Journal articles on the topic 'Nanoscintillators'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 48 journal articles for your research on the topic 'Nanoscintillators.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Jacobsohn, Luiz G., Kevin B. Sprinkle, Steven A. Roberts, Courtney J. Kucera, Tiffany L. James, Eduardo G. Yukihara, Timothy A. DeVol, and John Ballato. "Fluoride Nanoscintillators." Journal of Nanomaterials 2011 (2011): 1–6. http://dx.doi.org/10.1155/2011/523638.
Full textProcházková, Lenka, Tomáš Gbur, Václav Čuba, Vítězslav Jarý, and Martin Nikl. "Fabrication of highly efficient ZnO nanoscintillators." Optical Materials 47 (September 2015): 67–71. http://dx.doi.org/10.1016/j.optmat.2015.07.001.
Full textMeng, Zhu, Benoit Mahler, Julien Houel, Florian Kulzer, Gilles Ledoux, Andrey Vasil'ev, and Christophe Dujardin. "Perspectives for CdSe/CdS spherical quantum wells as rapid-response nano-scintillators." Nanoscale 13, no. 46 (2021): 19578–86. http://dx.doi.org/10.1039/d1nr04781g.
Full textBulin, Anne-Laure, Andrey Vasil'ev, Andrei Belsky, David Amans, Gilles Ledoux, and Christophe Dujardin. "Modelling energy deposition in nanoscintillators to predict the efficiency of the X-ray-induced photodynamic effect." Nanoscale 7, no. 13 (2015): 5744–51. http://dx.doi.org/10.1039/c4nr07444k.
Full textSecchi, Valeria, Angelo Monguzzi, and Irene Villa. "Design Principles of Hybrid Nanomaterials for Radiotherapy Enhanced by Photodynamic Therapy." International Journal of Molecular Sciences 23, no. 15 (August 5, 2022): 8736. http://dx.doi.org/10.3390/ijms23158736.
Full textJung, J. Y., G. A. Hirata, G. Gundiah, S. Derenzo, W. Wrasidlo, S. Kesari, M. T. Makale, and J. McKittrick. "Identification and development of nanoscintillators for biotechnology applications." Journal of Luminescence 154 (October 2014): 569–77. http://dx.doi.org/10.1016/j.jlumin.2014.05.040.
Full textGupta, Santosh K., and Yuanbing Mao. "Recent advances, challenges, and opportunities of inorganic nanoscintillators." Frontiers of Optoelectronics 13, no. 2 (May 28, 2020): 156–87. http://dx.doi.org/10.1007/s12200-020-1003-5.
Full textMekki, H., L. Guerbous, H. Bousbia-salah, A. Boukerika, and K. Lebbou. "Scintillation properties of (Lu1-x Y x )3Al5O12:Ce3+ nanoscintillator solid solution garnet materials." Journal of Instrumentation 18, no. 02 (February 1, 2023): P02007. http://dx.doi.org/10.1088/1748-0221/18/02/p02007.
Full textChen, Xiaofeng, Xiaokun Li, Xiaoling Chen, Zhijian Yang, Xiangyu Ou, Zhongzhu Hong, Xiaoze Wang, et al. "Flexible X-ray luminescence imaging enabled by cerium-sensitized nanoscintillators." Journal of Luminescence 242 (February 2022): 118589. http://dx.doi.org/10.1016/j.jlumin.2021.118589.
Full textKlassen, N. V., V. V. Kedrov, Y. A. Ossipyan, S. Z. Shmurak, I. M. Shmyt'ko, O. A. Krivko, E. A. Kudrenko, et al. "Nanoscintillators for Microscopic Diagnostics of Biological and Medical Objects and Medical Therapy." IEEE Transactions on NanoBioscience 8, no. 1 (March 2009): 20–32. http://dx.doi.org/10.1109/tnb.2009.2016551.
Full textScaffidi, Jonathan P., Molly K. Gregas, Benoit Lauly, Yan Zhang, and Tuan Vo-Dinh. "Activity of Psoralen-Functionalized Nanoscintillators against Cancer Cells upon X-ray Excitation." ACS Nano 5, no. 6 (May 12, 2011): 4679–87. http://dx.doi.org/10.1021/nn200511m.
Full textProcházková, Lenka, Václav Čuba, Alena Beitlerová, Vítězslav Jarý, Sergey Omelkov, and Martin Nikl. "Ultrafast Zn(Cd,Mg)O:Ga nanoscintillators with luminescence tunable by band gap modulation." Optics Express 26, no. 22 (October 26, 2018): 29482. http://dx.doi.org/10.1364/oe.26.029482.
Full textDinakaran, Deepak, Jayeeta Sengupta, Desmond Pink, Arun Raturi, Hua Chen, Nawaid Usmani, Piyush Kumar, John D. Lewis, Ravin Narain, and Ronald B. Moore. "PEG-PLGA nanospheres loaded with nanoscintillators and photosensitizers for radiation-activated photodynamic therapy." Acta Biomaterialia 117 (November 2020): 335–48. http://dx.doi.org/10.1016/j.actbio.2020.09.029.
Full textSahin, O., Y. Mackeyev, G. Vijay, S. Roy, V. Gonzalez, Y. Zahra, O. Tezcan, et al. "X-Ray Triggered Nanoscintillators Photosensitize Pancreatic Cancer and Stimulate a Robust Systemic Immune Response." International Journal of Radiation Oncology*Biology*Physics 114, no. 3 (November 2022): e524. http://dx.doi.org/10.1016/j.ijrobp.2022.07.2118.
Full textKlassen, N. V., V. N. Kurlov, S. N. Rossolenko, O. A. Krivko, A. D. Orlov, and S. Z. Shmurak. "Scintillation fibers and nanoscintillators for improving the spatial, spectrometric, and time resolution of radiation detectors." Bulletin of the Russian Academy of Sciences: Physics 73, no. 10 (October 2009): 1369–73. http://dx.doi.org/10.3103/s1062873809100141.
Full textHong, Zhongzhu, Shuai He, Qinxia Wu, Xiaofeng Chen, Zhijian Yang, Xiaoze Wang, Shuheng Dai, Shumeng Bai, Qiushui Chen, and Huanghao Yang. "One-pot synthesis of lanthanide-activated NaBiF4 nanoscintillators for high-resolution X-ray luminescence imaging." Journal of Luminescence 254 (February 2023): 119492. http://dx.doi.org/10.1016/j.jlumin.2022.119492.
Full textChuang, Yao-Chen, Chia-Hui Chu, Shih-Hsun Cheng, Lun-De Liao, Tsung-Sheng Chu, Nai-Tzu Chen, Arthur Paldino, Yu Hsia, Chin-Tu Chen, and Leu-Wei Lo. "Annealing-modulated nanoscintillators for nonconventional X-ray activation of comprehensive photodynamic effects in deep cancer theranostics." Theranostics 10, no. 15 (2020): 6758–73. http://dx.doi.org/10.7150/thno.41752.
Full textAlves, Luiz Anastacio, Leonardo Braga Ferreira, Paulo Furtado Pacheco, Edith Alejandra Carreño Mendivelso, Pedro Celso Nogueira Teixeira, and Robson Xavier Faria. "Pore forming channels as a drug delivery system for photodynamic therapy in cancer associated with nanoscintillators." Oncotarget 9, no. 38 (May 18, 2018): 25342–54. http://dx.doi.org/10.18632/oncotarget.25150.
Full textAhmad, Farooq, Xiaoyan Wang, Zhao Jiang, Xujiang Yu, Xinyi Liu, Rihua Mao, Xiaoyuan Chen, and Wanwan Li. "Codoping Enhanced Radioluminescence of Nanoscintillators for X-ray-Activated Synergistic Cancer Therapy and Prognosis Using Metabolomics." ACS Nano 13, no. 9 (August 20, 2019): 10419–33. http://dx.doi.org/10.1021/acsnano.9b04213.
Full textYu, Xujiang, Xinyi Liu, Weijie Wu, Kai Yang, Rihua Mao, Farooq Ahmad, Xiaoyuan Chen, and Wanwan Li. "CT/MRI-Guided Synergistic Radiotherapy and X-ray Inducible Photodynamic Therapy Using Tb-Doped Gd-W-Nanoscintillators." Angewandte Chemie 131, no. 7 (January 18, 2019): 2039–44. http://dx.doi.org/10.1002/ange.201812272.
Full textYu, Xujiang, Xinyi Liu, Weijie Wu, Kai Yang, Rihua Mao, Farooq Ahmad, Xiaoyuan Chen, and Wanwan Li. "CT/MRI-Guided Synergistic Radiotherapy and X-ray Inducible Photodynamic Therapy Using Tb-Doped Gd-W-Nanoscintillators." Angewandte Chemie International Edition 58, no. 7 (January 21, 2019): 2017–22. http://dx.doi.org/10.1002/anie.201812272.
Full textBulin, Anne‐Laure, Mans Broekgaarden, Frédéric Chaput, Victor Baisamy, Jan Garrevoet, Benoît Busser, Dennis Brueckner, et al. "Radiation Dose‐Enhancement Is a Potent Radiotherapeutic Effect of Rare‐Earth Composite Nanoscintillators in Preclinical Models of Glioblastoma." Advanced Science 7, no. 20 (September 7, 2020): 2001675. http://dx.doi.org/10.1002/advs.202001675.
Full textKirakci, Kaplan, Pavel Kubát, Karla Fejfarová, Jiří Martinčík, Martin Nikl, and Kamil Lang. "X-ray Inducible Luminescence and Singlet Oxygen Sensitization by an Octahedral Molybdenum Cluster Compound: A New Class of Nanoscintillators." Inorganic Chemistry 55, no. 2 (December 24, 2015): 803–9. http://dx.doi.org/10.1021/acs.inorgchem.5b02282.
Full textCooper, Daniel R., Konstantin Kudinov, Pooja Tyagi, Colin K. Hill, Stephen E. Bradforth, and Jay L. Nadeau. "Photoluminescence of cerium fluoride and cerium-doped lanthanum fluoride nanoparticles and investigation of energy transfer to photosensitizer molecules." Phys. Chem. Chem. Phys. 16, no. 24 (2014): 12441–53. http://dx.doi.org/10.1039/c4cp01044b.
Full textDaouk, Joël, Mathilde Iltis, Batoul Dhaini, Denise Béchet, Philippe Arnoux, Paul Rocchi, Alain Delconte, et al. "Terbium-Based AGuIX-Design Nanoparticle to Mediate X-ray-Induced Photodynamic Therapy." Pharmaceuticals 14, no. 5 (April 22, 2021): 396. http://dx.doi.org/10.3390/ph14050396.
Full textSchneller, Perrine, Charlotte Collet, Quentin Been, Paul Rocchi, François Lux, Olivier Tillement, Muriel Barberi-Heyob, Hervé Schohn, and Joël Daouk. "Added Value of Scintillating Element in Cerenkov-Induced Photodynamic Therapy." Pharmaceuticals 16, no. 2 (January 18, 2023): 143. http://dx.doi.org/10.3390/ph16020143.
Full textBulin, Anne-Laure, Charles Truillet, Rima Chouikrat, François Lux, Céline Frochot, David Amans, Gilles Ledoux, et al. "X-ray-Induced Singlet Oxygen Activation with Nanoscintillator-Coupled Porphyrins." Journal of Physical Chemistry C 117, no. 41 (October 7, 2013): 21583–89. http://dx.doi.org/10.1021/jp4077189.
Full textChen, Hongmin, Geoffrey D. Wang, Yen-Jun Chuang, Zipeng Zhen, Xiaoyuan Chen, Paul Biddinger, Zhonglin Hao, et al. "Nanoscintillator-Mediated X-ray Inducible Photodynamic Therapy for In Vivo Cancer Treatment." Nano Letters 15, no. 4 (March 12, 2015): 2249–56. http://dx.doi.org/10.1021/nl504044p.
Full textMorgan, Nicole Y., Gabriela Kramer-Marek, Paul D. Smith, Kevin Camphausen, and Jacek Capala. "Nanoscintillator Conjugates as Photodynamic Therapy-Based Radiosensitizers: Calculation of Required Physical Parameters." Radiation Research 171, no. 2 (February 2009): 236–44. http://dx.doi.org/10.1667/rr1470.1.
Full textLiu, Li Sha, Hao Hong Chen, Bi Qiu Liu, Bin Tang, Zhi Jia Sun, and Jing Tai Zhao. "Microscintillator of Ce Doped β-NaLuF4 in Uniform Hexagonal Prism Morphology by a Facile Hydrothermal Method." Applied Mechanics and Materials 541-542 (March 2014): 220–24. http://dx.doi.org/10.4028/www.scientific.net/amm.541-542.220.
Full textRivera, J., J. Dooley, M. Belley, I. Stanton, B. Langloss, M. Therien, T. Yoshizumi, and S. Chang. "WE-AB-BRB-12: Nanoscintillator Fiber-Optic Detector System for Microbeam Radiation Therapy Dosimetry." Medical Physics 42, no. 6Part36 (June 2015): 3652. http://dx.doi.org/10.1118/1.4925853.
Full textKyung Cha, Bo, Seung Jun Lee, P. Muralidharan, Jon Yul Kim, Do Kyung Kim, and Gyuseong Cho. "Characterization and imaging performance of nanoscintillator screen for high resolution X-ray imaging detectors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 633 (May 2011): S294—S296. http://dx.doi.org/10.1016/j.nima.2010.06.193.
Full textSun, Wenjing, Zijian Zhou, Guillem Pratx, Xiaoyuan Chen, and Hongmin Chen. "Nanoscintillator-Mediated X-Ray Induced Photodynamic Therapy for Deep-Seated Tumors: From Concept to Biomedical Applications." Theranostics 10, no. 3 (2020): 1296–318. http://dx.doi.org/10.7150/thno.41578.
Full textSengar, Prakhar, G. A. Hirata, Mario H. Farias, and Felipe Castillón. "Morphological optimization and (3-aminopropyl) trimethoxy silane surface modification of Y3Al5O12:Pr nanoscintillator for biomedical applications." Materials Research Bulletin 77 (May 2016): 236–42. http://dx.doi.org/10.1016/j.materresbull.2016.01.045.
Full textDaouk, Joël, Batoul Dhaini, Jérôme Petit, Céline Frochot, Muriel Barberi-Heyob, and Hervé Schohn. "Can Cerenkov Light Really Induce an Effective Photodynamic Therapy?" Radiation 1, no. 1 (November 24, 2020): 5–17. http://dx.doi.org/10.3390/radiation1010002.
Full textSengar, Prakhar, Karelid Garcia-Tapia, Kanchan Chauhan, Akhil Jain, Karla Juarez-Moreno, Hugo A. Borbón-Nuñez, Hugo Tiznado, Oscar E. Contreras, and Gustavo A. Hirata. "Dual-photosensitizer coupled nanoscintillator capable of producing type I and type II ROS for next generation photodynamic therapy." Journal of Colloid and Interface Science 536 (February 2019): 586–97. http://dx.doi.org/10.1016/j.jcis.2018.10.090.
Full textBünzli, Jean-Claude Georges. "Lanthanide-doped nanoscintillators." Light: Science & Applications 11, no. 1 (September 29, 2022). http://dx.doi.org/10.1038/s41377-022-00987-2.
Full textCrapanzano, Roberta, Irene Villa, Silvia Mostoni, Massimiliano D'Arienzo, Barbara Di Credico, Mauro Fasoli, Roberto Lorenzi, Roberto Scotti, and Anna Vedda. "Photo- and Radio-luminescence of Porphyrin Functionalized ZnO/SiO2 Nanoparticles." Physical Chemistry Chemical Physics, 2022. http://dx.doi.org/10.1039/d2cp00884j.
Full textWang, Xiao, Wenjing Sun, Huifang Shi, Huili Ma, Guowei Niu, Yuxin Li, Jiahuan Zhi, et al. "Organic phosphorescent nanoscintillator for low-dose X-ray-induced photodynamic therapy." Nature Communications 13, no. 1 (August 30, 2022). http://dx.doi.org/10.1038/s41467-022-32054-0.
Full textLei, Lei, Yubin Wang, Andrey Kuzmin, Youjie Hua, Jingtao Zhao, Shiqing Xu, and Paras N. Prasad. "Next generation lanthanide doped nanoscintillators and photon converters." eLight 2, no. 1 (September 19, 2022). http://dx.doi.org/10.1186/s43593-022-00024-0.
Full textzhang, yue, Qun LI, Zekun JING, Yakun GUO, Binyuan XIA, Maobing SHUAI, and Bin ZHAN. "Luminescent Properties of Caf2: Eu2+ Nanoscintillators Synthesized Via Hydrothermal." SSRN Electronic Journal, 2023. http://dx.doi.org/10.2139/ssrn.4362585.
Full textChen, Dongxun, Yanjie Liang, Shihai Miao, Xihui Shan, Xiaojia Wang, Weili Wang, Yuhai Zhang, Jianqiang Bi, and Dongqi Tang. "Self-surfactant room-temperature synthesis of morphology-controlled K0.3Bi0.7F2.4 nanoscintillators." Journal of Materials Chemistry C, 2022. http://dx.doi.org/10.1039/d2tc03079a.
Full textDěcká, Kateřina, Fiammetta Pagano, Isabel Frank, Nicolaus Kratochwil, Eva Mihóková, Etiennette Auffray, and Václav Čuba. "Timing performance of lead halide perovskite nanoscintillators embedded in a polystyrene matrix." Journal of Materials Chemistry C, 2022. http://dx.doi.org/10.1039/d2tc02060b.
Full textLiu, Shikai, Wenting Li, Yangyang Zhang, Jialing Zhou, Yaqian Du, Shuming Dong, Boshi Tian, et al. "Tailoring Silica-Based Nanoscintillators for Peroxynitrite-Potentiated Nitrosative Stress in Postoperative Radiotherapy of Colon Cancer." Nano Letters, July 22, 2022. http://dx.doi.org/10.1021/acs.nanolett.2c02472.
Full textCarulli, Francesco, Francesca Cova, Luca Gironi, Francesco Meinardi, Anna Vedda, and Sergio Brovelli. "Stokes Shift Engineered Mn:CdZnS/ZnS Nanocrystals as Reabsorption‐Free Nanoscintillators in High Loading Polymer Composites." Advanced Optical Materials, May 11, 2022, 2200419. http://dx.doi.org/10.1002/adom.202200419.
Full textWang, Mingwei, Yangqi Meng, Yaqi Zhu, Jia Song, Jian Yang, Chunguang Liu, Hancheng Zhu, Duanting Yan, Changshan Xu, and Yuxue Liu. "Afterglow-Suppressed Lu2O3:Eu3+ Nanoscintillators for High-Resolution and Dynamic Digital Radiographic Imaging." Inorganic Chemistry, July 12, 2022. http://dx.doi.org/10.1021/acs.inorgchem.2c01417.
Full textMa, Jinjing, Wenjuan Zhu, Lei Lei, Degang Deng, Youjie Hua, Yang Michael Yang, Shiqing Xu, and Paras N. Prasad. "Highly Efficient NaGdF4:Ce/Tb Nanoscintillator with Reduced Afterglow and Light Scattering for High-Resolution X-ray Imaging." ACS Applied Materials & Interfaces, September 13, 2021. http://dx.doi.org/10.1021/acsami.1c14503.
Full textCheng, Yi, Lei Lei, Wenjuan Zhu, Yubin Wang, Hai Guo, and Shiqing Xu. "Enhancing light yield of Tb3+-doped fluoride nanoscintillator with restricted positive hysteresis for low-dose high-resolution X-ray imaging." Nano Research, October 22, 2022. http://dx.doi.org/10.1007/s12274-022-4998-7.
Full text