Journal articles on the topic 'Nanoprecipitace'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nanoprecipitace.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Peng, Shenyou, Yujie Wei, and Huajian Gao. "Nanoscale precipitates as sustainable dislocation sources for enhanced ductility and high strength." Proceedings of the National Academy of Sciences 117, no. 10 (February 24, 2020): 5204–9. http://dx.doi.org/10.1073/pnas.1914615117.
Full textRuault, M.-O., F. Fortuna, H. Bernas, J. Chaumont, O. Kaïtasov, and V. A. Borodin. "In situ Transmission Electron Microscopy Ion Irradiation Studies at Orsay." Journal of Materials Research 20, no. 7 (July 1, 2005): 1758–68. http://dx.doi.org/10.1557/jmr.2005.0219.
Full textLi, Guoqiang, Shao-Ju Shih, Shichun Mu, Yadong Xu, and Wanqi Jie. "Study of Te nanoprecipitates in CdZnTe crystals." Journal of Materials Research 25, no. 7 (July 2010): 1298–303. http://dx.doi.org/10.1557/jmr.2010.0171.
Full textCourtney-Davies, Ciobanu, Verdugo-Ihl, Slattery, Cook, Dmitrijeva, Keyser, et al. "Zircon at the Nanoscale Records Metasomatic Processes Leading to Large Magmatic–Hydrothermal Ore Systems." Minerals 9, no. 6 (June 16, 2019): 364. http://dx.doi.org/10.3390/min9060364.
Full textPark, Ji-Hoon, Kee-Ahn Lee, Sung-Jae Won, Yong-Bum Kwon, and Kyou-Hyun Kim. "Influence of Sc Microalloying on the Microstructure of Al5083 Alloy and Its Strengthening Effect." Metals 11, no. 7 (July 14, 2021): 1120. http://dx.doi.org/10.3390/met11071120.
Full textWood, Jonathan. "Nanoprecipitate structure in Al alloys revealed." Materials Today 9, no. 6 (June 2006): 9. http://dx.doi.org/10.1016/s1369-7021(06)71527-9.
Full textHern, F. Y., A. Hill, A. Owen, and S. P. Rannard. "Co-initiated hyperbranched-polydendron building blocks for the direct nanoprecipitation of dendron-directed patchy particles with heterogeneous surface functionality." Polymer Chemistry 9, no. 14 (2018): 1767–71. http://dx.doi.org/10.1039/c8py00291f.
Full textBroad, Alexander, Ian J. Ford, Dorothy M. Duffy, and Robert Darkins. "Magnesium-rich nanoprecipitates in calcite: atomistic mechanisms responsible for toughening in Ophiocoma wendtii." Physical Chemistry Chemical Physics 22, no. 18 (2020): 10056–62. http://dx.doi.org/10.1039/d0cp00887g.
Full textDorignac, D., S. Schamm, C. Grigis, J. Sévely, J. Santiso, and A. Figueras. "Y2O3 nanoprecipitate/YBaCuO matrix interfaces: HREM study." Physica C: Superconductivity 235-240 (December 1994): 617–18. http://dx.doi.org/10.1016/0921-4534(94)91532-6.
Full textTang, Guodong, Qiang Wen, Teng Yang, Yang Cao, Wei Wei, Zhihe Wang, Zhidong Zhang, and Yusheng Li. "Rock-salt-type nanoprecipitates lead to high thermoelectric performance in undoped polycrystalline SnSe." RSC Advances 7, no. 14 (2017): 8258–63. http://dx.doi.org/10.1039/c7ra00140a.
Full textFan, Yanqiu, Changwen Ma, Shaopo Li, and Hai Zhang. "Novel Cu-Rich Nano-Precipitates Strengthening Steel with Excellent Antibacterial Performance." Metals 9, no. 1 (January 7, 2019): 52. http://dx.doi.org/10.3390/met9010052.
Full textHe, Wenjing, Caihe Fan, Shu Wang, Junhong Wang, Su Chen, and Lei Wang. "Current States and Development of Research on Redissolution and Reprecipitation of Nanoprecipitated Phases in Al–Cu Alloys." Nanoscience and Nanotechnology Letters 11, no. 11 (November 1, 2019): 1489–501. http://dx.doi.org/10.1166/nnl.2019.3046.
Full textKim, Jiwon, Kyu Hyoung Lee, Sung-Dae Kim, Jae-Hong Lim, and Nosang V. Myung. "Simple and effective fabrication of Sb2Te3 films embedded with Ag2Te nanoprecipitates for enhanced thermoelectric performance." Journal of Materials Chemistry A 6, no. 2 (2018): 349–56. http://dx.doi.org/10.1039/c7ta09013g.
Full textSealy, Cordelia. "Nanoprecipitates boost alloy strength and ductility." Nano Today 40 (October 2021): 101276. http://dx.doi.org/10.1016/j.nantod.2021.101276.
Full textHatton, Fiona L., Lee M. Tatham, Louise R. Tidbury, Pierre Chambon, Tao He, Andrew Owen, and Steven P. Rannard. "Hyperbranched polydendrons: a new nanomaterials platform with tuneable permeation through model gut epithelium." Chemical Science 6, no. 1 (2015): 326–34. http://dx.doi.org/10.1039/c4sc02889a.
Full textRaabe, D., D. Ponge, O. Dmitrieva, and B. Sander. "Nanoprecipitate-hardened 1.5GPa steels with unexpected high ductility." Scripta Materialia 60, no. 12 (June 2009): 1141–44. http://dx.doi.org/10.1016/j.scriptamat.2009.02.062.
Full textDupraz, Maxime, Steven J. Leake, and Marie-Ingrid Richard. "Bragg coherent imaging of nanoprecipitates: role of superstructure reflections." Journal of Applied Crystallography 53, no. 5 (September 29, 2020): 1353–69. http://dx.doi.org/10.1107/s1600576720011358.
Full textFu, Zhiqiang, Lin Jiang, Jenna L. Wardini, Benjamin E. MacDonald, Haiming Wen, Wei Xiong, Dalong Zhang, et al. "A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength." Science Advances 4, no. 10 (October 2018): eaat8712. http://dx.doi.org/10.1126/sciadv.aat8712.
Full textCiobanu, Cristiana L., Max R. Verdugo-Ihl, Ashley Slattery, Nigel J. Cook, Kathy Ehrig, Liam Courtney-Davies, and Benjamin P. Wade. "Silician Magnetite: Si–Fe-Nanoprecipitates and Other Mineral Inclusions in Magnetite from the Olympic Dam Deposit, South Australia." Minerals 9, no. 5 (May 20, 2019): 311. http://dx.doi.org/10.3390/min9050311.
Full textVelisa, G., P. Trocellier, L. Thomé, S. Vaubaillon, S. Miro, Y. Serruys, É. Bordas, et al. "Tailoring of SiC nanoprecipitates formed in Si." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 307 (July 2013): 165–70. http://dx.doi.org/10.1016/j.nimb.2012.12.089.
Full textChen, J. H., E. Costan, M. A. van Huis, Q. Xu, and H. W. Zandbergen. "Atomic Pillar-Based Nanoprecipitates Strengthen AlMgSi Alloys." Science 312, no. 5772 (April 21, 2006): 416–19. http://dx.doi.org/10.1126/science.1124199.
Full textBirtcher, R. C., S. E. Donnelly, M. Song, K. Furuya, K. Mitsuishi, and C. W. Allen. "Behavior of Crystalline Xe Nanoprecipitates during Coalescence." Physical Review Letters 83, no. 8 (August 23, 1999): 1617–20. http://dx.doi.org/10.1103/physrevlett.83.1617.
Full textLee, Eunsil, Jin Il Kim, Soon-Mok Choi, Young Soo Lim, Won-Seon Seo, Jong-Young Kim, and Kyu Hyoung Lee. "Thermoelectric Transport Properties of Cu Nanoprecipitates EmbeddedBi2Te2.7Se0.3." Journal of Nanomaterials 2015 (2015): 1–5. http://dx.doi.org/10.1155/2015/820893.
Full textMeng, Shuaiju, Lishan Dong, Hui Yu, Lixin Huang, Haisheng Han, Weili Cheng, Jianhang Feng, Jingjing Wen, Zhongjie Li, and Weimin Zhao. "A New Ultra-High-Strength AB83 Alloy by Combining Extrusion and Caliber Rolling." Materials 13, no. 3 (February 5, 2020): 709. http://dx.doi.org/10.3390/ma13030709.
Full textFeng, Ke, Ming Yang, Shao-lei Long, and Bo Li. "The Effect of a Composite Nanostructure on the Mechanical Properties of a Novel Al-Cu-Mn Alloy through Multipass Cold Rolling and Aging." Applied Sciences 10, no. 22 (November 16, 2020): 8109. http://dx.doi.org/10.3390/app10228109.
Full textNeves, F., A. Cunha, I. Martins, J. B. Correia, M. Oliveira, and E. Gaffet. "Ni4Ti3 Precipitation during Ageing of MARES NiTi Shape Memory Alloys Studied by FEG-SEM." Microscopy and Microanalysis 14, S3 (September 2008): 13–16. http://dx.doi.org/10.1017/s1431927608089241.
Full textGao, Y. H., L. F. Cao, J. Kuang, J. Y. Zhang, G. Liu, and J. Sun. "Dual effect of Cu on the Al3Sc nanoprecipitate coarsening." Journal of Materials Science & Technology 37 (January 2020): 38–45. http://dx.doi.org/10.1016/j.jmst.2019.07.035.
Full textDeligiannis, S., A. Alexandratou, E. Flampouris, P. Tsakiridis, and G. Fourlaris. "TEM Study of Nanoprecipitate Formation in Novel HSLA Steels." Microscopy and Microanalysis 24, S1 (August 2018): 2230–31. http://dx.doi.org/10.1017/s1431927618011637.
Full textLiu, Chengze, Fusen Yuan, Fuzhou Han, Muhammad Ali, Yingdong Zhang, Wenbin Guo, Hengfei Gu, and Geping Li. "Moiré fringes in nanoprecipitates in a zirconium alloy." Materials Letters 269 (June 2020): 127678. http://dx.doi.org/10.1016/j.matlet.2020.127678.
Full textLiu, Chengze, Geping Li, Fusen Yuan, Fuzhou Han, Muhammad Ali, Yingdong Zhang, Wenbin Guo, and Hengfei Gu. "Core-shell structured nanoprecipitates in zirconium based alloy." Scripta Materialia 185 (August 2020): 170–74. http://dx.doi.org/10.1016/j.scriptamat.2020.03.061.
Full textOrthacker, Angelina, Georg Haberfehlner, Johannes Taendl, Maria C. Poletti, Bernhard Sonderegger, and Gerald Kothleitner. "Diffusion-defining atomic-scale spinodal decomposition within nanoprecipitates." Nature Materials 17, no. 12 (November 12, 2018): 1101–7. http://dx.doi.org/10.1038/s41563-018-0209-z.
Full textYang, Xiaolong, Jesús Carrete, and Zhao Wang. "Optimizing phonon scattering by nanoprecipitates in lead chalcogenides." Applied Physics Letters 108, no. 11 (March 14, 2016): 113901. http://dx.doi.org/10.1063/1.4943791.
Full textNascimento, Lorrayne O., Pedro P. Goulart, Jéssyca L. Correa, Afshin Abrishamkar, Jeferson G. Da Silva, Antonio S. Mangrich, Amanda A. de França, and Ângelo M. L. Denadai. "Molecular and supramolecular characterization of Ni(II)/losartan hydrophobic nanoprecipitate." Journal of Molecular Structure 1074 (September 2014): 224–30. http://dx.doi.org/10.1016/j.molstruc.2014.05.080.
Full textSibatov, R. T., and V. V. Svetukhin. "Subdiffusion kinetics of nanoprecipitate growth and destruction in solid solutions." Theoretical and Mathematical Physics 183, no. 3 (June 2015): 846–59. http://dx.doi.org/10.1007/s11232-015-0301-3.
Full textLange, Alexander, Sarah Abraham, Rainer Fechte-Heinen, Nicholas Winzer, and Andreas Kern. "Processing and Mechanical Properties of Highly Formable Ferritic High Strength Steel Containing Titanium Nanocarbides for Automotive Applications." Materials Science Forum 941 (December 2018): 382–85. http://dx.doi.org/10.4028/www.scientific.net/msf.941.382.
Full textHeera, V., J. Fiedler, and W. Skorupa. "Large magnetoresistance of insulating silicon films with superconducting nanoprecipitates." AIP Advances 6, no. 10 (October 2016): 105203. http://dx.doi.org/10.1063/1.4964931.
Full textChai, Yaw Wang, and Yoshisato Kimura. "Microstructure evolution of nanoprecipitates in half-Heusler TiNiSn alloys." Acta Materialia 61, no. 18 (October 2013): 6684–97. http://dx.doi.org/10.1016/j.actamat.2013.07.030.
Full textYang, Ying, Tianyi Chen, Lizhen Tan, Jonathan D. Poplawsky, Ke An, Yanli Wang, German D. Samolyuk, et al. "Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy." Nature 595, no. 7866 (July 7, 2021): 245–49. http://dx.doi.org/10.1038/s41586-021-03607-y.
Full textVolkov, Alexander E., and Denis N. Korolev. "Nanoprecipitate nucleation caused by swift heavy ions in supersaturated solid solutions." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 209 (August 2003): 98–102. http://dx.doi.org/10.1016/s0168-583x(02)02063-3.
Full textAlexandratou, A., S. Deligiannis, NI Makris, P. Tsakiridis, and G. Fourlaris. "Α Comparative ΤΕΜ Study of Nanoprecipitate Formation in Waspaloy® Welds." Microscopy and Microanalysis 25, S2 (August 2019): 2636–37. http://dx.doi.org/10.1017/s1431927619013916.
Full textGao, Y. H., P. F. Guan, R. Su, H. W. Chen, C. Yang, C. He, L. F. Cao, et al. "Segregation-sandwiched stable interface suffocates nanoprecipitate coarsening to elevate creep resistance." Materials Research Letters 8, no. 12 (July 30, 2020): 446–53. http://dx.doi.org/10.1080/21663831.2020.1799447.
Full textLeier, A. F., L. N. Safronov, and G. A. Kachurin. "Modeling Si nanoprecipitate formation in SiO2 layers with excess Si atoms." Semiconductors 33, no. 4 (April 1999): 380–84. http://dx.doi.org/10.1134/1.1187698.
Full textWawer, K., M. Lewandowska, and K. J. Kurzydłowski. "Improvement of mechanical properties of a nanoaluminium alloy by precipitate strengthening." Archives of Metallurgy and Materials 57, no. 3 (October 1, 2012): 877–81. http://dx.doi.org/10.2478/v10172-012-0097-1.
Full textVivas, J., D. De-Castro, J. D. Poplawsky, D. San-Martín, and C. Capdevila. "Direct observation of creep strengthening nanoprecipitate formation in ausformed ferritic/martensitic steels." Scripta Materialia 164 (April 2019): 76–81. http://dx.doi.org/10.1016/j.scriptamat.2019.01.036.
Full textLou, Yan Zhi. "Orientation Relationship between Fe2M and Martensite in M50NiL Steel." Applied Mechanics and Materials 456 (October 2013): 533–36. http://dx.doi.org/10.4028/www.scientific.net/amm.456.533.
Full textWang, Zhao, Xiaolong Yang, Dan Feng, Haijun Wu, Jesus Carrete, Li-Dong Zhao, Chao Li, et al. "Understanding Phonon Scattering by Nanoprecipitates in Potassium-Doped Lead Chalcogenides." ACS Applied Materials & Interfaces 9, no. 4 (January 18, 2017): 3686–93. http://dx.doi.org/10.1021/acsami.6b14266.
Full textPrameela, Suhas Eswarappa, Peng Yi, Beatriz Medeiros, Vance Liu, Laszlo J. Kecskes, Michael L. Falk, and Timothy P. Weihs. "Deformation assisted nucleation of continuous nanoprecipitates in Mg–Al alloys." Materialia 9 (March 2020): 100583. http://dx.doi.org/10.1016/j.mtla.2019.100583.
Full textYang, J. "Atomistic structure and nucleation of nanoprecipitates in thermoelectric PbTe-AgSbTe2composite." Journal of Physics: Conference Series 125 (July 1, 2008): 012061. http://dx.doi.org/10.1088/1742-6596/125/1/012061.
Full textLiu, Xingwei, Xiaoyan Song, Haibin Wang, Chao Hou, Xuemei Liu, and Xilong Wang. "Reinforcement of tungsten carbide grains by nanoprecipitates in cemented carbides." Nanotechnology 27, no. 41 (September 9, 2016): 415710. http://dx.doi.org/10.1088/0957-4484/27/41/415710.
Full textChowdhury, Piyas, Luca Patriarca, Guowu Ren, and Huseyin Sehitoglu. "Molecular dynamics modeling of NiTi superelasticity in presence of nanoprecipitates." International Journal of Plasticity 81 (June 2016): 152–67. http://dx.doi.org/10.1016/j.ijplas.2016.01.011.
Full text