Academic literature on the topic 'Nanoscale iron'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanoscale iron.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nanoscale iron"

1

Chen, L. J., S. Y. Chen, and H. C. Chen. "Nanoscale iron disilicides." Thin Solid Films 515, no. 22 (August 2007): 8140–43. http://dx.doi.org/10.1016/j.tsf.2007.02.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Livne, Z., A. Munitz, J. C. Rawers, and R. J. Fields. "Consolidation of nanoscale iron powders." Nanostructured Materials 10, no. 4 (May 1998): 503–22. http://dx.doi.org/10.1016/s0965-9773(98)00094-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yuan, Ching, and Hsing-Lung Lien. "Removal of Arsenate from Aqueous Solution Using Nanoscale Iron Particles." Water Quality Research Journal 41, no. 2 (May 1, 2006): 210–15. http://dx.doi.org/10.2166/wqrj.2006.024.

Full text
Abstract:
Abstract Removal of As(V) using nanoscale iron particles was examined in batch reactors. Nanoscale iron particles, utilizing zerovalent iron with a diameter less than 100 nm as reactive materials, have been demonstrated to effectively remediate a wide variety of common environmental contaminants. In this study, characterization of nanoscale iron particles and their corrosion products was conducted using SEM-EDX, XRD, BET surface area analyzer and Laser Zee Meter. SEM-EDX results indicated adsorption of arsenic onto the iron surface, and XRD analysis found the formation of iron corrosion products including lepidocrocite, magnetite and/or maghemite at a reaction period of 7 d. Measurements of zeta potential revealed that the nanoscale iron particles have a zero point of charge at pH 4.4. Increasing adsorption amounts of arsenic with decreasing pH can therefore be attributed to the positive surface charge of the particles at lower pH. The maximum adsorption capacity of nanoscale iron particles determined by the Langmuir equation was about 38.2 mg/g. Normalization of the adsorption capacity to specific surface areas provides insight into the importance of iron types and the contact time of reactions in influencing arsenic uptake.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Xue, Su Qin Li, and Kudureti Ayijamali. "Preparation, Characterization of Nanoscale Zero-Valent Iron and its Application in Coking Wastewater Treatment." Advanced Materials Research 194-196 (February 2011): 511–14. http://dx.doi.org/10.4028/www.scientific.net/amr.194-196.511.

Full text
Abstract:
As a new kind of materials, nanoscale zero-valent iron which had excellent adsorption ability and high chemical reactivity had been widely applied in advanced wastewater treatment. In this paper, the preparation of nanoscale zero-valent iron particles was liquid phase reduction ,and then iron nanoparticles were characterized by scanning electron microscope and X-ray diffraction. Also the application of nanoscale zero-valent iron in the difficult degradation coking wastewater treatment was discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Pang, Zhi Hua, Xiao Shan Jia, Kai Liu, Zhen Xing Wang, Qi Jing Luo, and Jun Luo. "Preparation, Characterization and their Performance of the Supported Nanoscale Zero-Valent Iron Materials with Different Iron Contents." Advanced Materials Research 573-574 (October 2012): 155–62. http://dx.doi.org/10.4028/www.scientific.net/amr.573-574.155.

Full text
Abstract:
Taking the organic modified montmorillonite as a carrier and dispersant, the supported nanoscale zero-valent iron materials with different iron contents were synthesized through the ferrous sulfate (FeSO4) and the sodium borohydride (NaBH4) in it. The structure and morphology of the materials were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). Finally, the performances of the supported nanoscale zero-valent iron were studied by high-performance liquid chromatography to determine the adsorption and degradation of 4-chlorophenol. The results indicate that the supported nanoscale zero-valent iron was well dispersed,different iron dosages imposed a visible effect on the morphology and particle diameter of iron;the degradation of 4-chlorophenol resulted from adsorption and degradation processes. Materials with different iron contents exhibited significantly different performance levels in terms of 4-chlorophenol adsorption and degradation.
APA, Harvard, Vancouver, ISO, and other styles
6

Peng, Xiangqi, Xiaocheng Liu, Yaoyu Zhou, Bo Peng, Lin Tang, Lin Luo, Bangsong Yao, Yaocheng Deng, Jing Tang, and Guangming Zeng. "New insights into the activity of a biochar supported nanoscale zerovalent iron composite and nanoscale zero valent iron under anaerobic or aerobic conditions." RSC Advances 7, no. 15 (2017): 8755–61. http://dx.doi.org/10.1039/c6ra27256h.

Full text
Abstract:
To gain insight into the mechanism of p-nitrophenol removal using the biochar supported nanoscale zerovalent iron composite and nanoscale zero valent iron under anaerobic or aerobic conditions, batch experiments and models were conducted.
APA, Harvard, Vancouver, ISO, and other styles
7

Zheng, Qiang, Miaofang Chi, Maxim Ziatdinov, Li Li, Petro Maksymovych, Matt F. Chisholm, Sergei V. Kalinin, and Athena S. Sefat. "Nanoscale interlayer defects in iron arsenides." Journal of Solid State Chemistry 277 (September 2019): 422–26. http://dx.doi.org/10.1016/j.jssc.2019.06.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kerznizan, Carl F., Kenneth J. Klabunde, Christopher M. Sorensen, and George C. Hadjipanayis. "Magnetic properties of nanoscale iron particles." Journal of Applied Physics 67, no. 9 (May 1990): 5897–98. http://dx.doi.org/10.1063/1.346007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nakano, Hiroki, and Seiji Miyashita. "Magnetization Process of Nanoscale Iron Cluster." Journal of the Physical Society of Japan 70, no. 7 (July 15, 2001): 2151–57. http://dx.doi.org/10.1143/jpsj.70.2151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cao, Jiasheng, Daniel Elliott, and Wei-xian Zhang. "Perchlorate Reduction by Nanoscale Iron Particles." Journal of Nanoparticle Research 7, no. 4-5 (October 2005): 499–506. http://dx.doi.org/10.1007/s11051-005-4412-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Nanoscale iron"

1

Welch, Regan Eileen. "Reduction of 2,4,6-Trinitrotoluene with Nanoscale Zero-Valent Iron." Ohio University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1180914214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Echols, Erica. "Environmental remediation of TNT using nanoscale zero-valent iron metal." [Tampa, Fla] : University of South Florida, 2009. http://purl.fcla.edu/usf/dc/et/SFE0003105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Church, Nathan Stewart. "Magnetic properties of iron-titanium oxides and their nanoscale intergrowths." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ghahghaei, Nezamabadi Shirin. "Accelerated Degradation of Chlorinated Solvents by Nanoscale Zero-Valent Iron Coated with Iron Monosulfide and Stabilized with Carboxymethyl Cellulose." Wright State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=wright1452681950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Solórzano, Rodríguez Rubén. "Iron-catechol based nanoscale coordination polymers as efficient carriers in HIV/AIDS therapy." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/669503.

Full text
Abstract:
En aquesta tesi, es presenten metodologies sintètiques per a la preparació de compostos catecólics conjugats a fàrmacs antiretrovirals mitjançant un enllaç sensible a enzims. Com a prova de concepte, el fàrmac anti-VIH zidovudina s’utiliza como a punt de partida. Utilitzant aquest conjugat zidovudina-catecol es preparen polímers de coordinació nanostructurats (NCPs) basats en ferro. Després d’una optimització de la metodologia sintètica per aconseguir una mida de partícula i una dispersió col·loídal adequada, s’avalua el perfil d’alliberament de zidovudina en NCPs en presencia o absència d’esterases. Per útim, es realitza una avaluació biològica d’aquests NCPs que inclou citotoxicitat, internalització cel·lular i assajos d’activitat anti-VIH en limfòcits infectats. A continuació, s’explora la síntesi de nous conjugats de catecol amb fàrmacs antiretrovirals. Específicament, conjugats d’emtricitabina i raltegravir s’utilitzan per formar NCPs contenint només un fàrmac en la seva estructura. Després de la seva caracterizació i determinació del perfil d’alliberament en cada cas, se sintetitzen NCPs contenint una barreja d’ambdós fàrmacs i el seu comportament en quant a alliberament es compara amb el casos anteriors. Per acabar, s’exploren metodologies per a la síntesi de nous conjugats de catecol utilitzant els fàrmacs lamivudina i tenofovir.
En esta tesis, se presentan metodologías sintéticas para la preparación de compuestos catecólicos conjugados a fármacos antiretrovirales mediante un enlace sensible a enzimas. Como prueba de concepto, el fármaco anti-VIH zidovudina se usa como punto de partida. Utilizando este conjugado zidovudina-catecol se preparan polímeros de coordinación nanostructurados (NCPs) basados en hierro. Después de optimizar la metodología sintética para lograr un tama\u00F1o de partícula y una dispersión coloidal adecuadas, se evalúa el perfil de liberación de zidovudina en los NCPs en presencia y ausencia de esterasas. Por último, se realiza una evaluación biológica de estos NCPs que incluye citotoxicidad, internalización celular y ensayos de actividad anti-VIH en linfocitos infectados. A continuación, se explora la síntesis de nuevos conjugados de catecol con fármacos antiretrovirales. Específicamente, conjugados de emtricitabina y raltegravir se utilizan para formar NCPs conteniendo un solo fármaco en su estructura. Después de su caracterización y determinación del perfil de liberación para cada caso, se sintetizan NCPs conteniendo una mezcla de ambos fármacos y su comportamiento en cuanto a liberación se compara con los casos anteriores. Para acabar, se exploran metodologías para la síntesis de nuevos conjugados de catecol utilizando los fármacos lamivudina y tenofovir.
In this thesis, synthetic methodologies for the preparation of catechol compounds conjugated to antiretroviral drugs through an enzyme-sensitive bond are presented. As a proof-of-concept, the anti-HIV drug zidovudine is used as a starting point. Iron-based nanoscale coordination polymers (NCPs) are then prepared using this zidovudine-catechol conjugate and a bis(imidazole) bridging ligand. After optimization of the synthetic methodology to achieve a suitable particle size and colloidal dispersion, the drug release profile of the NCPs in the presence or absence of esterases is determined by HPLC. Then, a biological evaluation of the nanoparticles is performed, including cytotoxicity, cellular uptake and anti-HIV activity in infected lymphocytes.As a step forward, the synthesis of additional catechol compounds attached to anti-HIV drugs is explored. Functionalization of emtricitabine and raltegravir with catechol allows the formation of analogous NCPs for each drug. After the determination of their drug release profile by methodologies developed in HPLC, NCPs containing a mixture of both drugs are prepared and their release behavior is compared to the individual NCPs. Last, methodologies for the preparation of other catechol conjugates with lamivudine and tenofovir are explored for their application in NCPs synthesis.
APA, Harvard, Vancouver, ISO, and other styles
6

Kajenthira, Arani. "Mercury immobilisation in situ : Interactions between charcoal, nanoscale iron, and sulphate-reducing bacteria." Thesis, University of Oxford, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.533855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Huang, Dennis. "Nanoscale Investigations of High-Temperature Superconductivity in a Single Atomic Layer of Iron Selenide." Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493535.

Full text
Abstract:
The potential of interface engineering to enhance electronic properties is exemplified in a single atomic layer of FeSe grown on SrTiO$_3$, which exhibits an order-of-magnitude increase in its superconducting transition temperature ($T_c$ up to 110 K) compared to bulk ($T_c$ = 8 K). Since this discovery in 2012, efforts to reproduce, understand, and extend this finding continue to draw both excitement and scrutiny. In this thesis, we report the use of a combined molecular beam epitaxy (MBE) and scanning tunneling microscopy (STM) system to grow and image films of superconducting FeSe/SrTiO$_3$. In particular, we investigate and harness atomic defects in as-grown films to derive microscopic insights in two directions. First, we image quasiparticle interference (QPI) patterns generated around defects in order to reconstruct the electronic structure of the unperturbed system, and uncover pieces of the puzzle of high-$T_c$ superconductivity in a monolayer of FeSe. Second, we characterize the atomic structure of defects using density functional theory (DFT), with possible implications on film quality and nanostructuring.
Physics
APA, Harvard, Vancouver, ISO, and other styles
8

Dislaki, Evangelia. "From macro- to nanoscale electrodeposited iron-copper (Fe–Cu) for energy-efficient and sustainable applications." Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/665449.

Full text
Abstract:
Aquest treball se centra en l'electrodeposició i l'estudi del sistema Fe-Cu, tant sobre substrats llisos per a l’obtenció de pel·lícules continues com en substrats proveïts amb un reticle o màscara, així com la fabricació i caracterització de motius de mida submicromètrica, nanobarres, microbarres i tubs, destinats a ésser utilitzats en una gran varietat d’aplicacions mediambientals i d’eficiència energètica. En primer lloc, s’han dissenyat diferents electròlits per al dipòsit electroquímic de recobriments FexCu1-x de diversos micròmetres de gruix en un ampli rang de composició (0≤x≤86). S’ha investigat l'efecte de diversos agents complexants i condicions d’electrodeposició com el pH, la temperatura i l'agitació magnètica del bany sobre la morfologia, estructura, composició elemental i comportament magnètic dels dipòsits obtinguts. S’ha vist que el Fe i el Cu es troben parcialment aliats, malgrat la baixa solubilitat mútua entre ells, i que la magnetització de saturació es pot modular fàcilment a través del contingut de Fe. A continuació, s’han extrapolat els protocols sintètics establerts per al creixement dels recobriments continus a la fabricació de pel·lícules primes amb una porositat jeràrquica aconseguida mitjançant electrodeposició sobre substrats decorats amb cristalls col·loïdals (colloidal crystal templating). S’ha avaluat la humectabilitat d'aquestes pel·lícules i la seva habilitat per extreure l’oli en mescles i emulsions aigua-oli. S’ha vist que l'elevada relació superfície-volum de les pel·lícules, juntament amb l'elevada rugositat derivada de la seva estructura macroporosa i el relleu nanomètric al llarg de les parets de porus, genera un marcat caràcter hidrofòbic / oleofílic dels dipòsits i una notòria capacitat d'absorció d’oli. A diferències de les capes contínues, que són més gruixudes, el grau d’aliatge entre el Fe i el Cu és total en les pel·lícules primes macroporoses de Fe75Cu25 i Fe85Cu15. A més, s’ha demostrat que l'elevada relació superfície-volum i la nanoporositat inherent de les estretes parets de porus de les pel·lícules macroporoses les han convertit en excel·lents candidates per al control de la magnetització mitjançant voltatge. De fet, s'aconsegueix una reducció de la coercitivitat fins a un 25% en ser polaritzades negativament. Aquesta és una metodologia prometedora per reduir el consum d'energia, ja que la inversió de magnetització s’aconsegueix aplicant camps magnètics més baixos (és a dir, els corrents elèctrics involucrats són més baixos i, per tant, la dissipació de potència per efecte Joule es minimitza). A continuació, tenint en compte la tendència actual cap a la miniaturització, s’han crescut estructures submicromètriques de tres geometries i mides diferents mitjançant electrodeposició sobre substrats prelitografiats. Aquests substrats es van preparar per litografia per feixos d'electrons per tal d’assegurar una elevada resolució dels motius. Tot i que la literatura existent sobre motius submicromètrics litografiats es basa principalment en estructures amb una alçada inferior a 50 nm, les estructures que s’han preparat en aquesta Tesi fan aproximadament 200-300 nm d'alçada en funció de les condicions d’electrodeposició. Això dóna lloc a fenòmens interessants com ara un gradient de composició i, per tant, diferents propietats estructurals al llarg del gruix. S’han investigat les propietats magnètiques mitjançant microscòpia de forces magnètiques, indicant l’existència d’efectes tipus magnetic curling. Finalment, s’han fabricat nano i microbarres i tubs de diferent diàmetre magnètics i amb gradient de composició en membranes de policarbonat a través de mètodes d'electrodeposició convencionals i també a partir de banys amb surfactants amfifílics (micelle-assisted electrodeposition). El caràcter ferromagnètic de les estructures obtingudes ha permès la seva manipulació magnètica remota, mentre que s’ha confirmat la propulsió direccional fotocatalítica dels microtubs.
This work is focused on the electrodeposition and study of Fe-Cu in the form of continuous and patterned thin films and coatings as well as the fabrication and characterization of submicron motifs, nano- and microrods and tubes targeted at a variety of environmental and energy-efficient applications. Firstly, different electrolytes are developed for the electrochemical deposition of FexCu1−x coatings of several micrometers in thickness over a wide composition range (0≤x≤86). The effect of various complexing agents and plating conditions such as pH, temperature and magnetic stirring on the morphology, structure, elemental composition and magnetic behavior is investigated. It is shown that the coatings are partially alloyed, despite the low mutual solubility of Fe and Cu, and saturation magnetization can be easily tuned by an adjustment of the Fe content. Next, the synthetic protocols for the continuous coatings are extrapolated to the fabrication of patterned thin films with a hierarchical porosity achieved by coupling electrodeposition with colloidal lithography. The wetting properties of these films and their potential towards water-oil separation in mixtures and emulsions is assessed as a proof of concept. The high surface-to-volume ratio of the films in conjunction with the high roughness achieved by the macroporous network and the nanosized features along the pore walls lead to a strong hydrophobic/oleophilic nature of the deposits and an impressive absorption capacity. Notably, contrary to the thick coatings, the continuous and patterned Fe75Cu25 and Fe85Cu15 thin films are demonstrated to be fully alloyed. Furthermore, the high surface-to-volume ratio and the inherent nanoporosity of the narrow pore walls of the patterned films unveil their excellent potential towards voltage control of magnetization. Indeed, a coercivity reduction of up to 25% under application of a negative bias is achieved. This constitutes a promising way to curtail power consumption since magnetization reversal can then occur with lower applied magnetic fields (i.e., lower electric currents and minimized Joule heating power dissipation). Next, given the current trend towards miniaturization, submicron structures of three geometries and sizes are produced through electrodeposition onto pre-lithographed substrates. These substrates were previously prepared using electron-beam lithography which ensured a high feature quality. While existing literature on lithographed submicron motifs is largely based on structures below 50 nm in height, the structures prepared here are approximately 200-300 nm in height depending on plating conditions. This gives rise to interesting phenomena such as a compositional gradient, and thus different structural properties along the thickness. The magnetic properties are also thoroughly investigated with magnetic force microscopy suggesting magnetic curling effects. Finally, compositionally graded magnetic nano- and microrods and tubes of various diameters are fabricated in polycarbonate track-etched membranes through conventional as well as micelle-assisted electrodeposition methods. The ferromagnetic character of the material enables wireless magnetic steering while photocatalytically-driven directional propulsion of the microtubes is also confirmed.
APA, Harvard, Vancouver, ISO, and other styles
9

Chowdhury, Md Abu Raihan. "Removal of Select Chlorinated Hydrocarbons by Nanoscale Zero-valent Iron Supported on Powdered Activated Charcoal." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1496150130687849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Jing. "Multi-scale investigations of carboxymethyl cellulose- coated nanoscale zero valent iron particle transport in porous media." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=123130.

Full text
Abstract:
Subsurface injection of nano scale zero valent iron (NZVI) particles is an emerging technology for in situ remediation of the sites contaminated by toxic contaminants such as chlorinated organic dense non aqueous phase liquids (DNAPLs) and heavy metals. One of the key challenges in applying NZVI particles for remediation at the field scale is that NZVI particles are not readily transported in subsurface porous media. The overall objective of this research is to address this challenge by conducting a number of column experiments and 2-D pilot scale tank experiments as well as by exploring the deposition mechanics of metal nanoparticles theoretically. Although numerous studies have focused the stability and transport of polymer/polyelectrolyte coated NZVI particles, the comparison of the effect of the same type of polyelectrolyte stabilizer with different molecular weight on the stability and transport of the corresponding coated NZVI particles has not been systematically conducted to date. Varying molecular weights of homologous polyelectrolytes can cause changes in viscosity and rheology in free solution, and alter the extent of colloidal stability when coated on the nanoparticles. Furthermore, most of the studies on NZVI particle transport have been conducted in the vertically placed columns, which are not representative with the actual flow orientation in field, leading to a potential difference of transport performance of NZVI particles between the commonly used vertical flow orientation and the horizontal flow model. In addition, the scale-up effects (from laboratory-scale column to pilot-scale or field-scale demonstrations) on NZVI transport are reported. In this study, a thorough investigation on NZVI transport is conducted in a 2-D pilot-scale tank to shed some light on the transport performance of NZVI particles under conditions that are more close to actual circumstances. Finally, to calculate the deposition rate coefficient of metal nanoparticles during transport, a considerable number of studies on NZVI particles transport employed equations for predicting the single collector contact efficiency that are developed on the basis of the numerical calculations for common colloidal particles such as latex particles, which have smaller densities than those of metal particles. Taking the horizontal flow mode and the density effects for metal nanoparticles into consideration, a new methodology is developed in three dimensions (3-D) to more precisely predict the single collector efficiency of NZVI particles.In the first study, the influence of the molecular weight of the polyelectrolyte grafted on NZVI particle on its stability and transport was investigated. Three carboxymethyl celluloses (CMC) with different molecular weights (90,000 Da, 250,000 Da and 700,000 Da) were used to stabilize NZVI particles. The comparison of the results revealed that the stability and transport of NZVI particles were improved significantly by CMC with high molecular weight, due to its high viscosity property. In the second study, the effects of gravity on NZVI particle during its transport were extensively assessed in vertical and horizontal placed columns under different conditions (mean sand diameters and NZVI concentrations). The results indicated that the gravity forces significantly reduced NZVI particles transport in coarse sand and at high NZVI concentration in horizontally placed columns. To thoroughly study the impact of horizontal orientation flow on the transport of NZVI particles at a larger scale, a series of transport experiments were conducted in a pilot-scale 2-D tank. Furthermore, to address the challenges met in predicting the single collector efficiency in horizontal orientation flow mode, a methodology based on trajectory analysis of particles around a Happel sphere-in-cell model for porous media in 3-D was developed.
L'injection souterraine des nanoparticules de fer à zéro valence (NZVI) est une technologie émergente pour l'assainissement in situ des sites contaminés par des polluants toxiques comme les solvants chlorés et les métaux lourds. L'un des principaux défis dans l'application des particules de NZVI à des fins de rémédiation est que les particules de NZVI ne sont pas facilement transportées dans des milieux poreux souterrains. L'objectif général de cette recherche est de relever ce défi en réalisant un certain nombre d'expériences en colonnes et en 2-D sur desbassins à l'échelle pilote ainsi que par l'analyse de la mécanique de dépôt de nanoparticules métalliques en théorie. Bien que de nombreuses études ont porté sur la stabilité et le transport de nanoparticules de fer (NZVI) revêtues de polymère / poly-électrolyte, la comparaison de l'effet du même type de stabilisant en polyélectrolyte ayant des poids moléculaires différents, sur la stabilité et le transport des particules de NZVI enrobées n'ont pas été effectués systématiquement à ce jour. Des poids moléculaires variables des polyélectrolytes homologues peuvent provoquer des variations de viscosité en solution libre et dans l'étendue de la stabilisation colloïdale électrostérique de NZVI en s'attachant sur la surface des nanoparticules. Des études antérieures sur le transport des particules NZVI ont été menées dans les colonnes placées verticalement, qui souvent ne sont pas représentatifs de l'orientation de l'écoulement réel sur le champ, ce qui conduit à une différence de potentiel de performance du transport de particules NZVI entre l'orientation de l'écoulement vertical couramment utilisé et le modèle à flux horizontal. Outre, les effets à l'échelle grandissante (de la colonne à l'échelle de laboratoire, pilote ou des manifestations à l'échelle du champ) sur le transport de NZVI sont rapportés. Dans cette étude, une enquête approfondie sur le transport de NZVI est effectuée dans un réservoir en 2-D à l'échelle pilote afin de faire la lumière sur la performance du transport des particules de NZVI dans des conditions qui sont plus près de la situation réelle. Enfin, pour calculer le coefficient de vitesse de dépôt des nanoparticules de métal en cours de transport, un nombre considérable d'études sur les particules de NZVI ont été effectué en employant des équations de transport à fin de prédire le contact de rendement du capteur unique qui sont mis au point sur la base des calculs numériques pour les particules colloïdales communes moins denses tels que des particules de latex, qui ont des densités plus inferieures que celles des particules de métal. Prenant le mode d'écoulement horizontal et les effets de la densité de nanoparticules métalliques en considération, une nouvelle méthode est développée en trois dimensions (3-D) afin de prédire plus précisément l'efficacité du collecteur unique de particules NZVI .
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Nanoscale iron"

1

Phenrat, Tanapon, and Gregory V. Lowry, eds. Nanoscale Zerovalent Iron Particles for Environmental Restoration. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-95340-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Z, Livne, and National Institute of Standards and Technology (U.S.), eds. Consolidation of nanoscale iron powders. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nanoscale Zerovalent Iron Particles for Environmental Restoration: From Fundamental Science to Field Scale Engineering Applications. Springer, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Nanoscale iron"

1

Sun, Tianhao, Suju Hao, Wufeng Jiang, and Yuzhu Zhang. "Analysis of Nanoscale Iron Oxide Morphology." In The Minerals, Metals & Materials Series, 413–18. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36628-5_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Frankel, Richard B., and Dennis A. Bazylinski. "Magnetosomes: Nanoscale Magnetic Iron Minerals in Bacteria." In Nanobiotechnology, 136–45. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602453.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Filip, Jan, Jan Kolařík, Eleni Petala, Martin Petr, Ondřej Šráček, and Radek Zbořil. "Nanoscale Zerovalent Iron Particles for Treatment of Metalloids." In Nanoscale Zerovalent Iron Particles for Environmental Restoration, 157–99. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-95340-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Geiger, Cherie L., Christian A. Clausen, Kathleen Brooks, Christina Clausen, Christian Huntley, Laura Filipek, Debra D. Reinhart, et al. "Nanoscale and Microscale Iron Emulsions for Treating DNAPL." In ACS Symposium Series, 132–40. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2002-0837.ch009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Almeelbi, Talal, and Achintya Bezbaruah. "Aqueous phosphate removal using nanoscale zero-valent iron." In Nanotechnology for Sustainable Development, 197–210. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-319-05041-6_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Phenrat, Tanapon, Gregory V. Lowry, and Peyman Babakhani. "Nanoscale Zerovalent Iron (NZVI) for Environmental Decontamination: A Brief History of 20 Years of Research and Field-Scale Application." In Nanoscale Zerovalent Iron Particles for Environmental Restoration, 1–43. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-95340-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kotchaplai, Panaya, Eakalak Khan, and Alisa S. Vangnai. "Microbial Perspective of NZVI Applications." In Nanoscale Zerovalent Iron Particles for Environmental Restoration, 387–413. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-95340-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Phenrat, Tanapon, and Gregory V. Lowry. "Electromagnetic Induction of Nanoscale Zerovalent Iron for Enhanced Thermal Dissolution/Desorption and Dechlorination of Chlorinated Volatile Organic Compounds." In Nanoscale Zerovalent Iron Particles for Environmental Restoration, 415–34. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-95340-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Jinxiang, Yuankui Sun, Liping Liang, and Xiaohong Guan. "Improving the Reactivity of ZVI and NZVI Toward Various Metals and Metal(loid)s with Weak Magnetic Field." In Nanoscale Zerovalent Iron Particles for Environmental Restoration, 435–70. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-95340-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Phenrat, Tanapon, and Gregory V. Lowry. "Vadose Zone Remediation of Dense Nonaqueous Phase Liquid Residuals Using Foam-Based Nanoscale Zerovalent Iron Particles with Low-Frequency Electromagnetic Field." In Nanoscale Zerovalent Iron Particles for Environmental Restoration, 471–94. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-95340-3_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nanoscale iron"

1

Panturu, Eugenia, Razvan Ioan Panturu, Gheorghita Jinescu, Antoneta Filcenco – Olteanu, and Aura Daniela Radu. "NANOSCALE IRON PARTICLES FOR WASTEWATER DECONTAMINATION." In International Symposium "The Environment and the Industry". National Research and Development Institute for Industrial Ecology, 2018. http://dx.doi.org/10.21698/simi.2018.fp07.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ramachandran, Uma, and Shobana Ganesan. "Studying Arsenic Removal using Nanoscale Zero-valent Iron." In 14th Asia Pacific Confederation of Chemical Engineering Congress. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-1445-1_093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Souza, M. G. O., F. T. Silva, and J. F. Oliveira. "Organic pollutants in groundwater: remediation by nanoscale iron particles." In WATER POLLUTION 2008. Southampton, UK: WIT Press, 2008. http://dx.doi.org/10.2495/wp080111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Capecchi, Chistopher, and Achintya N. Bezbaruah. "Arsenic Contaminated Groundwater Remediation by Entrapped Nanoscale Zero-Valent Iron." In World Environmental and Water Resources Congress 2011. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41173(414)355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Khodadoust, Amid P., Krishna R. Reddy, and Srinivasa Varadhan. "Transport of Lactate-Modified Nanoscale Iron Particles in Sand Columns." In GeoCongress 2008. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40970(309)60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hui, Li, Shi Zhe, Xing Rui-xian, Guo Mo-ran, Hu Xin-yue, Song Wan-ying, Jin Mei-hui, Gao Ming-xi, and Cai Hong-xing. "The scattering properties of iron nanorods." In 2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). IEEE, 2012. http://dx.doi.org/10.1109/3m-nano.2012.6472992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mu, Na, Dongsu Bi, Rongbing Fu, Xiaopin Guo, and Zhen Xu. "Sepiolite-supported nanoscale zerovalent iron to remediate decabromodiphenyl ether contaminated soil." In 2015 International Power, Electronics and Materials Engineering Conference. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/ipemec-15.2015.152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Betzer, Oshra, Menachem Motiei, Tamar Dreifuss, Tamar Sadan, Noam Omer, Tamar Blumenfeld-Katzir, Zhuang Liu, Noam Ben-Eliezer, and Rachela Popovtzer. "Core/Shell Iron Oxide@Gold nanoparticles for dual-modal CT/MRI imaging." In Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVII, edited by Dror Fixler, Sebastian Wachsmann-Hogiu, and Ewa M. Goldys. SPIE, 2020. http://dx.doi.org/10.1117/12.2548430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Polyakov, A. Yu, M. T. Cieschi, T. A. Sorkina, M. M. Zimbovskaya, V. A. Lebedev, D. S. Volkov, D. A. Pankratov, N. A. Kulikova, and I. V. Perminova. "Design of humic-based iron nanofertilizers: iron (hydr)oxide chemistry, nanoscale benefits, and multilevel impact of humic substances." In Fifth International Conference of CIS IHSS on Humic Innovative Technologies «Humic substances and living systems». CLUB PRINT ltd., 2019. http://dx.doi.org/10.36291/hit.2019.polyakov.124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fu, Yuncong, Qingru Zeng, Liang Peng, Huijuan Song, Jihai Shao, and Jidong Gu. "High Efficient Removal of Tetracycline from Solution by the Nanoscale Zerovalent Iron." In 2015 International Conference on Materials, Environmental and Biological Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/mebe-15.2015.118.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Nanoscale iron"

1

Livne, Z., A. Munitz, J. C. Rawers, and R. J. Fields. Consolidation of nanoscale iron powders. Gaithersburg, MD: National Institute of Standards and Technology, 1997. http://dx.doi.org/10.6028/nist.ir.5990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Matson, D. W., J. C. Linehan, J. G. Darab, H. M. Watrob, E. G. Lui, M. R. Phelps, and M. O. Hogan. Progress in the development and production of nanoscale iron-coating catalysts. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/227685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gavaskar, Arun, Lauren Tatar, and Wendy Condit. Cost and Performance Report Nanoscale Zero-Valent Iron Technologies for Source Remediation. Fort Belvoir, VA: Defense Technical Information Center, September 2005. http://dx.doi.org/10.21236/ada446916.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Datye, A. K., M. D. Shroff, Y. Jin, R. P. Brooks, J. A. Wilder, M. S. Harrington, A. G. Sault, and N. B. Jackson. Nanoscale attrition during activation of precipitated iron Fischer- Tropsch catalysts: Implications for catalyst design. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/237416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Abriola, Linda, Andrea Ramsburg, and Kurt Pennell. Development and Optimization of Targeted Nanoscale Iron Delivery Methods for Treatment of NAPL Source Zones. Fort Belvoir, VA: Defense Technical Information Center, April 2011. http://dx.doi.org/10.21236/ada544870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography