Contents
Academic literature on the topic 'Nanoparticules – Recyclage'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanoparticules – Recyclage.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nanoparticules – Recyclage"
Kumar, Ajeet, Swati Aerry, Amit Saxena, Arnab de, and Subho Mozumdar. "Copper nanoparticulates in Guar-gum: a recyclable catalytic system for the Huisgen [3 + 2]-cycloaddition of azides and alkynes without additives under ambient conditions." Green Chemistry 14, no. 5 (2012): 1298. http://dx.doi.org/10.1039/c2gc35070j.
Full textKumar, Ajeet, Swati Aerry, Amit Saxena, Arnab De, and Subho Mozumdar. "ChemInform Abstract: Copper Nanoparticulates in Guar-Gum: A Recyclable Catalytic System for the Huisgen [3 + 2]-Cycloaddition of Azides and Alkynes Without Additives under Ambient Conditions." ChemInform 43, no. 39 (August 30, 2012): no. http://dx.doi.org/10.1002/chin.201239149.
Full textDissertations / Theses on the topic "Nanoparticules – Recyclage"
Amorin, Rosario Daniel. "Synthèse et recyclage de catalyseurs métallodendritiques par leur greffage sur des nanoparticules magnétiques." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13953/document.
Full textThe recovery and recycling of catalysts represent a real challenge for economic, health and environmental reasons. Since few years, the use of magnetic nanoparticles as catalysts supports has emerged as an alternative for their recovery. Indeed, magnetic nanoparticles-supported catalysts could be easily isolated and recycled from the reaction medium by magnetization with a simple magnet. In this work, we report the synthesis of metallodendrons bearing pallado phosphine catalysts and their grafting onto core-shell magnetic nanoparticles. The main interest of this work was to demonstrate the efficiency of the recycling especially in aqueous media. Judicious use of dendritic structures has increased the surface functionalization of nanoparticles. Therefore, it was possible to prepare highly performant catalysts for Suzuki and Sonogashira cross-coupling reactions
Le, Bars Maureen. "Devenir du zinc des produits résiduaires organiques après méthanisation et recyclage agricole : rôle des nanoparticules de sulfure de zinc." Electronic Thesis or Diss., Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0034.
Full textAgricultural recycling of organic waste (OW), raw or after a treatment like anaerobic digestion (AD) and/or composting is common. It is necessary to assess the environmental impact of OW agricultural recycling after anaerobic digestion since this technology is gaining interest, particularly regarding zinc, an abundant element in OW. In order to properly evaluate the risk, zinc speciation must be known. First, we have shown that AD promote the formation of nano-ZnS that is therefore the main species of Zn (> 70%) in AD digestates. This unstable species is transformed during composting of 1 to 3 months. Size and strain are parameters that can explain nanocrystals reactivity. We showed that the more nano-ZnS are small and the higher the strain is. Interaction with thiol containing organic molecules, potentially present in anaerobic digesters, release nano-ZnS structural strain and control its growth. Finally, amended soil characteristics have a key role for nano-ZnS fate: the components of clayey and iron-oxide-rich soils are able to immobilize Zn released by nano-ZnS dissolution, unlike sandy soils components. This work gives a better understanding of zinc dynamics in cultivated ecosystems subject to spreading of organic waste
Coudray, Mathias. "Procédé de recyclage des Assemblages Membrane Electrode (AME) de piles à combustible utilisant des liquides ioniques." Thesis, Lyon, 2019. https://n2t.net/ark:/47881/m6h70f5d.
Full textRecovery of the protons-exchange membrane fuel cell (PEMFC) membrane electrode assemblies (MEAs) is an important issue for the growing of the fuel cells market. These MEAs contain platinum (Pt), which as a precious metal mainly influences the total cost of fuel cells. The recycling of Pt is still based to a great extent on hydro or pyrometallurgical techniques which produce toxic and pollutant gas emissions. Some studies aimed to set up processes to recycle platinum in a more sustainable way than traditional metal lixiviation using strong acids. The study here is part of this research field and is about a new way to separate the different components of the PEMFC electrode using ionic liquids for the recycling of these valuable materials. These liquids possess excellent thermal and chemical stability and their non-volatility can be useful to set up a safer way to recover platinum. A selection of ionic liquids was studied and some of them, including the P66614Cl (trihexyltetradecylphosphonium chloride), could be use to recover Pt nanoparticles detached from their carbon support and stabilized in the ionic liquid. A study on the interactions of ionic liquids and the components of the MEA allowed the extraction mecanisms to be better understood. Thus the ionics liquids interact strongly with Nafion in the catalyst layer which allows Pt nanoparticles to be recovered. These strong interactions set the stage for the simultaneous recycling of Nafion and Pt from MEAs
Barrera, Almeida Ana Luisa. "Valorisation des matériaux issus du traitement des écrans plats (LCD)." Electronic Thesis or Diss., Université de Lille (2022-....), 2022. http://www.theses.fr/2022ULILR001.
Full textElectrical and electronic equipment (EEE) has become an essential part of our daily lives. Much of the world's population enjoys a higher standard of living, thanks to their availability, widespread use, and easy access. However, the way we produce, consume, and treat waste electrical and electronic equipment (WEEE) is not sustainable in the long term. In Europe, despite having the most advanced waste legislation in the world, less than 50% of WEEE is properly collected and recycled. For several years, the company ENVIE2E du Nord, a subsidiary of the Vitamine T group, in partnership with l’Unité des Matériaux et Transformations (UMET), has been engaged in experimental work aimed at the recovery and reprocessing of certain WEEE. In this context, the general objective of this thesis focuses on the recovery of liquid crystals (LCs) as well as other valuable materials such as indium/tin oxide (ITO) and optical foils present in end-of-life liquid crystal displays (LCDs). An orderly, manual LCD dismantling line is in place at ENVIE 2E for differentiated recycling of electronic boards, cold cathode lamps that may contain mercury, polymers, metals, and other valuable materials. There is also an extraction line where LCD panels are opened and exposed to an ultrasonically activated organic solvent bath to recover LCs. The resulting solution contains the LCs, the solvent, and organic and inorganic impurities. The first part of this study consists in purifying and characterizing the LCs using chemical, thermal, optical, and dielectric techniques. A study on the influence of adding diamond nanoparticles to purified LCs was also performed. The second part consists in recovering indium from LCD panels. The extraction process is based on their size reduction and leaching. Finally, the characterization of the optical foils is carried out to know their composition and thus their recyclability
Balva, Maxime. "Récupération électrochimique en milieu liquide ionique de nanoparticules de platine contenues dans les électrodes de PEMFC." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0375/document.
Full textThe platinum nanoparticles used as catalyst in Proton Exchange Membrane Fuel Cells (PEMFCs) represent around the half of the total price of the cell and is one of the limitations for their large scale commercialization. The treatment of spent PEMFC through the recovery of platinum catalyst is a major concern for their development. Usual recovery routes for platinum-containing catalysts are pyro-hydrometallurgical processes that generate pollutant emissions (CO2, NO2). An electrochemical recovery route by coupling electrochemical leaching and electrodeposition in ionic liquids (ILs) is proposed here, more environmentally friendly, performed in "soft" temperature conditions and without any gases emission. Studies of several electrolytes lead us to select BMIMTFSI + BMIMCl melts (bis(trifluorométhylsulfonyl) imidure + 1-butyl-3-méthylimidazolium chloride), due to the complexing ability of chloride against platinum and the good electrochemical stability of the RMIM+ cation. TFSI-, a weakly coordinate anion, allows us to modulate the complexing ability of the electrolyte, which is a key parameter affecting the nature and the electrochemical stability of the Pt complex formed after leaching. The optimal conditions of the leaching and electrodeposition steps have been determined during this work and successfully applied to PEMFC’s electrode. The selected electrolyte, which is weakly hygroscopic, allows the Pt recovery under ambient atmosphere
Chahdoura, Faouzi. "Nanoparticules métalliques en milieu glycérol : un catalyseur unique pour des procédés multi-étapes." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2377/.
Full textIn the current concern related to the design of eco-friendly processes, solvents represent key matter from economical and environmental point of view (global solvents market is expected to reach 20 million tones by 2015). As a result, the use of green solvents is crucial for the chemical industry, they result from the following main criteria: i) use of renewable raw materials, ii) low VOC emissions, iii) low flammability and iv) compatibility of functional groups. In this context, glycerol is an innovative solvent from biomass and generated in high quantities as a byproduct in the biofuel production. Its low cost, non-toxicity, high boiling point, a negligible vapor pressure, ability to solubilize organic and inorganic compounds, as well as its low miscibility with other organic solvents are remarkable properties to be particularly interesting for applications in catalysis. In this thesis, we were interested in the design of new catalytic systems based on metallic nanoparticles in glycerol (palladium and copper (I) oxide nanoparticles), and also homogeneous organometallic complexes, mainly rhodium catalysts. These systems find applications in various metal-catalyzed processes such as C-C and C- heteroatom couplings, hydrogenations, 1,3-dipolar Huisgen reactions, carbocyclisations and hydroaminométhylation reactions. The glycerol catalytic phases could be recycled more than 10 times without loss of activity or selectivity. Tandem and sequential processes could also be developed for the synthesis of heterocyclic compounds
Labidi, Sana. "Elaboration des nanoparticules d'oxyde de zirconium par voie sol-gel : mise en forme et application pour la synthèse de biodiesel." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCD085/document.
Full textIn this work, we have realized novel nanoparticulate catalysts ZrO₂-SO₄²⁻ for biofuel production. We have studied nucleation-growth kinetics of zirconium-oxo-alkoxy (ZOA) nanoparticles in the sol-gel process. The monodispersed nanoparticles of 3.6 nm diameter were realised in a sol-gel reactor with rapid (turbulent) micro-mixing of liquid solutions containing ZNP and H₂O in 1-propanol at 20°C. The nanocoatings were realised of stable colloids of ZOA nanoparticles on silica beads along with common powders obtained after precipitation of unstable colloids. The acid ZrO₂-SO₄²⁻" catalysts were prepared after drying at 80°C, wet impregnation in 0.25 mol.L⁻¹ aqueous solution of sulfuric acid and subsequent thermal treatment between 500 and 700°C and studied with BET, DTA-DSC, TEM, DRIFT, elemental analysis, DRX and other methods. The catalyst nanocoatings calcinated at 580°C showed strong activity in esterification reaction of palmitic acid in methanol at 65°C, which is about 50 times higher than that of nanopowders, and also possesses the highest stability towards recycling. Tha catalytic performance of catalytic nanocoatings was also confirmed on unedible and waste oils
Dueñas, Ramírez Paula. "Engineering of recyclable nanocomposites for the elimination of pollutants." Thesis, Strasbourg, 2020. http://www.theses.fr/2020STRAE023.
Full textThe iron oxide and silica nanoparticles found today many applications in different fields thanks to the magnetic properties, their specific surface area and their biocompatibility. This thesis project involves research on the capture of metals or molecules in different situations. The common thread of these projects is the improvement of treatments which seek to extract certain elements (metals or molecules) which cannot be evacuated naturally and which continue in circulation: excess iron for the treatment of hemochromatosis, excess of sodium and phosphates for the improvement of peritoneal dialysis, as well as many perspectives of environmental depollution and uptake of polycyclic aromatic hydrocarbons (PAH), a family of endocrine disruptors
Keller, Michel. "Synthèses et applications de nouveaux catalyseurs dendritiques phosphorés." Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1745/.
Full textThis PhD-thesis deals with the general field of catalysis and more particularly the use of catalysts and ligands supported on phosphorous dendrimers. The latters are branched macromolecules whose structure and size are perfectly controlled during the synthesis. In comparison with their monomeric analogues, dendritic catalysts allow some modifications of the catalyst physical properties (solubility, size, geometry) while keeping their chemical properties (catalytic activity). The immobilization of catalysts onto dendrimers displays the possibility of their recycling with specific techniques such as precipitation, which cannot be applied in absence of support. Furthermore, the catalytic activities can be modified (positive and negative dendritic effect). In this PhD-thesis, we focused on three types of catalysts: transition metal-based complexes, rare earth-based catalysts and organocatalysts. First, the ability of supported phosphine-palladium based catalysts to promote the Suzuki coupling was studied. Although a negative dendritic effect was observed (decrease of the dendrimer catalyst activity in comparison with the monomeric counterpart), good yields were obtained and the catalyst recycling could be achieved by precipitation. Moreover, the use of dendritic catalysts allows to retain the palladium on the support and thus to dramatically reduce the metal leaching in the coupling products. In addition, the grafting of similar dendrons on magnetic nanoparticles enabled to increase the number of consecutive runs using magnetic decantation as recycling technique. In a second part, dendritic terpyridines were prepared and then complexed to rare earth (mainly Sc, Yb and Y). The ability of these complexes to promote Friedel-Crafts acylation was investigated and the recycling of these efficient catalysts was successfully accomplished. Finally, dendritic prolinol-based organocatalysts have allowed to perform asymmetric Michael reaction in mild conditions, with good yields and enantioselectivity. A positive dendritic effect was observed and efficient recycling conditions were proposed. This PhD-thesis displays a wide range of applications for dendrimers in the field of catalysis. One of the major advantages presented is the set-up of recyclings by exploiting the nanometric size or the magnetic properties of the support. Thus, these studies are in line with the general concept of sustainable development insofar as eco-compatible catalysts are used
Fusteș-Dămoc, Iolanda. "Matériaux polymères durables synthétisés à base d'oligo- et de polysaccharides." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4076.
Full textThe durability of materials is their ability to withstand over time the influence of various factors such as temperature, humidity and breakage while maintaining their characteristics.Durable polymer materials are the solution to environmental pollution. In this context, the development of sustainable polymer materials based on biodegradable compounds, which are abundant in nature, even from industrial waste, and which also have a low cost price, is a possible alternative to materials based on fossil compounds, which are toxic. At the same time, the use of minimal chemicals is an advantage for large-scale production by industries. In addition, obtaining advantageous properties under these conditions, tailored to certain types of applications, brings added value, which recommends their use over toxic materials.Oligo- and polysaccharides represent a suitable raw material that could be exploited in the design of durable polymeric materials. Their use has already aroused real interest among researchers, but their industrial application faces a number of difficulties: from inadequate technological processes and high consumption of solvents and chemicals to the high costs of obtaining, recycling and reusing materials, in line with a circular economy, which is essential in addressing environmental protection. This circular economy is about extending the life cycle of materials by reducing waste. by promoting the repair, reuse and recycling of materials for as long as possible. This PhD thesis presents the results obtained from the synthesis, characterisation and testing of sustainable oligo- and polysaccharide-based materials.The overall objective of the PhD thesis is to develop durable materials that incorporate and exploit non-toxic, renewable, environmentally friendly, cheap and naturally abundant compounds such as oligo- and polysaccharides in a circular economy.The main research directions developed in the thesis are:- Valorisation of β-cyclodextrin, from the oligosaccharide category, and chitosan, from the polysaccharide category, in sustainable material systems;- Development of such sustainable materials using a minimum number of steps and a reduced number of compounds and solvents;- The use, in particular, of chitosan in solid (powder) form to optimise the mechanical and thermal properties of the systems;- Achieving improved mechanical and thermal properties of the materials by introducing oligo- and polysaccharides, compared to reference systems, for chitosan-based systems, and for β-cyclodextrin-based systems: optimised adsorption of various pollutants such as antibiotics, organic dyes, heavy metals;- increased application potential of materials in various fields such as biomedical, food packaging, epoxy coatings, aerospace, due to the advantages of oligo- and polysaccharides;- Testing the recyclability of β-cyclodextrin-based nanomaterials to improve material durability