Academic literature on the topic 'Nanophotonic devices'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanophotonic devices.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nanophotonic devices"

1

Karabchevsky, Alina, Aviad Katiyi, Angeleene S. Ang, and Adir Hazan. "On-chip nanophotonics and future challenges." Nanophotonics 9, no. 12 (July 13, 2020): 3733–53. http://dx.doi.org/10.1515/nanoph-2020-0204.

Full text
Abstract:
AbstractOn-chip nanophotonic devices are a class of devices capable of controlling light on a chip to realize performance advantages over ordinary building blocks of integrated photonics. These ultra-fast and low-power nanoscale optoelectronic devices are aimed at high-performance computing, chemical, and biological sensing technologies, energy-efficient lighting, environmental monitoring and more. They are increasingly becoming an attractive building block in a variety of systems, which is attributed to their unique features of large evanescent field, compactness, and most importantly their ability to be configured according to the required application. This review summarizes recent advances of integrated nanophotonic devices and their demonstrated applications, including but not limited to, mid-infrared and overtone spectroscopy, all-optical processing on a chip, logic gates on a chip, and cryptography on a chip. The reviewed devices open up a new chapter in on-chip nanophotonics and enable the application of optical waveguides in a variety of optical systems, thus are aimed at accelerating the transition of nanophotonics from academia to the industry.
APA, Harvard, Vancouver, ISO, and other styles
2

Bogue, Robert. "Nanophotonic technologies driving innovations in molecular sensing." Sensor Review 38, no. 2 (March 19, 2018): 171–75. http://dx.doi.org/10.1108/sr-07-2017-0124.

Full text
Abstract:
Purpose This paper aims to provide a technical insight into recent molecular sensor developments involving nanophotonic materials and phenomena. Design/methodology/approach Following an introduction, this highlights a selection of recent research activities involving molecular sensors based on nanophotonic technologies. It discusses chemical sensors, gas sensors and finally the role of nanophotonics in Raman spectroscopy. Brief concluding comments are drawn. Findings This shows that nanophotonic technologies are being applied to a diversity of molecular sensors and have the potential to yield devices with enhanced features such as higher sensitivity and reduced size. As several of these sensors can be fabricated with CMOS technology, potential exists for mass-production and significantly reduced costs. Originality/value This article illustrates how emerging nanophotonic technologies are set to enhance the capabilities of a diverse range of molecular sensors.
APA, Harvard, Vancouver, ISO, and other styles
3

Altug, Hatice. "Nanophotonic Metasurfaces for Biosensing and Imaging." EPJ Web of Conferences 215 (2019): 12001. http://dx.doi.org/10.1051/epjconf/201921512001.

Full text
Abstract:
Nanophotonics excels at confining light into nanoscale optical mode volumes and generating dramatically enhanced light matter interactions. These unique aspects have been unveiling a plethora of fundamentally new optical phenomena, yet a critical issue ahead for nanophotonics is the development of novel devices and applications that can take advantage of these nano-scale effects. It is expected that nanophotonics will lead to disruptive technologies in energy harvesting, quantum and integrated photonics, optical computing and including biosensing. To this end, our research is focused on the application of nanophotonics to introduce powerful biosensors that can have impact on a wide range of areas including basic research in life sciences, early disease diagnostics, safety and point-of-care testing. In particular, we exploit nanophotonics and its integration with microfluidics to address key challenges of current biosensors and develop devices that can enable label-free, ultra-sensitive, multiplexed, rapid and real-time measurements on biomolecules, pathogens and living systems. In this talk I will present some of our recent work on nanophotonic meta surfaces for biosensing and bioimaging as well as their applications in real-world settings.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhao, Dong, Zhelin Lin, Wenqi Zhu, Henri J. Lezec, Ting Xu, Amit Agrawal, Cheng Zhang, and Kun Huang. "Recent advances in ultraviolet nanophotonics: from plasmonics and metamaterials to metasurfaces." Nanophotonics 10, no. 9 (May 24, 2021): 2283–308. http://dx.doi.org/10.1515/nanoph-2021-0083.

Full text
Abstract:
Abstract Nanophotonic devices, composed of metals, dielectrics, or semiconductors, enable precise and high-spatial-resolution manipulation of electromagnetic waves by leveraging diverse light–matter interaction mechanisms at subwavelength length scales. Their compact size, light weight, versatile functionality and unprecedented performance are rapidly revolutionizing how optical devices and systems are constructed across the infrared, visible, and ultraviolet spectra. Here, we review recent advances and future opportunities of nanophotonic elements operating in the ultraviolet spectral region, which include plasmonic devices, optical metamaterials, and optical metasurfaces. We discuss their working principles, material platforms, fabrication, and characterization techniques, followed by representative device applications across various interdisciplinary areas such as imaging, sensing and spectroscopy. We conclude this review by elaborating on future opportunities and challenges for ultraviolet nanophotonic devices.
APA, Harvard, Vancouver, ISO, and other styles
5

Van Thourhout, Dries, Thijs Spuesens, Shankar Kumar Selvaraja, Liu Liu, Günther Roelkens, Rajesh Kumar, Geert Morthier, et al. "Nanophotonic Devices for Optical Interconnect." IEEE Journal of Selected Topics in Quantum Electronics 16, no. 5 (September 2010): 1363–75. http://dx.doi.org/10.1109/jstqe.2010.2040711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Monticone, Francesco, and Andrea Alù. "Metamaterial, plasmonic and nanophotonic devices." Reports on Progress in Physics 80, no. 3 (February 6, 2017): 036401. http://dx.doi.org/10.1088/1361-6633/aa518f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

PARK, Hong-Kyu. "Nanophotonic Devices Using Semiconductor Nanowires." Physics and High Technology 20, no. 9 (September 30, 2011): 27. http://dx.doi.org/10.3938/phit.20.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Jianjun, and Kexiu Rong. "Nanophotonic devices and circuits based on colloidal quantum dots." Materials Chemistry Frontiers 5, no. 12 (2021): 4502–37. http://dx.doi.org/10.1039/d0qm01118e.

Full text
Abstract:
Colloidal quantum dots provide a powerful platform to achieve numerous classes of solution-processed photonic devices. This review summarizes the recent progress in CQD-based passive and active nanophotonic devices as well as nanophotonic circuits.
APA, Harvard, Vancouver, ISO, and other styles
9

Meng, Qi, Xingqiao Chen, Wei Xu, Zhihong Zhu, Xiaodong Yuan, and Jianfa Zhang. "High Q Resonant Sb2S3-Lithium Niobate Metasurface for Active Nanophotonics." Nanomaterials 11, no. 9 (September 13, 2021): 2373. http://dx.doi.org/10.3390/nano11092373.

Full text
Abstract:
Phase change materials (PCMs) are attracting more and more attentions as enabling materials for tunable nanophotonics. They can be processed into functional photonic devices through customized laser writing, providing great flexibility for fabrication and reconfiguration. Lithium Niobate (LN) has excellent nonlinear and electro-optical properties, but is difficult to process, which limits its application in nanophotonic devices. In this paper, we combine the emerging low-loss phase change material Sb2S3 with LN and propose a new type of high Q resonant metasurface. Simulation results show that the Sb2S3-LN metasurface has extremely narrow linewidth of 0.096 nm and high quality (Q) factor of 15,964. With LN as the waveguide layer, strong nonlinear properties are observed in the hybrid metasurface, which can be employed for optical switches and isolators. By adding a pair of Au electrodes on both sides of the LN, we can realize dynamic electro-optical control of the resonant metasurface. The ultra-low loss of Sb2S3, and its combination with LN, makes it possible to realize a new family of high Q resonant metasurfaces for actively tunable nanophotonic devices with widespread applications including optical switching, light modulation, dynamic beam steering, optical phased array and so on.
APA, Harvard, Vancouver, ISO, and other styles
10

Yao, Kan, Rohit Unni, and Yuebing Zheng. "Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale." Nanophotonics 8, no. 3 (January 25, 2019): 339–66. http://dx.doi.org/10.1515/nanoph-2018-0183.

Full text
Abstract:
AbstractNanophotonics has been an active research field over the past two decades, triggered by the rising interests in exploring new physics and technologies with light at the nanoscale. As the demands of performance and integration level keep increasing, the design and optimization of nanophotonic devices become computationally expensive and time-inefficient. Advanced computational methods and artificial intelligence, especially its subfield of machine learning, have led to revolutionary development in many applications, such as web searches, computer vision, and speech/image recognition. The complex models and algorithms help to exploit the enormous parameter space in a highly efficient way. In this review, we summarize the recent advances on the emerging field where nanophotonics and machine learning blend. We provide an overview of different computational methods, with the focus on deep learning, for the nanophotonic inverse design. The implementation of deep neural networks with photonic platforms is also discussed. This review aims at sketching an illustration of the nanophotonic design with machine learning and giving a perspective on the future tasks.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Nanophotonic devices"

1

Yu, Renwen. "Toward next-generation nanophotonic devices." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/667314.

Full text
Abstract:
In this thesis, we aim to explore several novel designs of nanostructures based on graphene to realize various functionalities. We briefly introduce the fundamental concepts and theoretical models used in this thesis in Chapter 1. Following the macroscopic analytical method outlined in the first chapter, in Chapter 2 we show that simple simulation methods allow us to accurately describe the optical response of plasmonic nanoparticles, including retardation effects, without the requirement of large computational resources. We then move to our proposed first type of device: optical modulators. We explore graphene sheets coupled to different kinds of optical resonators to enhance the light intensity at the graphene plane, and so also its absorption, which can be switched on/off and modulated through varying the level of doping, as explored in Chapter 3. Unity-order changes in the transmission and absorption of incident light are predicted upon electrical doping of graphene. Heat deposition via light absorption can severely degrade the performance and limit the lifetime of nano-devices (e.g., aforementioned optical modulators), which makes the manipulation of nanoscale heat sources/flows become crucial. In Chapter 4, we exploit the extraordinary optical and thermal properties of graphene to show that ultrafast radiative heat transfer can take place between neighboring nanostructures facilitated by graphene plasmons, where photothermally induced effects on graphene plasmons are taken into account. Our findings reveal a new regime for the nanoscale thermal management, in which non-contact heat transfer becomes a leading mechanism of heat dissipation. Apart from the damage caused by heat deposition, generated thermal energy can be in fact used as a tool for photodetection (e.g., silicon bolometers for infrared photodetection). In Chapter 5, we show that the excitation of a single plasmon in a graphene nanojunction produces profound modifications in its electrical properties through optical heating, which we then use to demonstrate an efficient mid-infrared photodetector working at room temperature based on theoretical predictions that are corroborated in an experimental collaboration with the group of Prof. Fengnian Xia in Yale University. Finally, in Chapter 6, we show through microscopic quantum-mechanical simulations, introduced in the first chapter, that both the linear and nonlinear optical responses of graphene nanostructures can be dramatically altered by the presence of a single neighboring molecule that carries either an elementary charge or a small permanent dipole. Based on these results, we claim that nanographenes can serve as an efficient platform for detecting charge- or dipole-carrying molecules.
En esta tesis, pretendemos explorar varios diseños novedosos de nanoestructuras basadas en grafeno, con diversas funcionalidades. Tras presentar brevemente los conceptos fundamentales y los modelos teóricos utilizados en esta tesis en el Capítulo 1, en el Capítulo 2 mostramos la posibilidad de describir la respuesta de nanopartículas plasmónicas (incluyendo efectos de retardo) mediante métodos de simulación semi-analíticos sencillos y sin la necesidad de emplear grandes recursos computacionales. Posteriormente, empleamos estos modelos en el desarrollo de un primer tipo de dispositivo: moduladores ópticos. Añadiendo láminas de grafeno acopladas a diferentes tipos de resonadores ópticos, podemos mejorar la intensidad de la luz en el plano del grafeno, y por lo tanto también su nivel de absorción, la cual puede ser modulada a voluntad mediante el nivel de dopado electrostático del grafeno, como se explora en el Capítulo 3. Los modelos empleados predicen cambios en la transmisión del orden de la unidad, produciendo así la absorción total por parte del dispositivo de la luz incidente. En esta clase de dispositivos, así como en todos los dispositivos nanofotónicos, la producción de calor mediante la absorción de la luz puede degradar severamente su rendimiento, así como limitar su vida útil, lo que hace que la manipulación de la fuente y el flujo de calor en la nanoescala sea una componente crucial del desarrollo. En el Capítulo 4, empleamos las extraordinarias propiedades ópticas y térmicas del grafeno para mostrar que puede tener lugar una transferencia ultrarrápida de calor radiativo entre nanoestructuras vecinas, facilitada por los plasmones del grafeno, los cuales a su vez experimentan efectos fototérmicos asociados con este proceso de disipación. Nuestros hallazgos revelan un nuevo régimen para la energía térmica a nanoescala, en la que la transferencia de calor radiativa se convierte en el mecanismo principal de disipación de calor. Además de los daños causados por la deposición de calor, la energía térmica generada puede ser de hecho usada como herramienta para la fotodetección: tal es el caso, por ejemplo, de los bolómetros de silicona, empleados para la fotodetección por infrarrojos. En el Capítulo 5, mostramos que la excitación de un solo plasmón en una unión de grafeno altera radicalmente sus propiedades eléctricas debido al calentamiento óptico. Este hecho puede ser empleado para demostrar el funcionamiento eficaz de un fotodetector en la región media de los infrarrojos a temperatura ambiente, tanto a través de predicciones teóricas como su corroboración experimental (en colaboración con el grupo del Prof. Fengnian Xia de la Universidad de Yale). Finalmente, en el Capítulo 6, mostramos a través de simulaciones mecánico-cuánticas (introducidas en el Capítulo 1), que tanto la respuesta óptica lineal como la no lineal de las nanoestructuras de grafeno pueden ser dramáticamente alteradas por la presencia de una sola molécula vecina que transporte o bien una carga elemental o un dipolo permanente. En base a estos resultados, afirmamos que las estructuras de grafeno nanoscópicas podrían ser una plataforma eficiente para detectar moléculas portadoras de carga o dipolos.
APA, Harvard, Vancouver, ISO, and other styles
2

Heucke, Stephan F. "Advancing nanophotonic devices for biomolecular analysis." Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-165294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Garner, Brett William. "Multifunctional Organic-Inorganic Hybrid Nanophotonic Devices." Thesis, University of North Texas, 2008. https://digital.library.unt.edu/ark:/67531/metadc6108/.

Full text
Abstract:
The emergence of optical applications, such as lasers, fiber optics, and semiconductor based sources and detectors, has created a drive for smaller and more specialized devices. Nanophotonics is an emerging field of study that encompasses the disciplines of physics, engineering, chemistry, biology, applied sciences and biomedical technology. In particular, nanophotonics explores optical processes on a nanoscale. This dissertation presents nanophotonic applications that incorporate various forms of the organic polymer N-isopropylacrylamide (NIPA) with inorganic semiconductors. This includes the material characterization of NIPA, with such techniques as ellipsometry and dynamic light scattering. Two devices were constructed incorporating the NIPA hydrogel with semiconductors. The first device comprises a PNIPAM-CdTe hybrid material. The PNIPAM is a means for the control of distances between CdTe quantum dots encapsulated within the hydrogel. Controlling the distance between the quantum dots allows for the control of resonant energy transfer between neighboring quantum dots. Whereby, providing a means for controlling the temperature dependent red-shifts in photoluminescent peaks and FWHM. Further, enhancement of photoluminescent due to increased scattering in the medium is shown as a function of temperature. The second device incorporates NIPA into a 2D photonic crystal patterned on GaAs. The refractive index change of the NIPA hydrogel as it undergoes its phase change creates a controllable mechanism for adjusting the transmittance of light frequencies through a linear defect in a photonic crystal. The NIPA infiltrated photonic crystal shows greater shifts in the bandwidth per ºC than any liquid crystal methods. This dissertation demonstrates the versatile uses of hydrogel, as a means of control in nanophotonic devices, and will likely lead to development of other hybrid applications. The development of smaller light based applications will facilitate the need to augment the devices with control mechanism and will play an increasing important role in the future.
APA, Harvard, Vancouver, ISO, and other styles
4

Garner, Brett William Neogi Arup. "Multifunctional organic-inorganic hybrid nanophotonic devices." [Denton, Tex.] : University of North Texas, 2008. http://digital.library.unt.edu/permalink/meta-dc-6108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

John, Jimmy. "VO2 nanostructures for dynamically tunable nanophotonic devices." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI044.

Full text
Abstract:
L'information est devenue le bien le plus précieux au monde. Ce mouvement vers la nouvelle ère de l'information a été propulsé par la capacité à transmettre l'information plus rapidement, à la vitesse de la lumière. Il est donc apparu nécessaire de mener des recherches plus poussées pour contrôler plus efficacement les supports d'information. Avec les progrès réalisés dans ce secteur, la plupart des technologies actuelles de contrôle de la lumière se heurtent à certains obstacles tels que la taille et la consommation d'énergie et sont conçues pour être passives ou sont limitées technologiquement pour être moins actives (technologie Si-back). Même si rien ne voyage plus vite que la lumière, la vitesse réelle à laquelle les informations peuvent être transportées par la lumière est la vitesse à laquelle nous pouvons la moduler ou la contrôler. Ma tâche dans cette thèse visait à étudier le potentiel du VO2, un matériau à changement de phase, pour la nano-photonique, avec un accent particulier sur la façon de contourner les inconvénients du matériau et de concevoir et démontrer des dispositifs intégrés efficaces pour une manipulation efficace de la lumière à la fois dans les télécommunications et le spectre visible. En outre, nous démontrons expérimentalement que les résonances multipolaires supportées par les nanocristaux de VO2 (NC) peuvent être réglées et commutées dynamiquement en exploitant la propriété de changement de phase du VO2. Et ainsi atteindre l'objectif d'adaptation de la propriété intrinsèque basée sur le formalisme de Mie en réduisant les dimensions des structures de VO2 comparables à la longueur d'onde de fonctionnement, créant un champ d'application pour un métamatériau accordable défini par l'utilisateur
Information has become the most valuable commodity in the world. This drive to the new information age has been propelled by the ability to transmit information faster, at the speed of light. This erupted the need for finer researches on controlling the information carriers more efficiently. With the advancement in this sector, majority of the current technology for controlling the light, face certain roadblocks like size, power consumption and are built to be passive or are restrained technologically to be less active (Si- backed technology). Even though nothing travels faster than light, the real speed at which information can be carried by light is the speed at which we can modulate or control it. My task in this thesis aimed at investigating the potential of VO2, a phase change material, for nano-photonics, with a specific emphasis on how to circumvent the drawbacks of the material and to design and demonstrate efficient integrated devices for efficient manipulation of light both in telecommunication and visible spectrum. In addition to that we experimentally demonstrate the multipolar resonances supported by VO2 nanocrystals (NCs) can be dynamically tuned and switched leveraging phase change property of VO2. And thus achieving the target tailoring of intrinsic property based on Mie formalism by reducing the dimensions of VO2 structures comparable to the wavelength of operation, creating a scope for user defined tunable metamaterial
APA, Harvard, Vancouver, ISO, and other styles
6

Deng, Sunan. "Nanophotonic devices based on graphene and carbon nanotubes." Thesis, University of Birmingham, 2016. http://etheses.bham.ac.uk//id/eprint/7041/.

Full text
Abstract:
The research presented in the thesis includes the modelling and characterization of the novel devices based on graphene and carbon nanotube (CNT)-based buckypaper. The devices have great potential to be used in applications such as photovoltaics, optical communications/imaging and sensors for oil and gas industry. Graphene is a promising material with excellent optical and electrical properties. Research was carried out in utilizing graphene for photonic and plasmonic devices, including ultra-thin flat lens, plasmonic lens, and oil sensor. Buckypaper extends the applications of CNTs’ excellent properties from nanoscale to microscale. This opportunity was explored in the development of ultra-thin flat lens.
APA, Harvard, Vancouver, ISO, and other styles
7

Dahal, Rajendra Prasad. "Fabrication and characterization of III-nitride nanophotonic devices." Diss., Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/2198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Naughton, Jeffrey R. "Neuroelectronic and Nanophotonic Devices Based on Nanocoaxial Arrays." Thesis, Boston College, 2017. http://hdl.handle.net/2345/bc-ir:108037.

Full text
Abstract:
Thesis advisor: Michael J. Naughton
Thesis advisor: Michael J. Burns
Recent progress in the study of the brain has been greatly facilitated by the development of new measurement tools capable of minimally-invasive, robust coupling to neuronal assemblies. Two prominent examples are the microelectrode array, which enables electrical signals from large numbers of neurons to be detected and spatiotemporally correlated, and optogenetics, which enables the electrical activity of cells to be controlled with light. In the former case, high spatial density is desirable but, as electrode arrays evolve toward higher density and thus smaller pitch, electrical crosstalk increases. In the latter, finer control over light input is desirable, to enable improved studies of neuroelectronic pathways emanating from specific cell stimulation. Herein, we introduce a coaxial electrode architecture that is uniquely suited to address these issues, as it can simultaneously be utilized as an optical waveguide and a shielded electrode in dense arrays
Thesis (PhD) — Boston College, 2017
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
APA, Harvard, Vancouver, ISO, and other styles
9

Mangelinckx, Glenn. "Investigation of nanophotonic devices based on transformation optics : Transforming reflective optical devices." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-42442.

Full text
Abstract:
Transformation optics (TO), which provides an elegant way of molding the flow of light to one's wishes, has become one of the most popular photonics research areas during the last few years. Owing to stringent material parameters of transformation media, TO is in general not favourable for designing practical applications. The recent proposal of carpet cloak, a device that optically hides an anomaly on an otherwise at reflective surface, simplifies material requirements due to the relaxed boundary condition on the cloak's reflective border, thus providing the prospect of realization at optical wavelength. In light of this approach, this thesis introduces a general procedure for transforming reflective optical devices, including in particular focal mirrors and diraction gratings. The curved or zigzagged surfaces of such devices are attened through a smooth coordinate mapping which makes convenient use of the loose boundary conditions on the reflective surface. The resulting devices are transformation media without extreme material parameters. For two-dimensional structures, it is even possible to attain an approximate dielectric-only implementation when considering only transverse-electric or transverse-magnetic incidence. The flattened reflective devices are finally adapted to operate in a transmission mode, creating focal lenses and transmissive diffraction gratings. It is illustrated through full-wave simulation that the performance of these transformation optical devices - under the right circumstances also for the dielectric only implementations - surpasses their traditional equivalents.
APA, Harvard, Vancouver, ISO, and other styles
10

Koos, Christian. "Nanophotonic devices for linear and nonlinear optical signal processing." Karlsruhe : Univ.-Verl. Karlsruhe, 2007. http://d-nb.info/987044451/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Nanophotonic devices"

1

Ibrahim, Abdulhalim, and ScienceDirect (Online service), eds. Integrated nanophotonic devices. Norwich, N.Y: William Andrew, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Charlton J. Precision Tuning of Silicon Nanophotonic Devices through Post-Fabrication Processes. [New York, N.Y.?]: [publisher not identified], 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

M, Razeghi, Brown Gail J, and Society of Photo-optical Instrumentation Engineers., eds. Quantum sensing and nanophotonic devices: 29-25 January, 2004, San Jose, California, USA. Bellingham, Wash: SPIE, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

service), SpringerLink (Online, ed. Nanophotonic Fabrication: Self-Assembly and Deposition Techniques. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

M, Razeghi, Brown Gail J, and Society of Photo-optical Instrumentation Engineers., eds. Quantum sensing and nanophotonic devices II: 23-27 January 2005, San Jose, California, USA. Bellingham, Wash: SPIE, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sudharsanan, Rengarajan. Quantum sensing and nanophotonic devices V: 20-23 January 2008, San Jose, California, USA. Edited by Society of Photo-optical Instrumentation Engineers. Bellingham, Wash: SPIE, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sudharsanan, Rengarajan, Gail J. Brown, and M. Razeghi. Quantum sensing and nanophotonic devices VII: 24-28 January 2010, San Francisco, California, United States. Bellingham, Wash: SPIE, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

(Society), SPIE, ed. Quantum sensing and nanophotonic devices VI: 25-28 January 2009, San Jose, California, United States. Bellingham, Wash: SPIE, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sudharsanan, Rengarajan, Gail J. Brown, and M. Razeghi. Quantum sensing and nanophotonic devices VIII: 23-27 January 2011, San Francisco, California, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Razeghi, M. Quantum sensing and nanophotonic devices VI: 25-28 January 2009, San Jose, California, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Nanophotonic devices"

1

Yao, Kan, and Yuebing Zheng. "Nanophotonic Devices and Platforms." In Springer Series in Optical Sciences, 35–76. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20473-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ledentsov, N. N. "Ultrafast Nanophotonic Devices For Optical Interconnects." In Future Trends in Microelectronics, 43–48. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470649343.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Qing, Limin Tong, and Zhong Lin Wang. "Nanophotonic Devices Based on ZnO Nanowires." In Three-Dimensional Nanoarchitectures, 317–62. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9822-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ledentsov, N. N., V. A. Shchukin, and J. A. Lott. "Ultrafast Nanophotonic Devices for Optical Interconnects." In Future Trends in Microelectronics, 142–59. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118678107.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yatsui, Takashi, Gyu-Chul Yi, and Motoichi Ohtsu. "Nanophotonic Device Application Using Semiconductor Nanorod Heterostructures." In Semiconductor Nanostructures for Optoelectronic Devices, 279–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22480-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pernice, Wolfram H. P. "Integrated Optomechanics: Opportunities for Tunable Nanophotonic Devices." In NATO Science for Peace and Security Series B: Physics and Biophysics, 249–56. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9133-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kantner, Markus, Theresa Höhne, Thomas Koprucki, Sven Burger, Hans-Jürgen Wünsche, Frank Schmidt, Alexander Mielke, and Uwe Bandelow. "Multi-dimensional Modeling and Simulation of Semiconductor Nanophotonic Devices." In Semiconductor Nanophotonics, 241–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35656-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sharma, Rashi, Stephen M. Kuebler, Christopher N. Grabill, Jennefir L. Digaum, Nicholas R. Kosan, Alexander R. Cockerham, Noel Martinez, and Raymond C. Rumpf. "Fabrication of Functional Nanophotonic Devices via Multiphoton Polymerization." In ACS Symposium Series, 151–71. Washington, DC: American Chemical Society, 2019. http://dx.doi.org/10.1021/bk-2019-1315.ch009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kolarczik, M., F. Böhm, U. Woggon, N. Owschimikow, A. Pimenov, M. Wolfrum, A. Vladimirov, et al. "Coherent and Incoherent Dynamics in Quantum Dots and Nanophotonic Devices." In Semiconductor Nanophotonics, 91–133. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35656-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sangu, Suguru, Kiyoshi Kobayashi, Akira Shojiguchi, Tadashi Kawazoe, and Motoichi Ohtsu. "Theory and Principles of Operation of Nanophotonic Functional Devices." In Handbook of Nano-Optics and Nanophotonics, 187–250. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31066-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nanophotonic devices"

1

Atwater, Harry. "Plasmonic Nanophotonic Devices." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/ofc.2010.omh1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cabrini, Stefano. "Making Nanophotonics Devices a Reality: Nanofabrication of Advanced Nanophotonic Structures." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/cleo_qels.2013.qtu3p.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nezhad, Maziar P., Aleksandar Simic, Olesya Bondarenko, Boris A. Slutsky, Amit Mizrahi, and Yeshaiahu Fainman. "Nanophotonic devices and circuits." In SPIE OPTO, edited by Louay A. Eldada and El-Hang Lee. SPIE, 2011. http://dx.doi.org/10.1117/12.877118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zablocki, Mathew J., Ahmed S. Sharkawy, Ozgenc Ebil, and Dennis W. Prather. "Nanomembrane enabled nanophotonic devices." In OPTO, edited by Joel A. Kubby and Graham T. Reed. SPIE, 2010. http://dx.doi.org/10.1117/12.842670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bimberg, D., G. Fiol, C. Meuer, M. Laemmlin, and M. Kuntz. "High-frequency nanophotonic devices." In Integrated Optoelectronic Devices 2007, edited by Carmen Mermelstein and David P. Bour. SPIE, 2007. http://dx.doi.org/10.1117/12.714215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kamp, M., H. Scherer, K. Janiak, H. Heidrich, R. Brenot, G. H. Duan, H. Benisty, and A. Forchel. "Nanophotonic integrated lasers." In Integrated Optoelectronic Devices 2007, edited by Yakov Sidorin and Christoph A. Waechter. SPIE, 2007. http://dx.doi.org/10.1117/12.704965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rarick, Hannah, Minho Choi, Abhi Saxena, Arnab Manna, David Sharp, Hao Nguyen, Brandi Cossairt, and Arka Majumdar. "Integration of Colloidal PbS Quantum Dots with Silicon Nanophotonics." In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_at.2023.jw2a.121.

Full text
Abstract:
Silicon nanophotonics lacks light sources needed for on-chip applications like ultra-low-power lasing. In this work, we demonstrate integration and room temperature operation of PbS colloidal quantum dots coupled to silicon nanophotonic devices.
APA, Harvard, Vancouver, ISO, and other styles
8

Yatsui, Takashi, Makoto Naruse, and Motoichi Ohtsu. "Plasmonic circuits for nanophotonic devices." In SPIE Optics + Photonics, edited by Mark I. Stockman. SPIE, 2006. http://dx.doi.org/10.1117/12.680108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Xu, Renjing, Jiong Yang, Shuang Zhang, Jiajie Pei, and Yuerui Lu. "2D materials for nanophotonic devices." In SPIE Micro+Nano Materials, Devices, and Applications, edited by Benjamin J. Eggleton and Stefano Palomba. SPIE, 2015. http://dx.doi.org/10.1117/12.2207750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Atwater, Harry A. "Design of Tunable Nanophotonic Devices." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_qels.2020.fw3q.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Nanophotonic devices"

1

Hochberg, Michael. Nanophotonic Devices in Silicon for Nonlinear Optics. Fort Belvoir, VA: Defense Technical Information Center, October 2010. http://dx.doi.org/10.21236/ada562748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yablonovitch, Eli, and Ming Wu. Nanophotonic Devices; Spontaneous Emission Faster than Stimulated Emission. Fort Belvoir, VA: Defense Technical Information Center, February 2016. http://dx.doi.org/10.21236/ad1003774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yablonovitch, Eli, and Ming C. Wu. Nanophotonic Devices - Spontaneous Emission Faster than Stimulated Emission. Fort Belvoir, VA: Defense Technical Information Center, November 2014. http://dx.doi.org/10.21236/ad1013190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Huffaker, Diana L., and Kent D. Choquette. Coupled Quantum Dots and Photonic Crystals for Nanophotonic Devices. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada461030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fainman, Y. Advanced Fabrication and Characterization of Quantum and Nanophotonic Devices and Systems. Fort Belvoir, VA: Defense Technical Information Center, June 2004. http://dx.doi.org/10.21236/ada428546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Atwater, Harry A., Axel Scherer, Oskar J. Painter, Eli Yablonovitch, Xiang Zhang, and Federico Capasso. Novel Devices for Plasmonic and Nanophotonic Networks: Exploiting X-ray Wavelengths at Optical Frequencies. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada593919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dal Negro, Luca. Deterministic Aperiodic Structures for on-chip Nanophotonics and Nanoplasmonics Device Applications. Fort Belvoir, VA: Defense Technical Information Center, April 2013. http://dx.doi.org/10.21236/ada578550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brinker, C. Jeffrey, Darren Robert Dunphy, Carlee E. Ashley, Hongyou Fan, DeAnna Lopez, Regina Lynn Simpson, David Robert Tallant, et al. Cell-directed assembly on an integrated nanoelectronic/nanophotonic device for probing cellular responses on the nanoscale. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/883480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography