Academic literature on the topic 'Nanophotonic devices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanophotonic devices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nanophotonic devices"
Karabchevsky, Alina, Aviad Katiyi, Angeleene S. Ang, and Adir Hazan. "On-chip nanophotonics and future challenges." Nanophotonics 9, no. 12 (July 13, 2020): 3733–53. http://dx.doi.org/10.1515/nanoph-2020-0204.
Full textBogue, Robert. "Nanophotonic technologies driving innovations in molecular sensing." Sensor Review 38, no. 2 (March 19, 2018): 171–75. http://dx.doi.org/10.1108/sr-07-2017-0124.
Full textAltug, Hatice. "Nanophotonic Metasurfaces for Biosensing and Imaging." EPJ Web of Conferences 215 (2019): 12001. http://dx.doi.org/10.1051/epjconf/201921512001.
Full textZhao, Dong, Zhelin Lin, Wenqi Zhu, Henri J. Lezec, Ting Xu, Amit Agrawal, Cheng Zhang, and Kun Huang. "Recent advances in ultraviolet nanophotonics: from plasmonics and metamaterials to metasurfaces." Nanophotonics 10, no. 9 (May 24, 2021): 2283–308. http://dx.doi.org/10.1515/nanoph-2021-0083.
Full textVan Thourhout, Dries, Thijs Spuesens, Shankar Kumar Selvaraja, Liu Liu, Günther Roelkens, Rajesh Kumar, Geert Morthier, et al. "Nanophotonic Devices for Optical Interconnect." IEEE Journal of Selected Topics in Quantum Electronics 16, no. 5 (September 2010): 1363–75. http://dx.doi.org/10.1109/jstqe.2010.2040711.
Full textMonticone, Francesco, and Andrea Alù. "Metamaterial, plasmonic and nanophotonic devices." Reports on Progress in Physics 80, no. 3 (February 6, 2017): 036401. http://dx.doi.org/10.1088/1361-6633/aa518f.
Full textPARK, Hong-Kyu. "Nanophotonic Devices Using Semiconductor Nanowires." Physics and High Technology 20, no. 9 (September 30, 2011): 27. http://dx.doi.org/10.3938/phit.20.038.
Full textChen, Jianjun, and Kexiu Rong. "Nanophotonic devices and circuits based on colloidal quantum dots." Materials Chemistry Frontiers 5, no. 12 (2021): 4502–37. http://dx.doi.org/10.1039/d0qm01118e.
Full textMeng, Qi, Xingqiao Chen, Wei Xu, Zhihong Zhu, Xiaodong Yuan, and Jianfa Zhang. "High Q Resonant Sb2S3-Lithium Niobate Metasurface for Active Nanophotonics." Nanomaterials 11, no. 9 (September 13, 2021): 2373. http://dx.doi.org/10.3390/nano11092373.
Full textYao, Kan, Rohit Unni, and Yuebing Zheng. "Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale." Nanophotonics 8, no. 3 (January 25, 2019): 339–66. http://dx.doi.org/10.1515/nanoph-2018-0183.
Full textDissertations / Theses on the topic "Nanophotonic devices"
Yu, Renwen. "Toward next-generation nanophotonic devices." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/667314.
Full textEn esta tesis, pretendemos explorar varios diseños novedosos de nanoestructuras basadas en grafeno, con diversas funcionalidades. Tras presentar brevemente los conceptos fundamentales y los modelos teóricos utilizados en esta tesis en el Capítulo 1, en el Capítulo 2 mostramos la posibilidad de describir la respuesta de nanopartículas plasmónicas (incluyendo efectos de retardo) mediante métodos de simulación semi-analíticos sencillos y sin la necesidad de emplear grandes recursos computacionales. Posteriormente, empleamos estos modelos en el desarrollo de un primer tipo de dispositivo: moduladores ópticos. Añadiendo láminas de grafeno acopladas a diferentes tipos de resonadores ópticos, podemos mejorar la intensidad de la luz en el plano del grafeno, y por lo tanto también su nivel de absorción, la cual puede ser modulada a voluntad mediante el nivel de dopado electrostático del grafeno, como se explora en el Capítulo 3. Los modelos empleados predicen cambios en la transmisión del orden de la unidad, produciendo así la absorción total por parte del dispositivo de la luz incidente. En esta clase de dispositivos, así como en todos los dispositivos nanofotónicos, la producción de calor mediante la absorción de la luz puede degradar severamente su rendimiento, así como limitar su vida útil, lo que hace que la manipulación de la fuente y el flujo de calor en la nanoescala sea una componente crucial del desarrollo. En el Capítulo 4, empleamos las extraordinarias propiedades ópticas y térmicas del grafeno para mostrar que puede tener lugar una transferencia ultrarrápida de calor radiativo entre nanoestructuras vecinas, facilitada por los plasmones del grafeno, los cuales a su vez experimentan efectos fototérmicos asociados con este proceso de disipación. Nuestros hallazgos revelan un nuevo régimen para la energía térmica a nanoescala, en la que la transferencia de calor radiativa se convierte en el mecanismo principal de disipación de calor. Además de los daños causados por la deposición de calor, la energía térmica generada puede ser de hecho usada como herramienta para la fotodetección: tal es el caso, por ejemplo, de los bolómetros de silicona, empleados para la fotodetección por infrarrojos. En el Capítulo 5, mostramos que la excitación de un solo plasmón en una unión de grafeno altera radicalmente sus propiedades eléctricas debido al calentamiento óptico. Este hecho puede ser empleado para demostrar el funcionamiento eficaz de un fotodetector en la región media de los infrarrojos a temperatura ambiente, tanto a través de predicciones teóricas como su corroboración experimental (en colaboración con el grupo del Prof. Fengnian Xia de la Universidad de Yale). Finalmente, en el Capítulo 6, mostramos a través de simulaciones mecánico-cuánticas (introducidas en el Capítulo 1), que tanto la respuesta óptica lineal como la no lineal de las nanoestructuras de grafeno pueden ser dramáticamente alteradas por la presencia de una sola molécula vecina que transporte o bien una carga elemental o un dipolo permanente. En base a estos resultados, afirmamos que las estructuras de grafeno nanoscópicas podrían ser una plataforma eficiente para detectar moléculas portadoras de carga o dipolos.
Heucke, Stephan F. "Advancing nanophotonic devices for biomolecular analysis." Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-165294.
Full textGarner, Brett William. "Multifunctional Organic-Inorganic Hybrid Nanophotonic Devices." Thesis, University of North Texas, 2008. https://digital.library.unt.edu/ark:/67531/metadc6108/.
Full textGarner, Brett William Neogi Arup. "Multifunctional organic-inorganic hybrid nanophotonic devices." [Denton, Tex.] : University of North Texas, 2008. http://digital.library.unt.edu/permalink/meta-dc-6108.
Full textJohn, Jimmy. "VO2 nanostructures for dynamically tunable nanophotonic devices." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI044.
Full textInformation has become the most valuable commodity in the world. This drive to the new information age has been propelled by the ability to transmit information faster, at the speed of light. This erupted the need for finer researches on controlling the information carriers more efficiently. With the advancement in this sector, majority of the current technology for controlling the light, face certain roadblocks like size, power consumption and are built to be passive or are restrained technologically to be less active (Si- backed technology). Even though nothing travels faster than light, the real speed at which information can be carried by light is the speed at which we can modulate or control it. My task in this thesis aimed at investigating the potential of VO2, a phase change material, for nano-photonics, with a specific emphasis on how to circumvent the drawbacks of the material and to design and demonstrate efficient integrated devices for efficient manipulation of light both in telecommunication and visible spectrum. In addition to that we experimentally demonstrate the multipolar resonances supported by VO2 nanocrystals (NCs) can be dynamically tuned and switched leveraging phase change property of VO2. And thus achieving the target tailoring of intrinsic property based on Mie formalism by reducing the dimensions of VO2 structures comparable to the wavelength of operation, creating a scope for user defined tunable metamaterial
Deng, Sunan. "Nanophotonic devices based on graphene and carbon nanotubes." Thesis, University of Birmingham, 2016. http://etheses.bham.ac.uk//id/eprint/7041/.
Full textDahal, Rajendra Prasad. "Fabrication and characterization of III-nitride nanophotonic devices." Diss., Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/2198.
Full textNaughton, Jeffrey R. "Neuroelectronic and Nanophotonic Devices Based on Nanocoaxial Arrays." Thesis, Boston College, 2017. http://hdl.handle.net/2345/bc-ir:108037.
Full textThesis advisor: Michael J. Burns
Recent progress in the study of the brain has been greatly facilitated by the development of new measurement tools capable of minimally-invasive, robust coupling to neuronal assemblies. Two prominent examples are the microelectrode array, which enables electrical signals from large numbers of neurons to be detected and spatiotemporally correlated, and optogenetics, which enables the electrical activity of cells to be controlled with light. In the former case, high spatial density is desirable but, as electrode arrays evolve toward higher density and thus smaller pitch, electrical crosstalk increases. In the latter, finer control over light input is desirable, to enable improved studies of neuroelectronic pathways emanating from specific cell stimulation. Herein, we introduce a coaxial electrode architecture that is uniquely suited to address these issues, as it can simultaneously be utilized as an optical waveguide and a shielded electrode in dense arrays
Thesis (PhD) — Boston College, 2017
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
Mangelinckx, Glenn. "Investigation of nanophotonic devices based on transformation optics : Transforming reflective optical devices." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-42442.
Full textKoos, Christian. "Nanophotonic devices for linear and nonlinear optical signal processing." Karlsruhe : Univ.-Verl. Karlsruhe, 2007. http://d-nb.info/987044451/34.
Full textBooks on the topic "Nanophotonic devices"
Ibrahim, Abdulhalim, and ScienceDirect (Online service), eds. Integrated nanophotonic devices. Norwich, N.Y: William Andrew, 2010.
Find full textChen, Charlton J. Precision Tuning of Silicon Nanophotonic Devices through Post-Fabrication Processes. [New York, N.Y.?]: [publisher not identified], 2011.
Find full textM, Razeghi, Brown Gail J, and Society of Photo-optical Instrumentation Engineers., eds. Quantum sensing and nanophotonic devices: 29-25 January, 2004, San Jose, California, USA. Bellingham, Wash: SPIE, 2004.
Find full textservice), SpringerLink (Online, ed. Nanophotonic Fabrication: Self-Assembly and Deposition Techniques. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textM, Razeghi, Brown Gail J, and Society of Photo-optical Instrumentation Engineers., eds. Quantum sensing and nanophotonic devices II: 23-27 January 2005, San Jose, California, USA. Bellingham, Wash: SPIE, 2005.
Find full textSudharsanan, Rengarajan. Quantum sensing and nanophotonic devices V: 20-23 January 2008, San Jose, California, USA. Edited by Society of Photo-optical Instrumentation Engineers. Bellingham, Wash: SPIE, 2008.
Find full textSudharsanan, Rengarajan, Gail J. Brown, and M. Razeghi. Quantum sensing and nanophotonic devices VII: 24-28 January 2010, San Francisco, California, United States. Bellingham, Wash: SPIE, 2010.
Find full text(Society), SPIE, ed. Quantum sensing and nanophotonic devices VI: 25-28 January 2009, San Jose, California, United States. Bellingham, Wash: SPIE, 2009.
Find full textSudharsanan, Rengarajan, Gail J. Brown, and M. Razeghi. Quantum sensing and nanophotonic devices VIII: 23-27 January 2011, San Francisco, California, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2011.
Find full textRazeghi, M. Quantum sensing and nanophotonic devices VI: 25-28 January 2009, San Jose, California, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2009.
Find full textBook chapters on the topic "Nanophotonic devices"
Yao, Kan, and Yuebing Zheng. "Nanophotonic Devices and Platforms." In Springer Series in Optical Sciences, 35–76. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20473-9_2.
Full textLedentsov, N. N. "Ultrafast Nanophotonic Devices For Optical Interconnects." In Future Trends in Microelectronics, 43–48. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470649343.ch3.
Full textYang, Qing, Limin Tong, and Zhong Lin Wang. "Nanophotonic Devices Based on ZnO Nanowires." In Three-Dimensional Nanoarchitectures, 317–62. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9822-4_12.
Full textLedentsov, N. N., V. A. Shchukin, and J. A. Lott. "Ultrafast Nanophotonic Devices for Optical Interconnects." In Future Trends in Microelectronics, 142–59. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118678107.ch11.
Full textYatsui, Takashi, Gyu-Chul Yi, and Motoichi Ohtsu. "Nanophotonic Device Application Using Semiconductor Nanorod Heterostructures." In Semiconductor Nanostructures for Optoelectronic Devices, 279–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22480-5_10.
Full textPernice, Wolfram H. P. "Integrated Optomechanics: Opportunities for Tunable Nanophotonic Devices." In NATO Science for Peace and Security Series B: Physics and Biophysics, 249–56. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9133-5_10.
Full textKantner, Markus, Theresa Höhne, Thomas Koprucki, Sven Burger, Hans-Jürgen Wünsche, Frank Schmidt, Alexander Mielke, and Uwe Bandelow. "Multi-dimensional Modeling and Simulation of Semiconductor Nanophotonic Devices." In Semiconductor Nanophotonics, 241–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35656-9_7.
Full textSharma, Rashi, Stephen M. Kuebler, Christopher N. Grabill, Jennefir L. Digaum, Nicholas R. Kosan, Alexander R. Cockerham, Noel Martinez, and Raymond C. Rumpf. "Fabrication of Functional Nanophotonic Devices via Multiphoton Polymerization." In ACS Symposium Series, 151–71. Washington, DC: American Chemical Society, 2019. http://dx.doi.org/10.1021/bk-2019-1315.ch009.
Full textKolarczik, M., F. Böhm, U. Woggon, N. Owschimikow, A. Pimenov, M. Wolfrum, A. Vladimirov, et al. "Coherent and Incoherent Dynamics in Quantum Dots and Nanophotonic Devices." In Semiconductor Nanophotonics, 91–133. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35656-9_4.
Full textSangu, Suguru, Kiyoshi Kobayashi, Akira Shojiguchi, Tadashi Kawazoe, and Motoichi Ohtsu. "Theory and Principles of Operation of Nanophotonic Functional Devices." In Handbook of Nano-Optics and Nanophotonics, 187–250. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31066-9_6.
Full textConference papers on the topic "Nanophotonic devices"
Atwater, Harry. "Plasmonic Nanophotonic Devices." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/ofc.2010.omh1.
Full textCabrini, Stefano. "Making Nanophotonics Devices a Reality: Nanofabrication of Advanced Nanophotonic Structures." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/cleo_qels.2013.qtu3p.4.
Full textNezhad, Maziar P., Aleksandar Simic, Olesya Bondarenko, Boris A. Slutsky, Amit Mizrahi, and Yeshaiahu Fainman. "Nanophotonic devices and circuits." In SPIE OPTO, edited by Louay A. Eldada and El-Hang Lee. SPIE, 2011. http://dx.doi.org/10.1117/12.877118.
Full textZablocki, Mathew J., Ahmed S. Sharkawy, Ozgenc Ebil, and Dennis W. Prather. "Nanomembrane enabled nanophotonic devices." In OPTO, edited by Joel A. Kubby and Graham T. Reed. SPIE, 2010. http://dx.doi.org/10.1117/12.842670.
Full textBimberg, D., G. Fiol, C. Meuer, M. Laemmlin, and M. Kuntz. "High-frequency nanophotonic devices." In Integrated Optoelectronic Devices 2007, edited by Carmen Mermelstein and David P. Bour. SPIE, 2007. http://dx.doi.org/10.1117/12.714215.
Full textKamp, M., H. Scherer, K. Janiak, H. Heidrich, R. Brenot, G. H. Duan, H. Benisty, and A. Forchel. "Nanophotonic integrated lasers." In Integrated Optoelectronic Devices 2007, edited by Yakov Sidorin and Christoph A. Waechter. SPIE, 2007. http://dx.doi.org/10.1117/12.704965.
Full textRarick, Hannah, Minho Choi, Abhi Saxena, Arnab Manna, David Sharp, Hao Nguyen, Brandi Cossairt, and Arka Majumdar. "Integration of Colloidal PbS Quantum Dots with Silicon Nanophotonics." In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_at.2023.jw2a.121.
Full textYatsui, Takashi, Makoto Naruse, and Motoichi Ohtsu. "Plasmonic circuits for nanophotonic devices." In SPIE Optics + Photonics, edited by Mark I. Stockman. SPIE, 2006. http://dx.doi.org/10.1117/12.680108.
Full textXu, Renjing, Jiong Yang, Shuang Zhang, Jiajie Pei, and Yuerui Lu. "2D materials for nanophotonic devices." In SPIE Micro+Nano Materials, Devices, and Applications, edited by Benjamin J. Eggleton and Stefano Palomba. SPIE, 2015. http://dx.doi.org/10.1117/12.2207750.
Full textAtwater, Harry A. "Design of Tunable Nanophotonic Devices." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_qels.2020.fw3q.1.
Full textReports on the topic "Nanophotonic devices"
Hochberg, Michael. Nanophotonic Devices in Silicon for Nonlinear Optics. Fort Belvoir, VA: Defense Technical Information Center, October 2010. http://dx.doi.org/10.21236/ada562748.
Full textYablonovitch, Eli, and Ming Wu. Nanophotonic Devices; Spontaneous Emission Faster than Stimulated Emission. Fort Belvoir, VA: Defense Technical Information Center, February 2016. http://dx.doi.org/10.21236/ad1003774.
Full textYablonovitch, Eli, and Ming C. Wu. Nanophotonic Devices - Spontaneous Emission Faster than Stimulated Emission. Fort Belvoir, VA: Defense Technical Information Center, November 2014. http://dx.doi.org/10.21236/ad1013190.
Full textHuffaker, Diana L., and Kent D. Choquette. Coupled Quantum Dots and Photonic Crystals for Nanophotonic Devices. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada461030.
Full textFainman, Y. Advanced Fabrication and Characterization of Quantum and Nanophotonic Devices and Systems. Fort Belvoir, VA: Defense Technical Information Center, June 2004. http://dx.doi.org/10.21236/ada428546.
Full textAtwater, Harry A., Axel Scherer, Oskar J. Painter, Eli Yablonovitch, Xiang Zhang, and Federico Capasso. Novel Devices for Plasmonic and Nanophotonic Networks: Exploiting X-ray Wavelengths at Optical Frequencies. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada593919.
Full textDal Negro, Luca. Deterministic Aperiodic Structures for on-chip Nanophotonics and Nanoplasmonics Device Applications. Fort Belvoir, VA: Defense Technical Information Center, April 2013. http://dx.doi.org/10.21236/ada578550.
Full textBrinker, C. Jeffrey, Darren Robert Dunphy, Carlee E. Ashley, Hongyou Fan, DeAnna Lopez, Regina Lynn Simpson, David Robert Tallant, et al. Cell-directed assembly on an integrated nanoelectronic/nanophotonic device for probing cellular responses on the nanoscale. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/883480.
Full text