Journal articles on the topic 'Nanophotonic detection method'

To see the other types of publications on this topic, follow the link: Nanophotonic detection method.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 15 journal articles for your research on the topic 'Nanophotonic detection method.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Gómez-Gómez, Maribel, Ángela Ruiz-Tórtola, Daniel González-Lucas, María-José Bañuls, and Jaime García-Rupérez. "New Method for Online Regeneration of Silicon-Based Nanophotonic Biosensors." Proceedings 4, no. 1 (November 14, 2018): 22. http://dx.doi.org/10.3390/ecsa-5-05741.

Full text
Abstract:
The optimal development of biosensors is a costly and time-consuming task, since an enormous amount of experiments is required. Therefore, the possibility of reusing the biosensors is highly desirable. In this work, a protocol based on the use of formamide for the regeneration of nanophotonic biosensors used for oligonucleotides detection is presented. This protocol was carried out online using the microfluidic system used to drive the target samples to the nanophotonic biosensor, thus allowing the possibility of running several experiments in a row using the same biosensor.
APA, Harvard, Vancouver, ISO, and other styles
2

Sushko, O. A., O. M. Bilash, and M. M. Rozhitskii. "115 Detection of organic carcinogens in water by nanophotonic method." Photodiagnosis and Photodynamic Therapy 9 (August 2012): S39. http://dx.doi.org/10.1016/s1572-1000(12)70116-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hoang, Thi Hong Cam, Thanh Binh Pham, Thuy Van Nguyen, Van Dai Pham, Huy Bui, Van Hoi Pham, Elena Duran, et al. "Hybrid Integrated Nanophotonic Silicon-based Structures." Communications in Physics 29, no. 4 (December 16, 2019): 481. http://dx.doi.org/10.15625/0868-3166/29/4/13855.

Full text
Abstract:
We report nanophotonic silicon-based devices for hybrid integration: 1D photonic crystal (PhC) on optical fiber, i. e. fiber Bragg grating (FBG) sensing probe integrated in fiber laser structure for chemical sensors and slotted planar 2D PhC cavity combined with carbon nanotube (CNT) towards light nanosources. The experiments have been carried out by integrating 1D PhC on optical fiber in fiber laser structure. This structure possesses many advantages including high resolution for wavelength shift, high optical signal-to-noise ratio (OSNR) of about 50~dB, the small full width at half-maximum (FWHM) of about 0.014~nm therefore its accuracy is enhanced, as well as the precision and capability are achieved for remote sensing. Low nitrate concentration in water from 0 to 80 ppm has been used to demonstrate its sensing ability in the experiment. The proposed sensor can work with good repeatability, rapid response, and its sensitivity can be obtained of \(3.2\times 10^{ - 3}\) nm/ppm with the limit of detection (LOD) of 3~ppm. For 2D PhC cavity, enhancement of photoluminescence of CNT emission is observed. The semiconducting single-walled carbon nanotubes (s-SWNTs) solution was prepared by polymer-sorted method and coupled with the confined modes in silicon slotted PhC cavities. The enhancement ratio of 1.15 is obtained by comparing between the PL peaks at two confined modes of the cavity. The PL enhancement result of the integrated system shows the potential for the realization of on-chip nanoscale sources.
APA, Harvard, Vancouver, ISO, and other styles
4

Leitis, Aleksandrs, Andreas Tittl, Mingkai Liu, Bang Hyun Lee, Man Bock Gu, Yuri S. Kivshar, and Hatice Altug. "Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval." Science Advances 5, no. 5 (May 2019): eaaw2871. http://dx.doi.org/10.1126/sciadv.aaw2871.

Full text
Abstract:
Infrared spectroscopy resolves the structure of molecules by detecting their characteristic vibrational fingerprints. Subwavelength light confinement and nanophotonic enhancement have extended the scope of this technique for monolayer studies. However, current approaches still require complex spectroscopic equipment or tunable light sources. Here, we introduce a novel metasurface-based method for detecting molecular absorption fingerprints over a broad spectrum, which combines the device-level simplicity of state-of-the-art angle-scanning refractometric sensors with the chemical specificity of infrared spectroscopy. Specifically, we develop germanium-based high-Q metasurfaces capable of delivering a multitude of spectrally selective and surface-sensitive resonances between 1100 and 1800 cm−1. We use this approach to detect distinct absorption signatures of different interacting analytes including proteins, aptamers, and polylysine. In combination with broadband incoherent illumination and detection, our method correlates the total reflectance signal at each incidence angle with the strength of the molecular absorption, enabling spectrometer-less operation in a compact angle-scanning configuration ideally suited for field-deployable applications.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Yushuang, Jie Chen, Cheng Chen, Tengfei Xu, Heng Gao, Zhuo Dong, Yan Zhang, et al. "Infrared photodetector based on 2D monoclinic gold phosphide nanosheets yielded from one-step chemical vapor transport deposition." Applied Physics Letters 120, no. 13 (March 28, 2022): 131104. http://dx.doi.org/10.1063/5.0086166.

Full text
Abstract:
Infrared detection by binary phosphides is of great interest due to their high carrier mobility, excellent stability, and high absorbance coefficient, as they have a wide range of applications in civil and military fields. As the only metastable phase in gold phosphide, Au2P3 has attracted great attention in fundamental research and optoelectronic applications. Here, we synthesized high-quality and environmentally stable Au2P3 nanosheets through a modified facile one-step mineralization-assisted chemical vapor transport method. Through systematic infrared photoluminescence characterizations, it is found that the as-synthesized Au2P3 nanosheets display an impressive mid-infrared luminescence band centered at about 6.64 μm (0.187 eV) at room temperature. Furthermore, Au2P3-based self-powered photodetectors display outstanding infrared detection performance with D* = 2.9 × 1010 Jones at 1550 nm and D* = 1.9 × 108 Jones at 2611 nm, respectively. Our results suggest that the synthesized Au2P3 nanosheets could be promising candidates for future chip-based infrared nanophotonic and optoelectronic circuitry.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhou, Changyu, Youpeng Xie, Jianxin Ren, Zepeng Wei, Luping Du, Qiang Zhang, Zhenwei Xie, Bo Liu, Ting Lei, and Xiaocong Yuan. "Spin separation based on-chip optical polarimeter via inverse design." Nanophotonics 11, no. 4 (October 14, 2021): 813–19. http://dx.doi.org/10.1515/nanoph-2021-0455.

Full text
Abstract:
Abstract Polarimetry has been demonstrated essential in various disciplines, such as optical communications, imaging, and astronomy. On-chip nanostructures for polarization measurements are most expected to replace the conventional bulk elements, and hence minimize the polarimeter for integrated applications. Some on-chip nanophotonic polarimeter via polarization detection has been implemented, in which the separation of two spin polarized states is needed. However, due to the relatively low coupling efficiency or complicated photonic silicon circuits, on-chip polarimetry using a single device still remains challenging. Here, we introduce and investigate an on-chip polarimeter with nanostructures using the inverse design method. The developed device shows the ability to detect the four polarization components of light, two of which are the spin polarizations, and the other two are the linear polarizations. The retrieved Stokes parameters with experimentally tested data are in close agreement with the numerical results. We also show the proof of concept demonstration for high-speed Stokes vector optical signals detection. In the high-speed communication experiment with data rate up to 16 GBd, the detected optical signals via polarization measurements at multiple wavelengths in the C-band were recovered with the bit error rate below the 20% forward error correction threshold. The proposed on-chip polarimeter shows promising performance both in Stokes polarimetry and high-speed optical communication applications.
APA, Harvard, Vancouver, ISO, and other styles
7

Gaddam Kesava Reddy, Rajini, Sharmila Ashok kumar, and Sankardoss Varadhan. "Design and simulation of bio fluidic sensor based on photonic crystal." International Journal of Engineering & Technology 3, no. 2 (March 25, 2014): 106. http://dx.doi.org/10.14419/ijet.v3i2.1691.

Full text
Abstract:
Photonic crystals are materials patterned with a periodicity in dielectric constant in one, two and three dimensions and associated with Bragg scattering which can create range of forbidden frequencies called Photonic Band Gap (PBG). By optimizing various parameters and creating defects, we will review the design and characterization of waveguides, optical cavities and multi-fluidic channel devices. We have used such waveguides and laser nanocavities as Biosensor, in which field intensity is strongly dependent on the type of biofliud and its refractive index. This design and simulation technique leads to development of a nanophotonic sensor for detection of biofluids. In this paper, we have simulated sensing of biofliud in various photonic defect structures with the help of a numerical algorithm called Finite Difference Time Domain (FDTD) method. The simulation result shows the high sensitivity for the change in the bio-molecular structure. For developing the complete sensor system, we have to use the MEMS technologies to integrate on-chip fluidic transport components with sensing systems. The resulting biofluidic system will have the capability to continuously monitor the concentration of a large number of relevant biological molecules continuously from ambulatory patients. Keywords: FDTD, Photonic Crystals, Bio fluid Sensor, Optical Cavity.
APA, Harvard, Vancouver, ISO, and other styles
8

Yesilkoy, Filiz. "Optical Interrogation Techniques for Nanophotonic Biochemical Sensors." Sensors 19, no. 19 (October 3, 2019): 4287. http://dx.doi.org/10.3390/s19194287.

Full text
Abstract:
The manipulation of light via nanoengineered surfaces has excited the optical community in the past few decades. Among the many applications enabled by nanophotonic devices, sensing has stood out due to their capability of identifying miniscule refractive index changes. In particular, when free-space propagating light effectively couples into subwavelength volumes created by nanostructures, the strongly-localized near-fields can enhance light’s interaction with matter at the nanoscale. As a result, nanophotonic sensors can non-destructively detect chemical species in real-time without the need of exogenous labels. The impact of such nanophotonic devices on biochemical sensor development became evident as the ever-growing research efforts in the field started addressing many critical needs in biomedical sciences, such as low-cost analytical platforms, simple quantitative bioassays, time-resolved sensing, rapid and multiplexed detection, single-molecule analytics, among others. In this review, the optical transduction methods used to interrogate optical resonances of nanophotonic sensors will be highlighted. Specifically, the optical methodologies used thus far will be evaluated based on their capability of addressing key requirements of the future sensor technologies, including miniaturization, multiplexing, spatial and temporal resolution, cost and sensitivity.
APA, Harvard, Vancouver, ISO, and other styles
9

Kazanskiy, Nikolai Lvovich, and Muhammad Ali Butt. "One-dimensional photonic crystal waveguide based on SOI platform for transverse magnetic polarization-maintaining devices." Photonics Letters of Poland 12, no. 3 (September 30, 2020): 85. http://dx.doi.org/10.4302/plp.v12i3.1044.

Full text
Abstract:
In this letter, a TM-polarization C-band pass one-dimensional photonic crystal strip waveguide (1D-PCSW) is presented. The waveguide structure is based on a silicon-on-insulator platform which is easy to realize using standard CMOS technology. The numerical study is conducted via 3D-finite element method (FEM). The transmittance and polarization extinction ratio (PER) is enhanced by optimizing the geometric parameters of the device. As a result, a TM polarized light can travel in the waveguide with ~2 dB loss for all C-band telecommunication wavelength window whereas the TE polarized light suffers a high transmission loss of >30 dB. As a result, a PER of ~28.5 dB can be obtained for the whole C-band wavelengths range. The total length of the proposed device is around 8.4 µm long including 1 µm silicon strip waveguide segment on both ends. Based on our study presented in this paper, several photonic devices can be realized where strict polarization filtering is required. Full Text: PDF ReferencesB. Wang, S. Blaize, R.S-Montiel, "Nanoscale plasmonic TM-pass polarizer integrated on silicon photonics", Nanoscale, 11, 20685 (2019). CrossRef D. Dai, J.E. Bowers, "Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects", Nanophotonics, 3, 283 (2014). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "Optical elements based on silicon photonics", Computer Optics, 43, 1079 (2019). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "Compact design of a polarization beam splitter based on silicon-on-insulator platform", Laser Physics, 28, 116202 (2018). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "A T-shaped 1 × 8 balanced optical power splitter based on 90° bend asymmetric vertical slot waveguides", Laser Physics, 29, 046207 (2019). CrossRef Q. Wang, S.-T. Ho, "Ultracompact TM-Pass Silicon Nanophotonic Waveguide Polarizer and Design", IEEE Photonics J., 2, 49 (2010). CrossRef C.-H. Chen, L. Pang, C.-H. Tsai, U. Levy, Y. Fainman, "Compact and integrated TM-pass waveguide polarizer", Opt. Express, 13, 5347 (2005). CrossRef S. Yuan, Y. Wang, Q. Huang, J. Xia, J. Yu, "Ultracompact TM-pass/TE-reflected integrated polarizer based on a hybrid plasmonic waveguide for silicon photonics", in 11th International Conference on Group IV Photonics (GFP) (IEEE, 2014), pp. 183-184. CrossRef X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, D. Dai, "Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide", Opt. Lett., 39, 4514 (2014). CrossRef A.E.- S. Abd-Elkader, M.F. O. Hameed, N.F. Areed, H.E.-D. Mostafa, and S.S. Obayya, "Ultracompact AZO-based TE-pass and TM-pass hybrid plasmonic polarizers", J.Opt. Soc. Am. B., 36, 652 (2019). CrossRef J. Li et al., "Photonic Crystal Waveguide Electro-Optic Modulator With a Wide Bandwidth", Journal of Lightwave Technology, 31, 1601-1607 (2013). CrossRef N. Skivesen et al., "Photonic-crystal waveguide biosensor", Optics Express, 15, 3169-3176 (2007). CrossRef S. Lin, J. Hu, L. Kimerling, K. Crozier, "Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection", Optics Letters, 34, 3451-3453 (2009). CrossRef T. Liu, A.R. Zakharian, M. Fallahi, J.V. Moloney, M. Mansuripur, "Design of a compact photonic-crystal-based polarizing beam splitter", IEEE Photonics Technology Letters, 17, 1435-1437 (2005). CrossRef R. K. Sinha, Y. Kalra, "Design of optical waveguide polarizer using photonic band gap", Optics Express, 14, 10790 (2006). CrossRef
APA, Harvard, Vancouver, ISO, and other styles
10

Pitruzzello, Giampaolo, Donato Conteduca, and Thomas F. Krauss. "Nanophotonics for bacterial detection and antimicrobial susceptibility testing." Nanophotonics 9, no. 15 (September 17, 2020): 4447–72. http://dx.doi.org/10.1515/nanoph-2020-0388.

Full text
Abstract:
AbstractPhotonic biosensors are a major topic of research that continues to make exciting advances. Technology has now improved sufficiently for photonics to enter the realm of microbiology and to allow for the detection of individual bacteria. Here, we discuss the different nanophotonic modalities used in this context and highlight the opportunities they offer for studying bacteria. We critically review examples from the recent literature, starting with an overview of photonic devices for the detection of bacteria, followed by a specific analysis of photonic antimicrobial susceptibility tests. We show that the intrinsic advantage of matching the optical probed volume to that of a single, or a few, bacterial cell, affords improved sensitivity while providing additional insight into single-cell properties. We illustrate our argument by comparing traditional culture-based methods, which we term macroscopic, to microscopic free-space optics and nanoscopic guided-wave optics techniques. Particular attention is devoted to this last class by discussing structures such as photonic crystal cavities, plasmonic nanostructures and interferometric configurations. These structures and associated measurement modalities are assessed in terms of limit of detection, response time and ease of implementation. Existing challenges and issues yet to be addressed will be examined and critically discussed.
APA, Harvard, Vancouver, ISO, and other styles
11

Kirk, James T., Kerry W. Lannert, Daniel M. Ratner, and Jill M. Johnsen. "Serologic and Phenotypic Analysis of Blood Types Via Silicon Nanophotonics." Blood 124, no. 21 (December 6, 2014): 1565. http://dx.doi.org/10.1182/blood.v124.21.1565.1565.

Full text
Abstract:
Abstract Tens of millions of donor and patient samples are tested yearly to establish blood type compatibility between donor and recipient and to protect recipients from blood-borne infectious diseases. Blood type testing, particularly donor testing, is traditionally based in centralized clinical laboratories. However, current blood typing methods are encumbered by reagent availability, cost, technical training requirements, and time, placing a costly burden on the medical system. To address practical needs in blood typing, we have developed a multiplexed blood analysis platform using a low-cost and scalable silicon photonic biochip. This study investigates the use of silicon microring sensors to capture, detect, and quantify specific red blood cell (RBC) membrane antigens and anti-blood type antibodies from blood. To validate ABO blood phenotyping, microring resonators were streptavidin coated and functionalized with biotinylated anti-A IgM or biotinylated anti-B IgM antibodies. First, the response of anti-A/B functionalized microring resonators to characterized RBC membranes (RBC ghosts, 108 cells/ml) were measured in real-time (Figure 1). The biosensor arrays also exhibited minimal non-specific adsorption of RBC membrane fragments to the sensor surface. Microring resonators were shown to be suitable for identifying RBC ABO phenotype from donor blood samples. For ABO serologic analysis, silicon chips were functionalized with synthetic multivalent polymeric blood group antigens to serve as capture elements for circulating anti-ABO antibodies. Each chip also had sensors functionalized with biotinylated Protein A (btn-ProtA) and a biotinylated polyacrylamide polymer scaffold (btn-paa) to serve as on-chip positive and negative controls, respectively. The multiplexed biosensor chips were exposed to 100mL of plasma, followed by an anti-human-IgM antibody to enhance detection and quantification of antibodies bound to the surface. The resonance shift in each microring resonator was monitored over time, and the sensor response of the polymeric A and B blood group antigens was normalized to the control sensors. Figure 2 illustrates the levels of bound anti-A and anti-B for a panel of donor blood samples with varying ABO blood type, expressed as a relative shift in sensor resonance wavelength. These results demonstrate the detection of the ‘naturally occurring' anti-A/B IgM antibodies for each respective ABO blood type. We have demonstrated that microring resonator biosensor arrays can quantitatively determine the donor ABO phenotypic and serologic status while incorporating on-chip controls for process standardization. Our work serves as proof-of-concept that a multiplexed silicon nanophotonics platform can rapidly detect both RBC antigens and anti-RBC antibodies in biological samples. This method has the potential for broad applicability in hematology and transfusion medicine for blood typing, quantitative monitoring of specific antibodies, and pathogen screening. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures No relevant conflicts of interest to declare.
APA, Harvard, Vancouver, ISO, and other styles
12

Tittl, Andreas, Aleksandrs Leitis, Mingkai Liu, Filiz Yesilkoy, Duk-Yong Choi, Dragomir N. Neshev, Yuri S. Kivshar, and Hatice Altug. "Imaging-based molecular barcoding with pixelated dielectric metasurfaces." Science 360, no. 6393 (June 7, 2018): 1105–9. http://dx.doi.org/10.1126/science.aas9768.

Full text
Abstract:
Metasurfaces provide opportunities for wavefront control, flat optics, and subwavelength light focusing. We developed an imaging-based nanophotonic method for detecting mid-infrared molecular fingerprints and implemented it for the chemical identification and compositional analysis of surface-bound analytes. Our technique features a two-dimensional pixelated dielectric metasurface with a range of ultrasharp resonances, each tuned to a discrete frequency; this enables molecular absorption signatures to be read out at multiple spectral points, and the resulting information is then translated into a barcode-like spatial absorption map for imaging. The signatures of biological, polymer, and pesticide molecules can be detected with high sensitivity, covering applications such as biosensing and environmental monitoring. Our chemically specific technique can resolve absorption fingerprints without the need for spectrometry, frequency scanning, or moving mechanical parts, thereby paving the way toward sensitive and versatile miniaturized mid-infrared spectroscopy devices.
APA, Harvard, Vancouver, ISO, and other styles
13

Ghoumazi, Mehdi, and Abdesselam Hocini. "Photonic Crystal Based Bio-Sensor Detection in Nanophotonic Structure Using FEM Method." International Journal of Sensors, Wireless Communications and Control 10 (December 18, 2019). http://dx.doi.org/10.2174/2210327910666191218125109.

Full text
Abstract:
: A bio-sensing platform on nano cell–coupled photonic crystal waveguide is proposed for different organic liquids detection. In this paper, we have studied a nanostructure of two- dimensional photonic crystal (PhC). This nanostructure is a sensor design, which can detect different organic liquids such as water (H2O), ethanol (Ch3-CH2-OH), glycerol (C3H8O3), benzene (C6H6), and bromine (Br2) with the following refractive index respectively: 1.333, 1.361, 1.4729, 1.501 and 1.659. To examine the sensing principle, silicon rod based square lattice photonic crystal nanostructure with the refractive index of 3.46 is used. The sensing characteristics are analyzed using dielectric rods immersed in air. Plane wave expansion (PWE) approach is used to scrutinize the band diagram and the finite element method (FEM) is applied by using COMSOL software to extract the numerical results such as: the propagation before and after changing radius and after injection of liquids inside heart of cell of the nanostructure at the resonance wavelength. Also, we extracted the power flow norm variations and the transmission for the different organic liquids. A change in power flow has been observed with the change in refractive index for each material used.
APA, Harvard, Vancouver, ISO, and other styles
14

Gawlik, Brian, Ariel R. Barr, Akhila Mallavarapu, Edward T. Yu, and S. V. Sreenivasan. "Spectral Imaging and Computer Vision for High-Throughput Defect Detection and Root-Cause Analysis of Silicon Nanopillar Arrays." Journal of Micro and Nano-Manufacturing 9, no. 1 (February 26, 2021). http://dx.doi.org/10.1115/1.4049959.

Full text
Abstract:
Abstract Far-field spectral imaging, coupled with computer vision methods, is demonstrated as an effective inspection method for detection, classification, and root-cause analysis of manufacturing defects in large area Si nanopillar arrays. Si nanopillar arrays exhibit a variety of nanophotonic effects, causing them to produce colors and spectral signatures which are highly sensitive to defects, on both the macro- and nanoscales, which can be detected in far-field imaging. Compared with traditional nanometrology approaches like scanning electron microscopy (SEM), atomic force microscopy (AFM), and optical scatterometry, spectral imaging offers much higher throughput due to its large field of view (FOV), micrometer-scale imaging resolution, sensitivity to nm-scale feature geometric variations, and ability to be performed in-line and nondestructively. Thus, spectral imaging is an excellent choice for high-speed defect detection/classification in Si nanopillar arrays and potentially other types of large-area nanostructure arrays (LNAs) fabricated on Si wafers, glass sheets, and roll-to-roll webs. The origins of different types of nano-imprint patterning defects—including particle voids, etch delay, and nonfilling—and the unique ways in which they manifest as optical changes in the completed nanostructure arrays are discussed. With this understanding in mind, computer vision methods are applied to spectral image data to detect and classify various defects in a sample containing wine glass-shaped Si resonator arrays.
APA, Harvard, Vancouver, ISO, and other styles
15

Sun, Dehui, Yunwu Zhang, Dongzhou Wang, Wei Song, Xiaoyan Liu, Jinbo Pang, Deqiang Geng, Yuanhua Sang, and Hong Liu. "Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications." Light: Science & Applications 9, no. 1 (December 2020). http://dx.doi.org/10.1038/s41377-020-00434-0.

Full text
Abstract:
AbstractRecently, integrated photonics has attracted considerable interest owing to its wide application in optical communication and quantum technologies. Among the numerous photonic materials, lithium niobate film on insulator (LNOI) has become a promising photonic platform owing to its electro-optic and nonlinear optical properties along with ultralow-loss and high-confinement nanophotonic lithium niobate waveguides fabricated by the complementary metal–oxide–semiconductor (CMOS)-compatible microstructure engineering of LNOI. Furthermore, ferroelectric domain engineering in combination with nanophotonic waveguides on LNOI is gradually accelerating the development of integrated nonlinear photonics, which will play an important role in quantum technologies because of its ability to be integrated with the generation, processing, and auxiliary detection of the quantum states of light. Herein, we review the recent progress in CMOS-compatible microstructure engineering and domain engineering of LNOI for integrated lithium niobate photonics involving photonic modulation and nonlinear photonics. We believe that the great progress in integrated photonics on LNOI will lead to a new generation of techniques. Thus, there remains an urgent need for efficient methods for the preparation of LNOI that are suitable for large-scale and low-cost manufacturing of integrated photonic devices and systems.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography