Academic literature on the topic 'Nanophotonic detection method'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanophotonic detection method.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nanophotonic detection method"

1

Gómez-Gómez, Maribel, Ángela Ruiz-Tórtola, Daniel González-Lucas, María-José Bañuls, and Jaime García-Rupérez. "New Method for Online Regeneration of Silicon-Based Nanophotonic Biosensors." Proceedings 4, no. 1 (November 14, 2018): 22. http://dx.doi.org/10.3390/ecsa-5-05741.

Full text
Abstract:
The optimal development of biosensors is a costly and time-consuming task, since an enormous amount of experiments is required. Therefore, the possibility of reusing the biosensors is highly desirable. In this work, a protocol based on the use of formamide for the regeneration of nanophotonic biosensors used for oligonucleotides detection is presented. This protocol was carried out online using the microfluidic system used to drive the target samples to the nanophotonic biosensor, thus allowing the possibility of running several experiments in a row using the same biosensor.
APA, Harvard, Vancouver, ISO, and other styles
2

Sushko, O. A., O. M. Bilash, and M. M. Rozhitskii. "115 Detection of organic carcinogens in water by nanophotonic method." Photodiagnosis and Photodynamic Therapy 9 (August 2012): S39. http://dx.doi.org/10.1016/s1572-1000(12)70116-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hoang, Thi Hong Cam, Thanh Binh Pham, Thuy Van Nguyen, Van Dai Pham, Huy Bui, Van Hoi Pham, Elena Duran, et al. "Hybrid Integrated Nanophotonic Silicon-based Structures." Communications in Physics 29, no. 4 (December 16, 2019): 481. http://dx.doi.org/10.15625/0868-3166/29/4/13855.

Full text
Abstract:
We report nanophotonic silicon-based devices for hybrid integration: 1D photonic crystal (PhC) on optical fiber, i. e. fiber Bragg grating (FBG) sensing probe integrated in fiber laser structure for chemical sensors and slotted planar 2D PhC cavity combined with carbon nanotube (CNT) towards light nanosources. The experiments have been carried out by integrating 1D PhC on optical fiber in fiber laser structure. This structure possesses many advantages including high resolution for wavelength shift, high optical signal-to-noise ratio (OSNR) of about 50~dB, the small full width at half-maximum (FWHM) of about 0.014~nm therefore its accuracy is enhanced, as well as the precision and capability are achieved for remote sensing. Low nitrate concentration in water from 0 to 80 ppm has been used to demonstrate its sensing ability in the experiment. The proposed sensor can work with good repeatability, rapid response, and its sensitivity can be obtained of \(3.2\times 10^{ - 3}\) nm/ppm with the limit of detection (LOD) of 3~ppm. For 2D PhC cavity, enhancement of photoluminescence of CNT emission is observed. The semiconducting single-walled carbon nanotubes (s-SWNTs) solution was prepared by polymer-sorted method and coupled with the confined modes in silicon slotted PhC cavities. The enhancement ratio of 1.15 is obtained by comparing between the PL peaks at two confined modes of the cavity. The PL enhancement result of the integrated system shows the potential for the realization of on-chip nanoscale sources.
APA, Harvard, Vancouver, ISO, and other styles
4

Leitis, Aleksandrs, Andreas Tittl, Mingkai Liu, Bang Hyun Lee, Man Bock Gu, Yuri S. Kivshar, and Hatice Altug. "Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval." Science Advances 5, no. 5 (May 2019): eaaw2871. http://dx.doi.org/10.1126/sciadv.aaw2871.

Full text
Abstract:
Infrared spectroscopy resolves the structure of molecules by detecting their characteristic vibrational fingerprints. Subwavelength light confinement and nanophotonic enhancement have extended the scope of this technique for monolayer studies. However, current approaches still require complex spectroscopic equipment or tunable light sources. Here, we introduce a novel metasurface-based method for detecting molecular absorption fingerprints over a broad spectrum, which combines the device-level simplicity of state-of-the-art angle-scanning refractometric sensors with the chemical specificity of infrared spectroscopy. Specifically, we develop germanium-based high-Q metasurfaces capable of delivering a multitude of spectrally selective and surface-sensitive resonances between 1100 and 1800 cm−1. We use this approach to detect distinct absorption signatures of different interacting analytes including proteins, aptamers, and polylysine. In combination with broadband incoherent illumination and detection, our method correlates the total reflectance signal at each incidence angle with the strength of the molecular absorption, enabling spectrometer-less operation in a compact angle-scanning configuration ideally suited for field-deployable applications.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Yushuang, Jie Chen, Cheng Chen, Tengfei Xu, Heng Gao, Zhuo Dong, Yan Zhang, et al. "Infrared photodetector based on 2D monoclinic gold phosphide nanosheets yielded from one-step chemical vapor transport deposition." Applied Physics Letters 120, no. 13 (March 28, 2022): 131104. http://dx.doi.org/10.1063/5.0086166.

Full text
Abstract:
Infrared detection by binary phosphides is of great interest due to their high carrier mobility, excellent stability, and high absorbance coefficient, as they have a wide range of applications in civil and military fields. As the only metastable phase in gold phosphide, Au2P3 has attracted great attention in fundamental research and optoelectronic applications. Here, we synthesized high-quality and environmentally stable Au2P3 nanosheets through a modified facile one-step mineralization-assisted chemical vapor transport method. Through systematic infrared photoluminescence characterizations, it is found that the as-synthesized Au2P3 nanosheets display an impressive mid-infrared luminescence band centered at about 6.64 μm (0.187 eV) at room temperature. Furthermore, Au2P3-based self-powered photodetectors display outstanding infrared detection performance with D* = 2.9 × 1010 Jones at 1550 nm and D* = 1.9 × 108 Jones at 2611 nm, respectively. Our results suggest that the synthesized Au2P3 nanosheets could be promising candidates for future chip-based infrared nanophotonic and optoelectronic circuitry.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhou, Changyu, Youpeng Xie, Jianxin Ren, Zepeng Wei, Luping Du, Qiang Zhang, Zhenwei Xie, Bo Liu, Ting Lei, and Xiaocong Yuan. "Spin separation based on-chip optical polarimeter via inverse design." Nanophotonics 11, no. 4 (October 14, 2021): 813–19. http://dx.doi.org/10.1515/nanoph-2021-0455.

Full text
Abstract:
Abstract Polarimetry has been demonstrated essential in various disciplines, such as optical communications, imaging, and astronomy. On-chip nanostructures for polarization measurements are most expected to replace the conventional bulk elements, and hence minimize the polarimeter for integrated applications. Some on-chip nanophotonic polarimeter via polarization detection has been implemented, in which the separation of two spin polarized states is needed. However, due to the relatively low coupling efficiency or complicated photonic silicon circuits, on-chip polarimetry using a single device still remains challenging. Here, we introduce and investigate an on-chip polarimeter with nanostructures using the inverse design method. The developed device shows the ability to detect the four polarization components of light, two of which are the spin polarizations, and the other two are the linear polarizations. The retrieved Stokes parameters with experimentally tested data are in close agreement with the numerical results. We also show the proof of concept demonstration for high-speed Stokes vector optical signals detection. In the high-speed communication experiment with data rate up to 16 GBd, the detected optical signals via polarization measurements at multiple wavelengths in the C-band were recovered with the bit error rate below the 20% forward error correction threshold. The proposed on-chip polarimeter shows promising performance both in Stokes polarimetry and high-speed optical communication applications.
APA, Harvard, Vancouver, ISO, and other styles
7

Gaddam Kesava Reddy, Rajini, Sharmila Ashok kumar, and Sankardoss Varadhan. "Design and simulation of bio fluidic sensor based on photonic crystal." International Journal of Engineering & Technology 3, no. 2 (March 25, 2014): 106. http://dx.doi.org/10.14419/ijet.v3i2.1691.

Full text
Abstract:
Photonic crystals are materials patterned with a periodicity in dielectric constant in one, two and three dimensions and associated with Bragg scattering which can create range of forbidden frequencies called Photonic Band Gap (PBG). By optimizing various parameters and creating defects, we will review the design and characterization of waveguides, optical cavities and multi-fluidic channel devices. We have used such waveguides and laser nanocavities as Biosensor, in which field intensity is strongly dependent on the type of biofliud and its refractive index. This design and simulation technique leads to development of a nanophotonic sensor for detection of biofluids. In this paper, we have simulated sensing of biofliud in various photonic defect structures with the help of a numerical algorithm called Finite Difference Time Domain (FDTD) method. The simulation result shows the high sensitivity for the change in the bio-molecular structure. For developing the complete sensor system, we have to use the MEMS technologies to integrate on-chip fluidic transport components with sensing systems. The resulting biofluidic system will have the capability to continuously monitor the concentration of a large number of relevant biological molecules continuously from ambulatory patients. Keywords: FDTD, Photonic Crystals, Bio fluid Sensor, Optical Cavity.
APA, Harvard, Vancouver, ISO, and other styles
8

Yesilkoy, Filiz. "Optical Interrogation Techniques for Nanophotonic Biochemical Sensors." Sensors 19, no. 19 (October 3, 2019): 4287. http://dx.doi.org/10.3390/s19194287.

Full text
Abstract:
The manipulation of light via nanoengineered surfaces has excited the optical community in the past few decades. Among the many applications enabled by nanophotonic devices, sensing has stood out due to their capability of identifying miniscule refractive index changes. In particular, when free-space propagating light effectively couples into subwavelength volumes created by nanostructures, the strongly-localized near-fields can enhance light’s interaction with matter at the nanoscale. As a result, nanophotonic sensors can non-destructively detect chemical species in real-time without the need of exogenous labels. The impact of such nanophotonic devices on biochemical sensor development became evident as the ever-growing research efforts in the field started addressing many critical needs in biomedical sciences, such as low-cost analytical platforms, simple quantitative bioassays, time-resolved sensing, rapid and multiplexed detection, single-molecule analytics, among others. In this review, the optical transduction methods used to interrogate optical resonances of nanophotonic sensors will be highlighted. Specifically, the optical methodologies used thus far will be evaluated based on their capability of addressing key requirements of the future sensor technologies, including miniaturization, multiplexing, spatial and temporal resolution, cost and sensitivity.
APA, Harvard, Vancouver, ISO, and other styles
9

Kazanskiy, Nikolai Lvovich, and Muhammad Ali Butt. "One-dimensional photonic crystal waveguide based on SOI platform for transverse magnetic polarization-maintaining devices." Photonics Letters of Poland 12, no. 3 (September 30, 2020): 85. http://dx.doi.org/10.4302/plp.v12i3.1044.

Full text
Abstract:
In this letter, a TM-polarization C-band pass one-dimensional photonic crystal strip waveguide (1D-PCSW) is presented. The waveguide structure is based on a silicon-on-insulator platform which is easy to realize using standard CMOS technology. The numerical study is conducted via 3D-finite element method (FEM). The transmittance and polarization extinction ratio (PER) is enhanced by optimizing the geometric parameters of the device. As a result, a TM polarized light can travel in the waveguide with ~2 dB loss for all C-band telecommunication wavelength window whereas the TE polarized light suffers a high transmission loss of >30 dB. As a result, a PER of ~28.5 dB can be obtained for the whole C-band wavelengths range. The total length of the proposed device is around 8.4 µm long including 1 µm silicon strip waveguide segment on both ends. Based on our study presented in this paper, several photonic devices can be realized where strict polarization filtering is required. Full Text: PDF ReferencesB. Wang, S. Blaize, R.S-Montiel, "Nanoscale plasmonic TM-pass polarizer integrated on silicon photonics", Nanoscale, 11, 20685 (2019). CrossRef D. Dai, J.E. Bowers, "Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects", Nanophotonics, 3, 283 (2014). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "Optical elements based on silicon photonics", Computer Optics, 43, 1079 (2019). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "Compact design of a polarization beam splitter based on silicon-on-insulator platform", Laser Physics, 28, 116202 (2018). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "A T-shaped 1 × 8 balanced optical power splitter based on 90° bend asymmetric vertical slot waveguides", Laser Physics, 29, 046207 (2019). CrossRef Q. Wang, S.-T. Ho, "Ultracompact TM-Pass Silicon Nanophotonic Waveguide Polarizer and Design", IEEE Photonics J., 2, 49 (2010). CrossRef C.-H. Chen, L. Pang, C.-H. Tsai, U. Levy, Y. Fainman, "Compact and integrated TM-pass waveguide polarizer", Opt. Express, 13, 5347 (2005). CrossRef S. Yuan, Y. Wang, Q. Huang, J. Xia, J. Yu, "Ultracompact TM-pass/TE-reflected integrated polarizer based on a hybrid plasmonic waveguide for silicon photonics", in 11th International Conference on Group IV Photonics (GFP) (IEEE, 2014), pp. 183-184. CrossRef X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, D. Dai, "Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide", Opt. Lett., 39, 4514 (2014). CrossRef A.E.- S. Abd-Elkader, M.F. O. Hameed, N.F. Areed, H.E.-D. Mostafa, and S.S. Obayya, "Ultracompact AZO-based TE-pass and TM-pass hybrid plasmonic polarizers", J.Opt. Soc. Am. B., 36, 652 (2019). CrossRef J. Li et al., "Photonic Crystal Waveguide Electro-Optic Modulator With a Wide Bandwidth", Journal of Lightwave Technology, 31, 1601-1607 (2013). CrossRef N. Skivesen et al., "Photonic-crystal waveguide biosensor", Optics Express, 15, 3169-3176 (2007). CrossRef S. Lin, J. Hu, L. Kimerling, K. Crozier, "Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection", Optics Letters, 34, 3451-3453 (2009). CrossRef T. Liu, A.R. Zakharian, M. Fallahi, J.V. Moloney, M. Mansuripur, "Design of a compact photonic-crystal-based polarizing beam splitter", IEEE Photonics Technology Letters, 17, 1435-1437 (2005). CrossRef R. K. Sinha, Y. Kalra, "Design of optical waveguide polarizer using photonic band gap", Optics Express, 14, 10790 (2006). CrossRef
APA, Harvard, Vancouver, ISO, and other styles
10

Pitruzzello, Giampaolo, Donato Conteduca, and Thomas F. Krauss. "Nanophotonics for bacterial detection and antimicrobial susceptibility testing." Nanophotonics 9, no. 15 (September 17, 2020): 4447–72. http://dx.doi.org/10.1515/nanoph-2020-0388.

Full text
Abstract:
AbstractPhotonic biosensors are a major topic of research that continues to make exciting advances. Technology has now improved sufficiently for photonics to enter the realm of microbiology and to allow for the detection of individual bacteria. Here, we discuss the different nanophotonic modalities used in this context and highlight the opportunities they offer for studying bacteria. We critically review examples from the recent literature, starting with an overview of photonic devices for the detection of bacteria, followed by a specific analysis of photonic antimicrobial susceptibility tests. We show that the intrinsic advantage of matching the optical probed volume to that of a single, or a few, bacterial cell, affords improved sensitivity while providing additional insight into single-cell properties. We illustrate our argument by comparing traditional culture-based methods, which we term macroscopic, to microscopic free-space optics and nanoscopic guided-wave optics techniques. Particular attention is devoted to this last class by discussing structures such as photonic crystal cavities, plasmonic nanostructures and interferometric configurations. These structures and associated measurement modalities are assessed in terms of limit of detection, response time and ease of implementation. Existing challenges and issues yet to be addressed will be examined and critically discussed.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Nanophotonic detection method"

1

Bilash, О. М., О. М. Galaichenko, O. A. Sushko, and M. M. Rozhitskii. "New nanophotonic detection method of benzo[a]pyrene." Thesis, КНУ імені Тараса Шевченка, 2011. http://openarchive.nure.ua/handle/document/8853.

Full text
Abstract:
Benzo[a]pyrene is the representative of polycyclic aromatic hydrocarbons family, the substance of the first hazard class. In present work for the development of novel nanophotonic assay method as a PAH representative benzo[a]pyrene was choose.
APA, Harvard, Vancouver, ISO, and other styles
2

Sushko, O. A., О. М. Bilash, and M. M. Rozhitskii. "Nanophotonic method for polycyclic aromatic hydrocarbons detection in water." Thesis, ISE, 2012. http://openarchive.nure.ua/handle/document/8866.

Full text
Abstract:
Polycyclic aromatic hydrocarbons (PAHs) are the widespread environmental contaminants that can be found in atmosphere, water, soil, sediment and organisms. Among most dangerous PAHs is benzo[a]pyrene (BP). The effects of BP on health are: short-term when people are exposed to it at levels above the maximum contaminant level (MCL) (0.2 ppm) for relatively short periods of time leading to red blood cells damage, anemia ect; suppression of immune system and long-term, when human beings are exposured do BP influence at levels above the MCL namely effects on reproducibility and high probability of cancer illnesses. There are known methods for PAHs detection, such as chromatography, immuno-chemistry, biological and chemical ones. However, they have several disadvantages, including high cost, duration and complexity of the analysis procedure, the high detection limit and low selectivity. So at present a development of a new method of PAHs detection based on modern technologies and materials such as nanotechologies and nanomaterials. Belonging to above mentioned is nanophotonic method of PAHs assay. Nanophotonic method for PAHs detection in particular BP in water is a combination of electrochemical and electrochemiluminescence analysis with the application of nanomaterials and nanotechnologies. This method can be carried out using nanophotonic sensor based on nanomaterials such as semiconductor quantum dots (QDs).
APA, Harvard, Vancouver, ISO, and other styles
3

Sushko, O. A., О. М. Bilash, and M. M. Rozhitskii. "Nanophotonic method of organic carcinogens detection in water objects." Thesis, Technische Universität Ilmenau, 2012. http://openarchive.nure.ua/handle/document/8867.

Full text
Abstract:
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental agents commonly believed to contribute significantly to human cancers pathologies. PAHs are formed in the process of incomplete combustion of organic material and are found widely in the environment, for example, in water, food, soil etc. so human exposure to PAHs is unavoidable. Like many other carcinogens, polycyclic aromatic hydrocarbons are metabolized enzymatically to various metabolites, of which some are highly reaction active. One of the most dangerous organic PAHs carcinogens is benzo[a]pyrene (BP). There are known methods for PAHs detection in water objects, such as chromatography, immuno-chemical, biological and chemical ones. However, they have several disadvantages, including high cost, duration and complexity of the analysis procedure, high detection limit, low selectivity and some others. So at present a development of new methods of PAHs detection based on modern technologies and materials such as nanotechologies and nanomaterials is a rather relevant and important task.
APA, Harvard, Vancouver, ISO, and other styles
4

Sushko, O. A., О. М. Bilash, and M. M. Rozhitskii. "Nanophotonic method and sensor for polycyclic aromatic hydrocarbons detection." Thesis, ECL 2014, 2014. http://openarchive.nure.ua/handle/document/8963.

Full text
Abstract:
Anthropogenic pollution of environmental water is a huge problem for humanity today as it leads to an increase of incurable diseases. For example, the penetration into the organism of organic carcinogens such as polycyclic aromatic hydrocarbons (PAHs) can lead to the development of cancer tumors. Among PAHs the most dangerous is 3,4-benzopyrene (BP). There are a number of analytical methods for BP detection such as chromatographic, immuno-chemical, spectroscopic, luminescent and biological methods. But these methods beside their advantages have a number of significant shortcomings such as high detection limit (immuno-chemical and biological method), insufficient selectivity of PAHs detection, complexity and duration of sample preparation and analysis, high cost of device. Therefore development of new methods and tools for PAHs detecting using modern nanotechnology and nanomaterials remains urgent. So this work is devoted to the development of nanophotonic method and sensor device construction for the PAH in particular BP detection in water environment objects. Nanomaterials such as spherical quantum dots (QDs) are perspective object of nanophotonics can be used for development of optical sensors as sensor’s detector elements. They have a high luminescence quantum yield, possibility of optical and non-optical excitation, narrow luminescence spectrum and its wavelength dependence on the QDs diameter, high selectivity. This defined the perspective of their use instead of the well known organic luminophores.
APA, Harvard, Vancouver, ISO, and other styles
5

Sushko, O. A., О. М. Bilash, and M. M. Rozhitskii. "Nanophotonic method for polycyclic aromatic hydrocarbons detection in water solutions." Thesis, Eurosvit, 2013. http://openarchive.nure.ua/handle/document/8870.

Full text
Abstract:
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental agents commonly believed to contribute significantly to human cancer pathologies. One of the most dangerous organic PAHs carcinogens is benzo[a]pyrene (BP). Like many other carcinogens, PAHs are metabolized enzymatically to various metabolites, some of which are highly reaction active. Proposed nanophotonic analytical method is based on the process of QDs transfer to ionic forms in an EC process and their subsequent reactions with oppositely charged ionic forms of the analyte – PAHs (BP) inside ECL cell, resulting in the formation of emitter and emission of an analytical optical signal.
APA, Harvard, Vancouver, ISO, and other styles
6

Bilash, О. М., О. М. Galaichenko, O. A. Sushko, and M. M. Rozhitskii. "Benzo[a]pyrene its influence on human organism and new nanophotonic detection method." Thesis, Benzo[a]pyrene its influence on human organism and new nanophotonic detection method, 2011. http://openarchive.nure.ua/handle/document/8860.

Full text
Abstract:
Benzo[a]pyrene (BaP) is representative of polycyclic aromatic hydrocarbons (PAHs) family, the substance of the first hazard class. In an environmental, BaP accumulates mainly in a soil and less in a water. It comes from soil to plants and human tissues and continues to move on in the food chain in living organisms where at each stage the BaP concentration is increasing sufficiently. To human organism BaP can come through skin, respiratory organs, digestive system and transplacental infections. Besides that BaP is the most typical chemical carcinogen in environmental, it is dangerous to humans even at low concentrations, since its metabolites are mutagenic and highly carcinogenic and has the property for bioaccumulation. Being chemically relatively stable, BaP can migrate for a long time from one object to another. As a result, many objects and process in the environmental objects which do not have the ability to synthesize the BaP, are the secondary sources of its production. Content control of BaP in environmental can be accomplished by different assay among which the most wide-spread is liquid chromatography. Known methods possess both positive and negative characteristics the last are connected with assay complexity, not allowing of their used in a field conditions, duration, high cost. So new technologies especially based on nanotechnologies and nanomaterials are in great demand both for BaP and other hazardous organic PAHs compounds. Having in mind that BaP as most of PAH has high fluorescence yield in visible spectrum and is capable to emit electrogenerated chemiluminescence (ECL), it is quite possible to use this well-known assay method for both direct and indirect definition [1]. At the same time mentioned ECL methods of BaP definition provide not enough low limit of detection (LOD). Using luminescent nanomaterials such as semiconductor quantum dots (SCQD) as highly efficient detector elements in appropriate nanophotonic sensor can provide assay for BaP detection in surrounding objects water in the first turn with rather low LOD (10 nmol/l). The proposed combined photonic (electrochemiluminescent), nanotechnology (sensor’s electrode modification) and electrochemical (analytical signal excitation) techniques are possessing a number of advantages which are discussed in the given paper.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Nanophotonic detection method"

1

Meinl, Tamara, Nadine Götte, Yousuf Khan, Thomas Kusserow, Cristian Sarpe, Jens Köhler, Matthias Wollenhaupt, Arne Senftleben, Thomas Baumert, and Hartmut Hillmer. "Material Processing of Dielectrics via Temporally Shaped Femtosecond Laser Pulses as Direct Patterning Method for Nanophotonic Applications." In Nanoscience Advances in CBRN Agents Detection, Information and Energy Security, 29–34. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9697-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

A. Sohi, Parsoua, and Mojtaba Kahrizi. "Principles and Applications of Nanoplasmonics in Biological and Chemical Sensing: A Review." In Recent Advances in Nanophotonics - Fundamentals and Applications. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93001.

Full text
Abstract:
Biosensing requires a highly sensitive real-time detection of the biomolecules. These properties are granted by nanoplasmonic sensing techniques. SPR-based optical sensors have evolved as a sensitive and versatile biosensing tool. A growing number of SPR-based sensing applications in the solution of clinical problems are reported in the recent years. This refers to the point that these sensors provide label-free detection of the living cells and non-destructive analysis techniques. In this study, we will review the mechanism of the detection in SPR biosensing, followed by the methods used to develop sensors to detect gases and the chemical, biological, and molecular interaction. The device sensitivity improvement based on plasmonic effects is also addressed in this study, and accordingly, the size and material dependence of the resonance frequency are discussed. The reviewed articles are categorized into three groups, depending on the SPR excitation configuration. In the first group of the sensors, the sensitivity of LSPR-based sensors in prism coupler configurations is reviewed. The second group, SPR excitation by optical fiber, slightly improved the sensitivity of the detections. The unique capability of the third group, photonic crystal fiber SPR sensors, in providing greatly improved sensitivity, generated a vast field of researches and applications in biosensing devices.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nanophotonic detection method"

1

Sharma, Narendra, Donna M. Meyer, and Assem Abolmaaty. "Optical Method for Microfluidic Detection of Bacteria in Water." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/iprsn.2013.jt3a.25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Escobedo, C., A. G. Brolo, R. Gordon, and D. Sinton. "Nanofluidics Meets Plasmonics: Flow-Through Surface-Based Sensing." In ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30176.

Full text
Abstract:
Nanostructures exhibit both nanofluidic and nanophotonic phenomena that can be exploited in sensing applications. In the case of nanohole arrays, the role of surface plasmons on resonant transmission motivates their application as surface-based biosensors. Research to date, however, has focused on dead-ended (or ‘blind’) holes, and therefore failed to harness the benefits of nanoconfined transport combined with plasmonic sensing. A flow-through nanohole array format presented here enables biomarker sieving and rapid transport of reactants to the sensing surface. Proof of concept operation is demonstrated and compared with previous methods. The various transport mechanisms are characterized with the aim to utilize the metallic plasmonic nanostructure as an active element in concentrating as well as detecting analytes. The invited presentation will provide an overview of all our experimental, computational and analytical work in this area. This paper is focused on the analysis and evaluation of flow-through nanohole arrays for analyte sensing.
APA, Harvard, Vancouver, ISO, and other styles
3

Putrino, Gino, Mariusz Martyniuk, Adrian Keating, Lorenzo Faraone, and John Dell. "Demonstration of a method for detecting MEMS suspended beam height." In 2012 IEEE Photonics Society International Conference on Optical MEMS and Nanophotonics. IEEE, 2012. http://dx.doi.org/10.1109/omems.2012.6318817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography