéniable vis-à-vis du stockage capacitif du fait de sa plus forte densité d’énergie. L’exploitation de cet avantage nécessite toutefois l'utilisation d'un interrupteur à ouverture pour générer l'impulsion de tension. En outre, compte tenu de la demande croissante de générateurs impulsionnels fiables, en particulier pour les applications industrielles, il devient indispensable de recourir aux composants semi-conducteurs. La diode SOS (Semiconductor Opening Switch), développée dans les années 1990 à l'Institute of Electrophysics en Russie, est un candidat idéal pour la commutation état solide à ouverture, de par sa capacité à générer des impulsions de haute puissance de manière fiable et répétitive, tout en offrant une longue durée de vie et un fonctionnement exempt de maintenance. Cependant, le manque de fabricants de diodes SOS limite leur utilisation à grande échelle. Par conséquent, cette thèse se concentre sur l’étude de diodes disponibles dans le commerce (OTS : Off-The-Shelf) capables de commuter rapidement des courants élevés et de générer des tensions nanosecondes pouvant atteindre 500 kV. Plusieurs types de diodes, incluant les diodes de redressement, à avalanche, à temps de récupération rapide et de suppression de tension transitoire (TVS) ont été étudiés en tant qu’interrupteurs à ouverture, en comparaison avec les diodes SOS de référence. Pour mener à bien cette étude, des bancs d’essai à basse, moyenne et haute énergie (respectivement 25 mJ, 10 J et 40 J) ont été mis au point. Afin d’augmenter leur efficacité énergétique, ces bancs utilisent un circuit basé sur un élément magnétique unique : un transformateur impulsionnel saturable. Plusieurs noyaux magnétiques nanocristallins ont été examinés sur le banc de 10 J dans le but d’optimiser les performances du transformateur. Parmi les diodes étudiées sur les bancs de 25 mJ et 10 J, les diodes TVS et les diodes de redressement ont émergé du lot, démontrant des performances de temps de commutation de l'ordre de la nanoseconde et de tensions générées de plusieurs kilovolts. Enfin, un prototype de générateur de hautes puissances pulsées de 40 J (GO-SSOS) basé sur un interrupteur OTS composé de diodes de redressement a été développé. Le rendement énergétique du système varie de 35% à 70% selon la valeur de la charge, et la puissance crête obtenue est supérieure à 300 MW. Sur une charge de 1 kΩ, l'impulsion de tension générée atteint une amplitude de 500 kV avec un temps de montée de 36 ns et une largeur à mi-hauteur de 80 ns. La reproductibilité des impulsions à une fréquence de répétition de 60 Hz est démontrée, ainsi qu’une application de génération de décharges couronnes. Les travaux prouvent la fiabilité des diodes OTS en mode SOS, ne révélant aucune dégradation après quelques milliers d'impulsions générées. Ils ouvrent également la voie à l’utilisation de cette technologie pour des applications industrielles telles que la stérilisation par faisceau d’électrons
In pulsed power systems, inductive energy storage has an advantage over capacitive storage because of its higher energy density. Exploiting this advantage requires the use of an opening switch to generate the voltage pulse. Moreover, the growing need for reliable pulsed power generators, particularly for industrial applications, strongly supports the adoption of solid-state solutions. The Semiconductor Opening Switch (SOS) diode developed in the 1990s at the Institute of Electrophysics in Russia is an ideal candidate for solid-state opening switching because of its ability to reliably generate high-power pulses at high repetition rates while offering long lifetime and maintenance-free operation. However, the lack of SOS diode manufacturers prevents their widespread use. This thesis is therefore devoted to the study of off-the-shelf (OTS) diodes capable of rapidly switching high currents and generating nanosecond voltages of up to 500 kV. The research includes the investigation of various diode types including rectifier, avalanche, fast recovery, and transient voltage suppression (TVS) diodes as opening switches in comparison with state-of-the-art SOS diodes. Low, medium, and high-energy (25 mJ, 10 J, and 40 J respectively) test benches are developed for the experiments. Their circuits use a single magnetic element – a saturable pulse transformer – resulting in high energy efficiency. Several nanocrystalline cores are examined for optimum transformer performance at an energy of 10 J. Among the diodes investigated at 25 mJ and 10 J energy, the TVS and rectifying diodes stand out particularly promising with nanosecond switching time and generated voltages in the kilovolt range. Finally, a 40 J pulsed power generator prototype (GO-SSOS) based on an OTS opening switch consisting of rectifier diodes is developed. The GO-SSOS achieves a peak power of more than 300 MW with an energy efficiency ranging from 35% to 70% depending on the load value. Across a 1 kΩ load, the voltage pulse generated reaches 500 kV amplitude with a rise time of 36 ns and a pulse width of 80 ns. The system shows high reproducibility at a repetition rate of 60 Hz and is used to demonstrate a corona discharge application. The work proves the reliability of the OTS diodes in SOS mode, revealing no degradation after thousands of pulses. It also offers the prospect of using this technology in industrial applications such as electron-beam sterilization
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Nanosecond high-Voltage generator"

1

Tan, Yafang, Hongchun Yang, Jun Xu, and Gang Zeng. "PCSS-Based Nanosecond High Voltage Pulse Generator for Biological and Biomedical Application." In Electrical, Information Engineering and Mechatronics 2011, 313–19. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2467-2_36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Luo, Huangjin, Junping Zhao, and Ye Li. "High-Voltage Nanosecond Pulse Generator Based on Two-Stage Blumlein Transmission Line." In Lecture Notes in Electrical Engineering, 104–11. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0408-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Weng, Lingang, Qinfeng Shi, Weiming Lu, Keji Qi, Qing Ye, Anfei Luo, and Jinbiao Wang. "Pilot Study on Deep Denitrification from Municipal Solid Waste Incineration Flue Gas by Narrow Pulse Discharge Reaction Coupling with Wet Adsorption." In Advances in Transdisciplinary Engineering. IOS Press, 2023. http://dx.doi.org/10.3233/atde230375.

Full text
Abstract:
To solve the issues existed in the traditional deep denitrification treatment technology for Municipal Solid Waste Incineration flue gas, such as complex system, large investment and high operating cost, a new method of deep denitrification by narrow pulse discharge reaction coupling with wet adsorption was proposed. The deep denitration of municipal solid waste incineration flue gas via the non-thermal plasma generated by the self-developed nanosecond pulse power corona discharge was studied. The results show that the removal efficiency of NO and NOx was enhanced when the power supply frequency and residence time were increased. Under the case with single corona discharge reactor when the peak voltage is 82 kV, the frequency is 400 Hz and the residence time is 2s, the removal efficiency of NO and NOx is 81.0% or 44.8% respectively. NOx removal efficiency can be significantly improved by the process of narrow pulse discharge reaction coupling with wet absorption, the average concentration of NOx at the outlet is 43.9 mg/m3, and the average removal efficiency of NOx is 64.1%, which is 19.8% higher than the efficiency of single narrow pulse discharge reaction, the narrow pulse discharge reactor has no obvious effect on the conversion of the original low concentration N2O and CO in the municipal solid waste incineration flue gas, nor new N2O and CO were produced. The research results of this paper have positive guiding significance for the industrial application of narrow pulse discharge reactor in the deep denitration of municipal solid waste incineration flue gas.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nanosecond high-Voltage generator"

1

Sanders, J., A. Kuthi, and M. A. Gundersen. "Nanosecond Pulse Generator with Scalable Pulse Amplitude." In 2008 IEEE International Power Modulators and High Voltage Conference. IEEE, 2008. http://dx.doi.org/10.1109/ipmc.2008.4743578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kohler, Sophie, Saad El Amari, Vincent Couderc, Delia Arnaud-Cormos, and Philippe Leveque. "Flexible 50-Ohm high-voltage nanosecond pulse generator." In 2012 IEEE International Power Modulator and High Voltage Conference (IPMHVC). IEEE, 2012. http://dx.doi.org/10.1109/ipmhvc.2012.6518712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Fei, Tao Tang, Charlie Cathey, Andras Kuthi, and Martin Gundersen. "Solid-State High Voltage Nanosecond Pulse Generator." In 2005 IEEE Pulsed Power Conference. IEEE, 2005. http://dx.doi.org/10.1109/ppc.2005.300553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zaepffel, Clement, and Denis Packan. "Bipolar high voltage nanosecond generator for water decontamination." In 2013 IEEE 40th International Conference on Plasma Sciences (ICOPS). IEEE, 2013. http://dx.doi.org/10.1109/plasma.2013.6633419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pouraimis, P. G., A. P. Platis, J. M. Koutsoubis, and Ch X. Manasis. "A Compact High-Voltage, Nanosecond Pulse Generator for Triggering Applications." In 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE). IEEE, 2018. http://dx.doi.org/10.1109/ichve.2018.8642208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rehman, M. Z., J. Hallstrom, and J. Havunen. "Current Step Generation and Measurement with Nanosecond Rise Time using Coaxial Cable Generator." In 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE). IEEE, 2018. http://dx.doi.org/10.1109/ichve.2018.8642188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Gan-ping, Fei Li, Xiao Jin, and Fa-lun Song. "A cascade nanosecond pulse generator based on two-stage DSRDs*." In 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE). IEEE, 2020. http://dx.doi.org/10.1109/ichve49031.2020.9279772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sharma, Archana, Naresh Pasula, Ranjeet Kumar, Romesh Chandra, Tanmay S. Kolge, Jayanta Mondal, and Kailash C. Mittal. "Sub-nanosecond pulse generator and electron beam source for nToF application." In 2014 IEEE International Power Modulator and High Voltage Conference (IPMHVC). IEEE, 2014. http://dx.doi.org/10.1109/ipmhvc.2014.7287210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tan, Yafang, Jun Xu, and Gang Zeng. "Nanosecond high voltage pulse generator for biological and biomedical application." In 2012 International Workshop on Microwave and Millimeter Wave Circuits and System Technology (MMWCST). IEEE, 2012. http://dx.doi.org/10.1109/mmwcst.2012.6238165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Ming, Yan Shi, Jichao Fan, Yanming Cao, Yong Yang, Chunjia Gao, Dong Zhen, and Bo Qi. "Development of a high voltage steep-sided nanosecond pulse generator." In 2017 IEEE Conference on Electrical Insulation and Dielectric Phenomenon (CEIDP). IEEE, 2017. http://dx.doi.org/10.1109/ceidp.2017.8257607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography