Journal articles on the topic 'Nanoparticles'

To see the other types of publications on this topic, follow the link: Nanoparticles.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Nanoparticles.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Li, Meng, Liqiang Lin, Ruyan Guo, Amar Bhalla, and Xiaowei Zeng. "Numerical investigation of size effects on mechanical behaviors of Fe nanoparticles through an atomistic field theory." Journal of Micromechanics and Molecular Physics 02, no. 03 (September 2017): 1750010. http://dx.doi.org/10.1142/s2424913017500102.

Full text
Abstract:
At nanoscale, the mechanical response of nanoparticles is largely affected by the particle size. To assess the effects of nanoparticle size (e.g., nanoparticle’s volume, cross-sectional area and length) on mechanical behaviors of bcc Fe nanoparticles under compressive loading, an atomistic field theory was introduced in current study. In the theory, atomistic definitions and continuous local density functions of fundamental physical quantities were derived. Through the atomistic potential-based method, the mechanical responses of bcc Fe nanoparticles were analyzed in different sizes. The simulation results reveal that the ultimate stress decreases as Fe nanoparticle’s volume, cross-sectional area or length increases under compressive loading. Nonetheless, the Young’s modulus increases as nanoparticle size increases. In addition, for a fixed finite volume nanoparticle, this study indicates that the ultimate stress will increase as strain rate increases, but Young’s modulus will decrease with increasing strain rate. A loading–unloading study illustrates the energy dissipation due to irreversible structure changes in Fe nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
2

Karatrantos, Argyrios, Yao Koutsawa, Philippe Dubois, Nigel Clarke, and Martin Kröger. "Miscibility and Nanoparticle Diffusion in Ionic Nanocomposites." Polymers 10, no. 9 (September 10, 2018): 1010. http://dx.doi.org/10.3390/polym10091010.

Full text
Abstract:
We investigate the effect of various spherical nanoparticles in a polymer matrix on dispersion, chain dimensions and entanglements for ionic nanocomposites at dilute and high nanoparticle loading by means of molecular dynamics simulations. The nanoparticle dispersion can be achieved in oligomer matrices due to the presence of electrostatic interactions. We show that the overall configuration of ionic oligomer chains, as characterized by their radii of gyration, can be perturbed at dilute nanoparticle loading by the presence of charged nanoparticles. In addition, the nanoparticle’s diffusivity is reduced due to the electrostatic interactions, in comparison to conventional nanocomposites where the electrostatic interaction is absent. The charged nanoparticles are found to move by a hopping mechanism.
APA, Harvard, Vancouver, ISO, and other styles
3

Shannahan, Jonathan. "The biocorona: a challenge for the biomedical application of nanoparticles." Nanotechnology Reviews 6, no. 4 (August 28, 2017): 345–53. http://dx.doi.org/10.1515/ntrev-2016-0098.

Full text
Abstract:
AbstractFormation of the biocorona on the surface of nanoparticles is a significant obstacle for the development of safe and effective nanotechnologies, especially for nanoparticles with biomedical applications. Following introduction into a biological environment, nanoparticles are rapidly coated with biomolecules resulting in formation of the nanoparticle-biocorona. The addition of these biomolecules alters the nanoparticle’s physicochemical characteristics, functionality, biodistribution, and toxicity. To synthesize effective nanotherapeutics and to more fully understand possible toxicity following human exposures, it is necessary to elucidate these interactions between the nanoparticle and the biological media resulting in biocorona formation. A thorough understanding of the mechanisms by which the addition of the biocorona governs nanoparticle-cell interactions is also required. Through elucidating the formation and the biological impact of the biocorona, the field of nanotechnology can reach its full potential. This understanding of the biocorona will ultimately allow for more effective laboratory screening of nanoparticles and enhanced biomedical applications. The importance of the nanoparticle-biocorona has been appreciated for a decade; however, there remain numerous future directions for research which are necessary for study. This perspectives article will summarize the unique challenges presented by the nanoparticle-biocorona and avenues of future needed investigation.
APA, Harvard, Vancouver, ISO, and other styles
4

Sutthavas, Pichaporn, Matthias Schumacher, Kai Zheng, Pamela Habibović, Aldo Roberto Boccaccini, and Sabine van Rijt. "Zn-Loaded and Calcium Phosphate-Coated Degradable Silica Nanoparticles Can Effectively Promote Osteogenesis in Human Mesenchymal Stem Cells." Nanomaterials 12, no. 17 (August 24, 2022): 2918. http://dx.doi.org/10.3390/nano12172918.

Full text
Abstract:
Nanoparticles such as mesoporous bioactive glasses (MBGs) and mesoporous silica nanoparticles (MSN) are promising for use in bone regeneration applications due to their inherent bioactivity. Doping silica nanoparticles with bioinorganic ions could further enhance their biological performance. For example, zinc (Zn) is often used as an additive because it plays an important role in bone formation and development. Local delivery and dose control are important aspects of its therapeutic application. In this work, we investigated how Zn incorporation in MSN and MBG nanoparticles impacts their ability to promote human mesenchymal stem cell (hMSC) osteogenesis and mineralization in vitro. Zn ions were incorporated in three different ways; within the matrix, on the surface or in the mesopores. The nanoparticles were further coated with a calcium phosphate (CaP) layer to allow pH-responsive delivery of the ions. We demonstrate that the Zn incorporation amount and ion release profile affect the nanoparticle’s ability to stimulate osteogenesis in hMSCs. Specifically, we show that the nanoparticles that contain rapid Zn release profiles and a degradable silica matrix were most effective in inducing hMSC differentiation. Moreover, cells cultured in the presence of nanoparticle-containing media resulted in the highest induction of alkaline phosphate (ALP) activity, followed by culturing hMSC on nanoparticles immobilized on the surface as films. Exposure to nanoparticle-conditioned media did not increase ALP activity in hMSCs. In summary, Zn incorporation mode and nanoparticle application play an important role in determining the bioactivity of ion-doped silica nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Shenqing, Xiliang Yan, Gaoxing Su, and Bing Yan. "Cytotoxicity Induction by the Oxidative Reactivity of Nanoparticles Revealed by a Combinatorial GNP Library with Diverse Redox Properties." Molecules 26, no. 12 (June 14, 2021): 3630. http://dx.doi.org/10.3390/molecules26123630.

Full text
Abstract:
It is crucial to establish relationship between nanoparticle structures (or properties) and nanotoxicity. Previous investigations have shown that a nanoparticle’s size, shape, surface and core materials all impact its toxicity. However, the relationship between the redox property of nanoparticles and their toxicity has not been established when all other nanoparticle properties are identical. Here, by synthesizing an 80-membered combinatorial gold nanoparticle (GNP) library with diverse redox properties, we systematically explored this causal relationship. The compelling results revealed that the oxidative reactivity of GNPs, rather than their other physicochemical properties, directly caused cytotoxicity via induction of cellular oxidative stress. Our results show that the redox diversity of nanoparticles is regulated by GNPs modified with redox reactive ligands.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Yong, Xiao Jing Zhao, Qiang He, Ye Jun, and Qin Po Niu. "Experimental Study of Nanoparticle as Oil Additives." Advanced Materials Research 230-232 (May 2011): 288–92. http://dx.doi.org/10.4028/www.scientific.net/amr.230-232.288.

Full text
Abstract:
Cu nanoparticles as N32 base oil additives were studied in the paper. The structure of Cu nanoparticlcs was characterized by Transmission Electron Microscopy (TEM) and X-ray powder diffraction spectroscope (XRD). The widely used steel-steel friction system was chosen to test the feasibility and practicality of Cu nanoparticles as bearing lubricant additives. The results show that N32 base oil with 0.5% Cu nanoparticle can improve the test sample contact fatigue life than pure N32 base oil.
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Xijun. "The Magnetic Nanoparticle Movement in Magnetic Fluid Characterized by the Laser Dynamic Speckle Interferometry." Journal of Nanomaterials 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/287813.

Full text
Abstract:
A dual scanning laser speckle interferometry experiment was designed to observe the dynamic behavior of the magnetic fluid actuated by a magnetic field. In order to improve the spatial resolution of the dynamic speckle measurement, the phase delay scanning was used to compensate the additional phase variation which was caused by the transverse scanning. The correlation coefficients corresponding to the temporal dynamic speckle patterns within the same time interval scattering from the nanoparticles were calculated in the experiment on nanoscale magnetic clusters. In the experiment, the speckle of the magnetic nanoparticle fluid movement has been recorded by the lens unmounted CCD within the interferometry strips, although the speckle led to the distinguished annihilation of the light coherence. The results have showed that the nanoparticle fluid dynamic properties appeared synergistically in the fringe speckles. The analyses of the nanoparticle's relative speed and the speckle pattern moving amount in the fringes have proved the nanoparticle’s movement in a laminar flow in the experiment.
APA, Harvard, Vancouver, ISO, and other styles
8

Caballero-Florán, Isaac H., Hernán Cortés, Fabiola V. Borbolla-Jiménez, Carla D. Florán-Hernández, María L. Del Prado-Audelo, Jonathan J. Magaña, Benjamín Florán, and Gerardo Leyva-Gómez. "PEG 400:Trehalose Coating Enhances Curcumin-Loaded PLGA Nanoparticle Internalization in Neuronal Cells." Pharmaceutics 15, no. 6 (May 25, 2023): 1594. http://dx.doi.org/10.3390/pharmaceutics15061594.

Full text
Abstract:
This work proposes a combination of polyethylene glycol 400 (PEG) and trehalose as a surface modification approach to enhance PLGA-based nanoparticles as a drug carrier for neurons. PEG improves nanoparticles’ hydrophilicity, and trehalose enhances the nanoparticle’s cellular internalization by inducing a more auspicious microenvironment based on inhibiting cell surface receptor denaturation. To optimize the nanoprecipitation process, a central composite design was performed; nanoparticles were adsorbed with PEG and trehalose. PLGA nanoparticles with diameters smaller than 200 nm were produced, and the coating process did not considerably increase their size. Nanoparticles entrapped curcumin, and their release profile was determined. The nanoparticles presented a curcumin entrapment efficiency of over 40%, and coated nanoparticles reached 60% of curcumin release in two weeks. MTT tests and curcumin fluorescence, with confocal imaging, were used to assess nanoparticle cytotoxicity and cell internalization in SH-SY5Y cells. Free curcumin 80 µM depleted the cell survival to 13% at 72 h. Contrariwise, PEG:Trehalose-coated curcumin-loaded and non-loaded nanoparticles preserved cell survival at 76% and 79% under the same conditions, respectively. Cells incubated with 100 µM curcumin or curcumin nanoparticles for 1 h exhibited 13.4% and 14.84% of curcumin’s fluorescence, respectively. Moreover, cells exposed to 100 µM curcumin in PEG:Trehalose-coated nanoparticles for 1 h presented 28% fluorescence. In conclusion, PEG:Trehalose-adsorbed nanoparticles smaller than 200 nm exhibited suitable neural cytotoxicity and increased cell internalization proficiency.
APA, Harvard, Vancouver, ISO, and other styles
9

Chandra, Arun, and Nalina C. "Review on nanoparticles technology and applications based on drug delivery." IP International Journal of Comprehensive and Advanced Pharmacology 6, no. 3 (October 15, 2021): 117–20. http://dx.doi.org/10.18231/j.ijcaap.2021.021.

Full text
Abstract:
This review is about nanocrystal technology and applications of nanocrystals based on drug delivery. Nanocrystal technology is applied to the drug molecules to access for good drug delivery as nano dimensioned carrier. Nanoparticle has at least one dimension smaller than 100 nanometers. The major properties of nanoparticles are increases dissolution velocity by surface area enlargement and increase in saturation solubility. Nanoparticle’s productions are done with different methods such as precipitation method, Milling method, and homogenized method. Nanoparticles has got wide range of applications based on drug delivery such as gastrointestinal tract, brain, tumor cell targeting, respiratory tract, and gene delivery.
APA, Harvard, Vancouver, ISO, and other styles
10

Paulraj, Prabhavathi, Sankareswaran Muruganantham, Anbalagan S, Manikandan A, and Karthikeyan G. "GREEN SYNTHESIS AND CHARACTERIZATION OF SILVER NANOPARTICLES FROM WITHANIA SOMNIFERA (L.) DUNAL." Asian Journal of Pharmaceutical and Clinical Research 9, no. 5 (September 1, 2016): 34. http://dx.doi.org/10.22159/ajpcr.2016.v9i5.13204.

Full text
Abstract:
ABSTRACTThe metal nanoparticle synthesis is highly explored the field of nanotechnology. The biological methods seem to be more effective because of slowreduction rate and polydispersity of the final products. The main aim of this study is too the rapid and simplistic synthesis of silver nanoparticlesby Withania somnifera Linn. at room temperature. The exposure of reaction mixtures containing silver nitrate and dried leaf powder of W. somniferaresulted in reduction of metal ions within 5 minutes. The extracellular synthesized silver nanoparticles were characterized by ultraviolet-visible,infrared (IR) spectroscopy, X-ray diffraction studies, zeta potential, Fourier transform IR, and scanning electron microscopy. The antibacterial andantifungal studies showed significant activity as compared to their respective standards. From the results, W. somnifera sliver nanoparticle has attainedthe maximum antimicrobial against clinical pathogens and also seen very good stability of nanoparticle throughput processing. As we concluded, thistype of naturally synthesized sliver nanoparticle could be a better green revolution in medicinal chemistry.Keywords: Antimicrobial activity, Silver nanoparticles, Withania somnifera.
APA, Harvard, Vancouver, ISO, and other styles
11

Albarki, Mohammed A., and Maureen D. Donovan. "Uptake of Cationic PAMAM-PLGA Nanoparticles by the Nasal Mucosa." Scientia Pharmaceutica 90, no. 4 (November 25, 2022): 72. http://dx.doi.org/10.3390/scipharm90040072.

Full text
Abstract:
Nanoparticles provide promising advantages in advanced delivery systems for enhanced drug delivery and targeting. The use of a biodegradable polymer such as PLGA (poly lactic-co-glycolic acid) promotes improved nanoparticle safety and, to some extent, provides the ability to modify nanoparticle surface properties. This study compared the effect of altering the surface charge on the translocation of PLGA nanoparticles across excised nasal mucosal tissues. Nanoparticles (average diameter of 60–100 nm) loaded with Nile Red (lipophilic fluorescent dye) were fabricated using a nanoprecipitation method. The effects of nanoparticle surface charge were investigated by comparing the transfer of untreated nanoparticles (negatively charged) and positively charged PLGA nanoparticles, which were modified using PAMAM dendrimer (polyamidoamine, 5th generation). All nanoparticles were able to be transferred in measurable quantities into both nasal respiratory and olfactory mucosae within 30 min. The total nanoparticle uptake was less than 5% of the nanoparticle mass exposed to the tissue surface. The cationic nanoparticles showed a significantly lower transfer into the mucosal tissues where the amount of nanoparticles transferred was 1.8–4-fold lower compared to the untreated negatively charged nanoparticles. The modification of the nanoparticle surface charge can alter the nanoparticle interaction with the nasal epithelial surface, which can result in decreasing the nanoparticle transfer into the nasal mucosa.
APA, Harvard, Vancouver, ISO, and other styles
12

Li, Shidong, Yeap Hung Ng, Hon Chung Lau, Ole Torsæter, and Ludger P. Stubbs. "Experimental Investigation of Stability of Silica Nanoparticles at Reservoir Conditions for Enhanced Oil-Recovery Applications." Nanomaterials 10, no. 8 (August 4, 2020): 1522. http://dx.doi.org/10.3390/nano10081522.

Full text
Abstract:
To be effective enhanced oil-recovery (EOR) agents, nanoparticles must be stable and be transported through a reservoir. However, the stability of a nanoparticle suspension at reservoir salinity and temperature is still a challenge and how it is affected by reservoir rocks and crude oils is not well understood. In this work, for the first time, the effect of several nanoparticle treatment approaches on the stability of silica nanoparticles at reservoir conditions (in the presence of reservoir rock and crude oil) was investigated for EOR applications. The stability of nanoparticle suspensions was screened in test tubes at 70 °C and 3.8 wt. % NaCl in the presence of reservoir rock and crude oil. Fumed silica nanoparticles in suspension with hydrochloric acid (HCl), polymer-modified fumed nanoparticles and amide-functionalized silica colloidal nanoparticles were studied. The size and pH of nanoparticle suspension in contact with rock samples were measured to determine the mechanism for stabilization or destabilization of nanoparticles. A turbidity scanner was used to quantify the stability of the nanoparticle suspension. Results showed that both HCl and polymer surface modification can improve nanoparticle stability under synthetic seawater salinity and 70 °C. Suspensions of polymer-modified nanoparticles were stable for months. It was found that pH is a key parameter influencing nanoparticle stability. Rock samples containing carbonate minerals destabilized unmodified nanoparticles. Crude oil had limited effect on nanoparticle stability. Some components of crude oil migrated into the aqueous phase consisting of amide-functionalized silica colloidal nanoparticles suspension. Nanoparticles modification or/and stabilizer are necessary for nanoparticle EOR application.
APA, Harvard, Vancouver, ISO, and other styles
13

Nakamura, Michihiro. "Biomedical applications of organosilica nanoparticles toward theranostics." Nanotechnology Reviews 1, no. 6 (December 1, 2012): 469–91. http://dx.doi.org/10.1515/ntrev-2012-0005.

Full text
Abstract:
AbstractNanoparticles for biomedical applications have several advantages as multifunctional agents. Among various types of nanoparticles for biomedical applications, silica nanoparticles have characteristic positioning due to their inherent property. The recent development of silica nanoparticles is creating a new trend in nanomedicine. A novel type of silica nanoparticle, organosilica nanoparticle, is both structurally and functionally different from the common (inorgano)silica nanoparticle. The organosilica nanoparticles are inherent organic-inorganic hybrid nanomaterials. The interior and exterior functionalities of organosilica nanoparticles are useful for their multifunctionalization. Biomedical applications of organosilica nanoparticles are leading to a wide range of nanomedical fields such as basic biomedical investigations and clinical applications. Multifunctionalizations peculiar to organosilica nanoparticles enable the creation of novel imaging systems and therapeutic applications. In this review, I will introduce differences between (inorgano)silica nanoparticles and organosilica nanoparticles, and then focus on biomedical applications of organosilica nanoparticles toward theranostics.
APA, Harvard, Vancouver, ISO, and other styles
14

Olinger, Alexander D., Eric J. Spangler, P. B. Sunil Kumar, and Mohamed Laradji. "Membrane-mediated aggregation of anisotropically curved nanoparticles." Faraday Discussions 186 (2016): 265–75. http://dx.doi.org/10.1039/c5fd00144g.

Full text
Abstract:
Using systematic numerical simulations, we study the self-assembly of elongated curved nanoparticles on lipid vesicles. Our simulations are based on molecular dynamics of a coarse-grained implicit-solvent model of self-assembled lipid membranes with a Langevin thermostat. Here we consider only the case wherein the nanoparticle–nanoparticle interaction is repulsive, only the concave surface of the nanoparticle interacts attractively with the lipid head groups and only the outer surface of the vesicle is exposed to the nanoparticles. Upon their adhesion on the vesicle, the curved nanoparticles generate local curvature on the membrane. The resulting nanoparticle-generated membrane curvature leads in turn to nanoparticle self-assembly into two main types of aggregates corresponding to chain aggregates at low adhesion strengths and aster aggregates at high adhesion strength. The chain-like aggregates are due to the fact that at low values of adhesion strength, the nanoparticles prefer to lie parallel to each other. As the adhesion strength is increased, a splay angle between the nanoparticles is induced with a magnitude that increases with increasing adhesion strength. The origin of the splay angles between the nanoparticles is shown to be saddle-like membrane deformations induced by a tilt of the lipids around the nanoparticles. This phenomenon of membrane mediated self-assembly of anisotropically curved nanoparticles is explored for systems with varying nanoparticle number densities, adhesion strength, and nanoparticle intrinsic curvature.
APA, Harvard, Vancouver, ISO, and other styles
15

Wijaya, Christian J., Suryadi Ismadji, and Setiyo Gunawan. "A Review of Lignocellulosic-Derived Nanoparticles for Drug Delivery Applications: Lignin Nanoparticles, Xylan Nanoparticles, and Cellulose Nanocrystals." Molecules 26, no. 3 (January 28, 2021): 676. http://dx.doi.org/10.3390/molecules26030676.

Full text
Abstract:
Due to their biocompatibility, biodegradability, and non-toxicity, lignocellulosic-derived nanoparticles are very potential materials for drug carriers in drug delivery applications. There are three main lignocellulosic-derived nanoparticles discussed in this review. First, lignin nanoparticles (LNPs) are an amphiphilic nanoparticle which has versatile interactions toward hydrophilic or hydrophobic drugs. The synthesis methods of LNPs play an important role in this amphiphilic characteristic. Second, xylan nanoparticles (XNPs) are a hemicellulose-derived nanoparticle, where additional pretreatment is needed to obtain a high purity xylan before the synthesis of XNPs. This process is quite long and challenging, but XNPs have a lot of potential as a drug carrier due to their stronger interactions with various drugs. Third, cellulose nanocrystals (CNCs) are a widely exploited nanoparticle, especially in drug delivery applications. CNCs have low cytotoxicity, therefore they are suitable for use as a drug carrier. The research possibilities for these three nanoparticles are still wide and there is potential in drug delivery applications, especially for enhancing their characteristics with further surface modifications adjusted to the drugs.
APA, Harvard, Vancouver, ISO, and other styles
16

Ali, Muhammad, Viviana Benfante, Domenico Di Raimondo, Giuseppe Salvaggio, Antonino Tuttolomondo, and Albert Comelli. "Recent Developments in Nanoparticle Formulations for Resveratrol Encapsulation as an Anticancer Agent." Pharmaceuticals 17, no. 1 (January 18, 2024): 126. http://dx.doi.org/10.3390/ph17010126.

Full text
Abstract:
Resveratrol is a polyphenolic compound that has gained considerable attention in the past decade due to its multifaceted therapeutic potential, including anti-inflammatory and anticancer properties. However, its anticancer efficacy is impeded by low water solubility, dose-limiting toxicity, low bioavailability, and rapid hepatic metabolism. To overcome these hurdles, various nanoparticles such as organic and inorganic nanoparticles, liposomes, polymeric nanoparticles, dendrimers, solid lipid nanoparticles, gold nanoparticles, zinc oxide nanoparticles, zeolitic imidazolate frameworks, carbon nanotubes, bioactive glass nanoparticles, and mesoporous nanoparticles were employed to deliver resveratrol, enhancing its water solubility, bioavailability, and efficacy against various types of cancer. Resveratrol-loaded nanoparticle or resveratrol-conjugated nanoparticle administration exhibits excellent anticancer potency compared to free resveratrol. This review highlights the latest developments in nanoparticle-based delivery systems for resveratrol, focusing on the potential to overcome limitations associated with the compound’s bioavailability and therapeutic effectiveness.
APA, Harvard, Vancouver, ISO, and other styles
17

Maghoul, Amir, Ali Rostami, Samiyeh Matloub, and Amin Pourrezaei. "Design Considerations Influencing Optical Response in Gold Spherical Nanoparticles." Journal of Nano Research 46 (March 2017): 1–11. http://dx.doi.org/10.4028/www.scientific.net/jnanor.46.1.

Full text
Abstract:
In this article, the relations between extinction cross section and Gold nanoparticle's parameters such as dimensions have been investigated. In this work, the extinction cross section of the core-shell nanoparticles is analyzed by changing the shell material and its thickness. By this, the interesting results such as shifting resonant peak in optical response are obtained. Moreover, a new model of nanostructure is proposed in which the resonant peak of extinction cross section can be controlled by adding silicon nanoparticles and impurity in the shell. This method can be used for tuning of the scattering properties of the core-shell nanoparticle. In the following, we demonstrate that the effective epsilon properties can be used for tuning of the desired optical response in the combinational structure of the spherical nanoparticles. At the end, the effective relative epsilon is also calculated for the selected structures. The operational frequency band is selected from 300 (THz) to 900 (THz).
APA, Harvard, Vancouver, ISO, and other styles
18

Michelakaki, Irini, Nikos Boukos, Dimitrios A. Dragatogiannis, Spyros Stathopoulos, Costas A. Charitidis, and Dimitris Tsoukalas. "Synthesis of hafnium nanoparticles and hafnium nanoparticle films by gas condensation and energetic deposition." Beilstein Journal of Nanotechnology 9 (June 27, 2018): 1868–80. http://dx.doi.org/10.3762/bjnano.9.179.

Full text
Abstract:
In this work we study the fabrication and characterization of hafnium nanoparticles and hafnium nanoparticle thin films. Hafnium nanoparticles were grown in vacuum by magnetron-sputtering inert-gas condensation. The as deposited nanoparticles have a hexagonal close-packed crystal structure, they possess truncated hexagonal biprism shape and are prone to surface oxidation when exposed to ambient air forming core–shell Hf/HfO2 structures. Hafnium nanoparticle thin films were formed through energetic nanoparticle deposition. This technique allows for the control of the energy of charged nanoparticles during vacuum deposition. The structural and nanomechanical properties of the nanoparticle thin films were investigated as a function of the kinetic energy of the nanoparticles. The results reveal that by proper adjustment of the nanoparticle energy, hexagonal close-packed porous nanoparticle thin films with good mechanical properties can be formed, without any additional treatment. It is shown that these films can be patterned on the substrate in sub-micrometer dimensions using conventional lithography while their porosity can be well controlled. The fabrication and experimental characterization of hafnium nanoparticles is reported for the first time in the literature.
APA, Harvard, Vancouver, ISO, and other styles
19

Chavanpatil, Mahesh D., Ayman Khdair, and Jayanth Panyam. "Nanoparticles for Cellular Drug Delivery: Mechanisms and Factors Influencing Delivery." Journal of Nanoscience and Nanotechnology 6, no. 9 (September 1, 2006): 2651–63. http://dx.doi.org/10.1166/jnn.2006.443.

Full text
Abstract:
Polymeric nanoparticles have demonstrated enormous potential as cellular drug delivery vehicles. Nanoparticles improve drug's stability as well as its availability and retention at the target intracellular site of action. Therapeutic efficacy of nanoparticles can be further enhanced by conjugating specific ligands to nanoparticle surface. Ligand conjugation can also be used to favorably modify the intracellular disposition of nanoparticles. A number of ligands are available for this purpose; use of a specific ligand depends on the target cell, the material used for nanoparticle formulation, and the chemistry available for ligand-nanoparticle conjugation. Cellular drug delivery using nanoparticles is also affected by clearance through the reticuloendothelial system. In this paper, we review the recent progress on our understanding of physicochemical factors that affect the cellular uptake of nanoparticles and the different cellular processes that could be exploited to enhance nanoparticle uptake into cells.
APA, Harvard, Vancouver, ISO, and other styles
20

Bertholon, Isabelle, Gilles Ponchel, Denis Labarre, Patrick Couvreur, and Christine Vauthier. "Bioadhesive Properties of Poly(alkylcyanoacrylate) Nanoparticles Coated with Polysaccharide." Journal of Nanoscience and Nanotechnology 6, no. 9 (September 1, 2006): 3102–9. http://dx.doi.org/10.1166/jnn.2006.418.

Full text
Abstract:
Development of bioadhesive nanoparticles is of great interest to improve drug absorption through the intestinal barrier. Various Polysaccharide-coated poly(alkylcyanoacrylate) nanoparticles were prepared. The bioadhesive properties of the nanoparticles coated with dextran or chitosan in end-on or side-on conformation were evaluated with an ex-vivo adsorption experiment on rat intestine. Results show that diffusion of nanoparticles in mucus layer was governed by the nanoparticle diameter and isotherms of adsorption were influenced by the nature of polysaccharide used. High amount of nanoparticles coated with chitosan can be entrapped in the mucus layer even at low nanoparticle concentration in suspension. When nanoparticle concentration increased, a pseudo-plateau was reached. In the case of dextran-coated nanoparticles, linear increase of adsorption was observed and no saturation phenomenon was highlighted over the range of nanoparticle concentration used in this study. These results suggested that interactions involved in bioadhesion mechanism depended on the nature of polysaccharide. Electrostatic interactions are enhanced between chitosan-coated nanoparticles and glycoproteins of mucus leading to a saturated adsorption phenomenon whereas dextran-coated nanoparticles interacted by non-electrostatic interactions with mucus resulting in a non-saturated phenomenon. Polysaccharides grafted at the nanoparticle surface in the brush conformation appeared more favorable to promote interactions of nanoparticles with glycoproteins of mucus in comparison with the more compact loop conformation of polysaccharide chains.
APA, Harvard, Vancouver, ISO, and other styles
21

Fan, Xunqin, Shuan Liu, and Ke Ruan. "Application of magnetic nanoparticles Fe304 in the field of orthopedics and medicine." E3S Web of Conferences 271 (2021): 04041. http://dx.doi.org/10.1051/e3sconf/202127104041.

Full text
Abstract:
Magnetic nanoparticle Fe304 have super paramagnetic, biological cell compatibility, low toxicity, antibiosis and bacteriostasis, drug loading, sustained release and thermal effect. Using magnetic nanoparticies Fe304 as magnetic source, magnetic masoporous glass two-dimensional bone framework was synthesized under the action of external magnetic field, which provides growth space for bone repair, cell proliferation and metabolism, and contribute to mineralizing. The same time, The application of graphene, especially magnetic nanoparticles Fe304, in bone materials, bone repair and relatedmedicalfields was discussed.
APA, Harvard, Vancouver, ISO, and other styles
22

Murei, A., K. Pillay, and A. Samie. "Syntheses, Characterization, and Antibacterial Evaluation of P. grandiflora Extracts Conjugated with Gold Nanoparticles." Journal of Nanotechnology 2021 (December 24, 2021): 1–10. http://dx.doi.org/10.1155/2021/8687627.

Full text
Abstract:
Background. With the recent increase in antibiotic resistance to conventional antibiotics, gold nanoparticles, and medicinal plants, extracts present an interesting alternative. Objectives. This study aimed to synthesize, characterize, and evaluate Pyrenacantha grandiflora Baill extracts and gold nanoparticle conjugates against pathogenic bacteria. Methods. We synthesized gold nanoparticles by chemical and biological methods. The nanoparticles were characterized by the use of UV-visible spectrophotometry, followed by transmission electron microscopy (TEM) and energy-dispersive X-ray analysis (EDX). Gold nanoparticles were conjugated to plant extracts and analyzed with a Fourier-transform infrared spectroscope (FTIR). We determined the antimicrobial activity of the conjugates using well diffusion and the microdilution assays. Results. The UV–visible spectra of gold nanoparticles showed a synthesis peak at 530 nm. FTIR analysis indicated functional biomolecules that were associated with plant extract conjugated gold nanoparticles; the formation of C–H group and carbonyl (C=O) groups, –OH carbonyl, and C≡C groups were also observed. Biologically synthesized nanoparticles were star-shaped when observed by TEM with an average size of 11 nm. Gold nanoparticles synthesized with P. grandiflora water extracts showed the largest zone of inhibition (22 mm). When the gold nanoparticles synthesized by the biological method were conjugated with acetone extracts of P. grandiflora, MIC as low as 0.0063 mg/mL was observed against beta-lactamase producing K. pneumonia. The activity of acetone extracts was improved with chemically synthesized gold nanoparticles particularly when beta-lactamase producing E. coli and MRSA were used as test organisms. A synergistic effect was observed against all tested bacteria, except for MRSA when gold nanoparticles were conjugated with acetone extract. Conclusion. Overall, P. grandiflora tuber extracts conjugated with gold nanoparticles showed a very good antibacterial activity that improved both plant extract and gold nanoparticle’s individual activity.
APA, Harvard, Vancouver, ISO, and other styles
23

Bao, Lingling, Chaoyang Zhong, Pengfei Jie, and Yan Hou. "The effect of nanoparticle size and nanoparticle aggregation on the flow characteristics of nanofluids by molecular dynamics simulation." Advances in Mechanical Engineering 11, no. 11 (November 2019): 168781401988948. http://dx.doi.org/10.1177/1687814019889486.

Full text
Abstract:
Molecular dynamics simulation is used to investigate the flow characteristics of Cu–Ar nanofluids considering the influence of nanoparticle size and nanoparticle aggregation. Nanofluids viscosity is calculated by equilibrium molecular dynamics based on Green–Kubo equation. Results demonstrate that the viscosity of nanofluids decreases with the increase of nanoparticle size. In addition, nanoparticle aggregation results in the increase of the nanofluids viscosity. Compared with nanoparticle size, nanoparticle aggregation has a larger impact on viscosity. Nanofluids flowing in parallel-plate nanochannels are simulated. The velocity profiles are studied through three nanoparticle sizes (11.55, 14.55, and 18.33 Å) and four nanoparticle aggregate configurations. Results show that the velocity profile of 14.55 Å nanoparticle size is larger than that of other two nanoparticle sizes. As for four nanoparticles, the nanoparticles clustering as a line leads to the maximum velocity profile, while the nanoparticles clustering as a cube causes the minimum velocity profile. Compared with viscosity, nanoparticle aggregation has a greater effect on the velocity profile. When the nanoparticles are evenly distributed, the influence of viscosity on velocity profiles is dominant. Otherwise, the aggregation, aggregate configuration, and distribution of nanoparticles have a dominant impact on the flow characteristics of nanofluids.
APA, Harvard, Vancouver, ISO, and other styles
24

Ulanova, Marina, Lucy Gloag, Andre Bongers, Chul-Kyu Kim, Hong Thien Kim Duong, Ha Na Kim, John Justin Gooding, et al. "Evaluation of Dimercaptosuccinic Acid-Coated Iron Nanoparticles Immunotargeted to Amyloid Beta as MRI Contrast Agents for the Diagnosis of Alzheimer’s Disease." Cells 12, no. 18 (September 14, 2023): 2279. http://dx.doi.org/10.3390/cells12182279.

Full text
Abstract:
Nanoparticle-based magnetic contrast agents have opened the potential for magnetic resonance imaging (MRI) to be used for early non-invasive diagnosis of Alzheimer’s disease (AD). Accumulation of amyloid pathology in the brain has shown association with cognitive decline and tauopathy; hence, it is an effective biomarker for the early detection of AD. The aim of this study was to develop a biocompatible magnetic nanoparticle targeted to amyloid beta (Aβ) plaques to increase the sensitivity of T2-weighted MRI for imaging of amyloid pathology in AD. We presented novel iron core-iron oxide nanoparticles stabilized with a dimercaptosuccinic acid coating and functionalized with an anti-Aβ antibody. Nanoparticle biocompatibility and cellular internalization were evaluated in vitro in U-251 glioblastoma cells using cellular assays, proteomics, and transmission electron microscopy. Iron nanoparticles demonstrated no significant in vitro cytotoxicity, and electron microscopy results showed their movement through the endocytic cycle within the cell over a 24 h period. In addition, immunostaining and bio-layer interferometry confirmed the targeted nanoparticle’s binding affinity to amyloid species. The iron nanoparticles demonstrated favourable MRI contrast enhancement; however, the addition of the antibody resulted in a reduction in the relaxivity of the particles. The present work shows promising preliminary results in the development of a targeted non-invasive method of early AD diagnosis using contrast-enhanced MRI.
APA, Harvard, Vancouver, ISO, and other styles
25

Niu, Bin, and Gengxin Zhang. "Effects of Different Nanoparticles on Microbes." Microorganisms 11, no. 3 (February 21, 2023): 542. http://dx.doi.org/10.3390/microorganisms11030542.

Full text
Abstract:
Nanoparticles widely exist in nature and may be formed through inorganic or organic pathways, exhibiting unique physical and chemical properties different from those of bulk materials. However, little is known about the potential consequences of nanomaterials on microbes in natural environments. Herein, we investigated the interactions between microbes and nanoparticles by performing experiments on the inhibition effects of gold, ludox and laponite nanoparticles on Escherichia coli in liquid Luria–Bertani (LB) medium at different nanoparticle concentrations. These nanoparticles were shown to be effective bactericides. Scanning electron microscopy (SEM) images revealed the distinct aggregation of cells and nanoparticles. Transmission electron microscopy (TEM) images showed considerable cell membrane disruption due to nanoparticle accumulation on the cell surfaces, resulting in cell death. We hypothesized that this nanoparticle accumulation on the cell surfaces not only disrupted the cell membranes but also physically blocked the microbes from accessing nutrients. An iron-reducing bacterium, Shewanella putrefaciens, was tested for its ability to reduce the Fe (III) in solid ferrihydrite (HFO) or aqueous ferric citrate in the presence of laponite nanoparticles. It was found that the laponite nanoparticles inhibited the reduction of the Fe (III) in solid ferrihydrite. Moreover, direct contact between the cells and solid Fe (III) coated with the laponite nanoparticles was physically blocked, as confirmed by SEM images and particle size measurements. However, the laponite particles had an insignificant effect on the extent of aqueous Fe (III) bioreduction but slightly enhanced the rate of bioreduction of the Fe (III) in aqueous ferric citrate. The slightly increased rate of bioreduction by laponite nanoparticles may be due to the removal of inhibitory Fe (II) from the cell surface by its sorption onto the laponite nanoparticle surface. This result indicates that the scavenging of toxic heavy metals, such as Fe (II), by nanoparticles may be beneficial for microbes in the environment. On the other hand, microbial cells are also capable of detoxifying nanoparticles by coagulating nanoparticles with extracellular polymeric substances or by changing nanoparticle morphologies. Hence, the interactions between microbes and nanoparticles in natural environments should receive more attention.
APA, Harvard, Vancouver, ISO, and other styles
26

Hou, Qi Qi, Xiao Ming Pan, and Wei Zheng. "The Study of New Type of Double Metal Nanofluids Suspension Stability." Applied Mechanics and Materials 440 (October 2013): 54–60. http://dx.doi.org/10.4028/www.scientific.net/amm.440.54.

Full text
Abstract:
This paper made two types metal nanoparticles whose laws of motion had bigger different into ethylene glycol became a new type of double metals nanofluids coolant, and through theoretical analysis and experimental observations to research the different of aggregation properties with single metal nanofluids coolant. Research results of theoretical analysis showed that particles motion laws were the important element of nanoparticle aggregation, because of differences in movement, as the same conditions, double metals nanoparticles had the advantage of aggregation number and equivalent diameter of poly group better than single metal nanoparticles. Experimental results showed that through light beam transmittance test, we knew that the transmitting light degree of homogeneity of double metal nanofluids coolant was better than single metal nanofluids coolants; through contrast TME photos, we got nanoparticle aggregation state of three types of metal nanoparticles, and knew the otherness of nanoparticle aggregation state between double metal nanoparticles and Cu nanoparticles and Ag nanoparticles. This paper provides a scientific attempt to solve nanoparticles aggregation.
APA, Harvard, Vancouver, ISO, and other styles
27

Katz, Evgeny. "Magnetic Nanoparticles." Magnetochemistry 6, no. 1 (January 15, 2020): 6. http://dx.doi.org/10.3390/magnetochemistry6010006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Chow, James C. L., and Sama Jubran. "Depth Dose Enhancement in Orthovoltage Nanoparticle-Enhanced Radiotherapy: A Monte Carlo Phantom Study." Micromachines 14, no. 6 (June 10, 2023): 1230. http://dx.doi.org/10.3390/mi14061230.

Full text
Abstract:
Background: This study was to examine the depth dose enhancement in orthovoltage nanoparticle-enhanced radiotherapy for skin treatment by investigating the impact of various photon beam energies, nanoparticle materials, and nanoparticle concentrations. Methods: A water phantom was utilized, and different nanoparticle materials (gold, platinum, iodine, silver, iron oxide) were added to determine the depth doses through Monte Carlo simulation. The clinical 105 kVp and 220 kVp photon beams were used to compute the depth doses of the phantom at different nanoparticle concentrations (ranging from 3 mg/mL to 40 mg/mL). The dose enhancement ratio (DER), which represents the ratio of the dose with nanoparticles to the dose without nanoparticles at the same depth in the phantom, was calculated to determine the dose enhancement. Results: The study found that gold nanoparticles outperformed the other nanoparticle materials, with a maximum DER value of 3.77 at a concentration of 40 mg/mL. Iron oxide nanoparticles exhibited the lowest DER value, equal to 1, when compared to other nanoparticles. Additionally, the DER value increased with higher nanoparticle concentrations and lower photon beam energy. Conclusions: It is concluded in this study that gold nanoparticles are the most effective in enhancing the depth dose in orthovoltage nanoparticle-enhanced skin therapy. Furthermore, the results suggest that increasing nanoparticle concentration and decreasing photon beam energy lead to increased dose enhancement.
APA, Harvard, Vancouver, ISO, and other styles
29

A.Asha, A. Asha, and G. S. Prabha Littis Malar. "Cytotoxicity, Antidiabetic and Anticancer Studies of Insulin and Curcumin-Loaded Polymeric Nanoparticles." Biomedical and Pharmacology Journal 15, no. 3 (September 29, 2022): 1653–61. http://dx.doi.org/10.13005/bpj/2503.

Full text
Abstract:
Cytotoxicity measurement is needed for all drug-loaded nanoparticles. Because, if the nanoparticles have toxicity means, the drug-loaded polymeric nanoparticles cannot be used for the drug delivery. Generally cell viability is measured in the cytotoxicity measurement. In this work, the nanoparticle have synthesized from the natural polymeric material. These nanoparticles have been prepared using a nano-precipitation technique. Drugs, Insulin and Curcumin are added to these synthesized nanoparticles. This drug was coated on the surface of the nanoparticles to enhance the biocompatibility. These drug-loaded polymeric nanoparticles are used for the drug delivery. L929 cells have been to prove the cytotoxicity of these drug loaded polymeric nanoparticles by Neutral red assay method. From the cytotoxicity assay TPIG, TPCG and CCIG, CCCG nanoparticles are not cytotoxic. Insulin-loaded Tapioca/pectin and a Casein/chitosan nanoparticle were used to study the anti- diabetic assay. Curcumin-loaded Tapioca/pectin and Casein/Chitosan nanoparticle were used for Anti-cancer studies, by making use of Human Osteosarcoma cells (HOS). From these studies, the Insulin and Curcumin-loaded Tapioca/pectin and Casein/chitosan nanoparticles are not cytotoxic, and they can be used for drug delivery.
APA, Harvard, Vancouver, ISO, and other styles
30

Jiang, Xu, Ming Liu, Xingxun Li, Li Wang, Shuang Liang, and Xuqiang Guo. "Effects of Surfactant and Hydrophobic Nanoparticles on the Crude Oil-Water Interfacial Tension." Energies 14, no. 19 (September 30, 2021): 6234. http://dx.doi.org/10.3390/en14196234.

Full text
Abstract:
Surfactants and nanoparticles play crucial roles in controlling the oil-water interfacial phenomenon. The natural oil-wet mineral nanoparticles that exist in crude oil could remarkably affect water-oil interfacial characteristics. Most of recent studies focus on the effect of hydrophilic nanoparticles dispersed in water on the oil-water interfacial phenomenon for the nanoparticle enhanced oil recovery. However, studies of the impact of the oil-wet nanoparticles existed in crude oil on interfacial behaviour are rare. In this study, the impacts of Span 80 surfactant and hydrophobic SiO2 nanoparticles on the crude oil-water interfacial characteristics were studied by measuring the dynamic and equilibrium crude oil-water interfacial tensions. The results show the existence of nanoparticles leading to higher crude oil-water interfacial tensions than those without nanoparticles at low surfactant concentrations below 2000 ppm. At a Span 80 surfactant concentration of 1000 ppm, the increase of interfacial tension caused by nanoparticles is largest, which is around 8.6 mN/m. For high Span 80 surfactant concentrations, the less significant impact of nanoparticles on the crude oil-water interfacial tension is obtained. The effect of nanoparticle concentration on the crude oil-water interfacial tension was also investigated in the existence of surfactant. The data indicates the less significant influence of nanoparticles on the crude oil-water interfacial tension at high nanoparticle concentration in the presence of Span 80 surfactant. This study confirms the influences of nanoparticle-surfactant interaction and competitive surfactant molecule adsorption on the nanoparticles surfaces and the crude oil-water interface.
APA, Harvard, Vancouver, ISO, and other styles
31

Lastra, Ruben O., Tatjana Paunesku, Barite Gutama, Filiberto Reyes, Josie François, Shelby Martinez, Lun Xin, et al. "Protein Binding Effects of Dopamine Coated Titanium Dioxide Shell Nanoparticles." Precision Nanomedicine 2, no. 4 (October 2, 2019): 393–438. http://dx.doi.org/10.33218/prnano2(4).190802.1.

Full text
Abstract:
Non-targeted nanoparticles are capable of entering cells, passing through different subcellular compartments and accumulating on their surface a protein corona that changes over time. In this study, we used metal oxide nanoparticles with iron-oxide core covered with titanium dioxide shell (Fe3O4@TiO2), with a single layer of covalently bound dopamine covering the nanoparticle surface. Mixing nanoparticles with cellular protein isolates showed that these nanoparticles can form complexes with numerous cellular proteins. The addition of non-toxic quantities of nano-particles to HeLa cell culture resulted in their non-specific uptake and accumulation of protein corona on nanoparticle surface. TfRC, Hsp90 and PARP were followed as representative protein components of nanoparticle corona; each protein bound to nanoparticles with different affinity. The presence of nanoparticles in cells also mildly modulated gene expression on the level of mRNA. In conclusion, cells exposed to non-targeted nanoparticles show subtle but numerous changes that are consistent from one experiment to another.
APA, Harvard, Vancouver, ISO, and other styles
32

Strobel, Claudia, Martin Förster, and Ingrid Hilger. "Biocompatibility of cerium dioxide and silicon dioxide nanoparticles with endothelial cells." Beilstein Journal of Nanotechnology 5 (October 17, 2014): 1795–807. http://dx.doi.org/10.3762/bjnano.5.190.

Full text
Abstract:
Cerium dioxide (CeO2) and silicon dioxide (SiO2) nanoparticles are of widespread use in modern life. This means that human beings are markedly exposed to them in their everyday life. Once passing biological barriers, these nanoparticles are expected to interact with endothelial cells, leading to systemic alterations with distinct influences on human health. In the present study we observed the metabolic impact of differently sized CeO2 (8 nm; 35 nm) and SiO2 nanoparticles (117 nm; 315 nm) on immortalized human microvascular (HMEC-1) and primary macrovascular endothelial cells (HUVEC), with particular focus on the CeO2 nanoparticles. The characterization of the CeO2 nanoparticles in cell culture media with varying serum content indicated a steric stabilization of nanoparticles due to interaction with proteins. After cellular uptake, the CeO2 nanoparticles were localized around the nucleus in a ring-shaped manner. The nanoparticles revealed concentration and time, but no size-dependent effects on the cellular adenosine triphosphate levels. HUVEC reacted more sensitively to CeO2 nanoparticle exposure than HMEC-1. This effect was also observed in relation to cytokine release after nanoparticle treatment. The CeO2 nanoparticles exhibited a specific impact on the release of diverse proteins. Namely, a slight trend towards pro-inflammatory effects, a slight pro-thrombotic impact, and an increase of reactive oxygen species after nanoparticle exposure were observed with increasing incubation time. For SiO2 nanoparticles, concentration- and time-dependent effects on the metabolic activity as well as pro-inflammatory reactions were detectable. In general, the effects of the investigated nanoparticles on endothelial cells were rather insignificant, since the alterations on the metabolic cell activity became visible at a nanoparticle concentration that is by far higher than those expected to occur in the in vivo situation (CeO2 nanoparticles: 100 µg/mL; SiO2 nanoparticles: 10 µg/mL).
APA, Harvard, Vancouver, ISO, and other styles
33

Cruz-Acuña, Melissa, Justin R. Halman, Kirill A. Afonin, Jon Dobson, and Carlos Rinaldi. "Magnetic nanoparticles loaded with functional RNA nanoparticles." Nanoscale 10, no. 37 (2018): 17761–70. http://dx.doi.org/10.1039/c8nr04254c.

Full text
Abstract:
RNA nanoparticle constructs complexed with polyethylenimine-coated iron oxide nanoparticles are protected from enzymatic degradation and knockdown is amplified by magnetic stimulus in mammalian cells.
APA, Harvard, Vancouver, ISO, and other styles
34

Foster, Shelby L., Katie Estoque, Michael Voecks, Nikki Rentz, and Lauren F. Greenlee. "Removal of Synthetic Azo Dye Using Bimetallic Nickel-Iron Nanoparticles." Journal of Nanomaterials 2019 (March 19, 2019): 1–12. http://dx.doi.org/10.1155/2019/9807605.

Full text
Abstract:
Bimetallic nanoparticles comprised of iron (Fe) and nickel (Ni) were investigated for the removal of an azo dye contaminant in water. Morphology (core shell and alloy) and metal molar ratio (Ni2Fe10, Ni5Fe10, and Ni10Fe10) were tested as key nanoparticle properties. The shelf life of the nanoparticles was tested over a 3-week period, and the effect of initial nanoparticle concentration on dye removal was evaluated. The highest initial nanoparticle concentration (1000 mg/L) showed consistent Orange G removal and the greatest extent of dye removal, as compared to the other tested concentrations (i.e., 750 mg/L, 500 mg/L, and 250 mg/L) for the same nanoparticle morphology and metal molar ratio. The metal molar ratio significantly affected the performance of the core shell morphology, where overall dye removal was found to be 66%, 89%, and 98% with an increasing molar ratio (Ni2Fe10 → Ni5Fe10 → Ni10Fe10). In contrast, the overall removal of the dye for all molar ratios of the alloy nanoparticles only resulted in a variability of ±0.005%. When stored in water for 3 weeks, core shell nanoparticles lost reactivity with an average>17% loss in removal with each passing week. However, the alloy nanoparticles were able to continually remove Orange G from solution after 3 weeks of storage to ~97% when used at a starting nanoparticle concentration of 1000 mg/L. Overall, the Ni2Fe10, Ni5Fe10, and Ni10Fe10 alloy nanoparticles with a starting nanoparticle concentration of 1000 mg/L resulted in the greatest dye removal of 97%, 99%, and 98%, respectively. Kinetic rate models were used to analyze dye removal rate constants as a function of nanoparticle properties. Kinetic rate models were seen to differ from core shell (first-order kinetics) to alloy morphology (second-order kinetics). Alloy nanoparticles resulted in as high as X kinetic rate constant, and core shell nanoparticles resulted in as high as XX kinetic rate constant. Metal leaching from the nanoparticles was investigated; alloy nanoparticles resulted in leaching of 3% Fe and 5% Ni which is similar to core shell leaching of 3.2% Fe and 4.3% Ni from the Fe10Ni10 nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
35

Johnston, Stuart T., Matthew Faria, and Edmund J. Crampin. "An analytical approach for quantifying the influence of nanoparticle polydispersity on cellular delivered dose." Journal of The Royal Society Interface 15, no. 144 (July 2018): 20180364. http://dx.doi.org/10.1098/rsif.2018.0364.

Full text
Abstract:
Nanoparticles provide a promising approach for the targeted delivery of therapeutic, diagnostic and imaging agents in the body. However, it is not yet fully understood how the physico-chemical properties of the nanoparticles influence cellular association and uptake. Cellular association experiments are routinely performed in an effort to determine how nanoparticle properties impact the rate of nanoparticle–cell association. To compare experiments in a meaningful manner, the association data must be normalized by the amount of nanoparticles that arrive at the cells, a measure referred to as the delivered dose. The delivered dose is calculated from a model of nanoparticle transport through fluid. A standard assumption is that all nanoparticles within the population are monodisperse, namely the nanoparticles have the same physico-chemical properties. We present a semi-analytic solution to a modified model of nanoparticle transport that allows for the nanoparticle population to be polydisperse. This solution allows us to efficiently analyse the influence of polydispersity on the delivered dose. Combining characterization data obtained from a range of commonly used nanoparticles and our model, we find that the delivered dose changes by more than a factor of 2 if realistic amounts of polydispersity are considered.
APA, Harvard, Vancouver, ISO, and other styles
36

Kim, Ji‐Hyun, Gil‐Suk Yang, Sanggeun Song, and Jaeyoung Sung. "Statistical Distribution of Laser‐induced Growth of Nanoparticles: Effects of Laser Intensity and Medium–Nanoparticles Interactions#." Bulletin of the Korean Chemical Society 36, no. 3 (February 26, 2015): 914–18. http://dx.doi.org/10.1002/bkcs.10171.

Full text
Abstract:
We theoretically investigate the size distribution of nanoaggregates created by a laser‐induced monomer generation process, an example of which can be found in J. Phys. Chem. C 2008, 112, 10715. A simple analytic expression for the most probable size distribution of nanoparticles is obtained by considering statistical ensemble of nanoparticles with various sizes. When effects of the surface interaction and the defect degeneracy of the nanoparticle are negligible, the most probable size distribution of nanoparticles is given by the exponentially decaying function of the nanoparticle size. The presence of defect degeneracy drastically changes the size distribution to be like gamma distribution. The electronic surface tension of the nanoparticle and the interaction between the nanoparticle and environment make the size distribution deviate from gamma distribution, which also significantly change the mean and the variance of the size distribution of the nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
37

Zhang, Tiantian, Michael J. Murphy, Haiyang Yu, Hitesh G. Bagaria, Ki Youl Yoon, Bethany M. Neilson, Christopher W. Bielawski, Keith P. Johnston, Chun Huh, and Steven L. Bryant. "Investigation of Nanoparticle Adsorption During Transport in Porous Media." SPE Journal 20, no. 04 (August 20, 2015): 667–77. http://dx.doi.org/10.2118/166346-pa.

Full text
Abstract:
Summary Nanoparticles (diameter of approximately 5 to 50 nm) easily pass through typical pore throats in reservoirs, but physicochemical attraction between nanoparticles and pore walls may still lead to significant retention. We conducted an extensive series of nanoparticle-transport experiments in core plugs and in columns packed with crushed sedimentary rock, systematically varying flow rate, type of nanoparticle, injection-dispersion concentration, and porous-medium properties. Effluent-nanoparticle-concentration histories were measured with fine resolution in time, enabling the evaluation of nanoparticle adsorption in the columns during slug injection and post-flushes. We also applied this analysis to nanoparticle-transport experiments reported in the literature. Our analysis suggests that nanoparticles undergo both reversible and irreversible adsorption. Effluent-nanoparticle concentration reaches the injection concentration during slug injection, indicating the existence of an adsorption capacity. Experiments with a variety of nanoparticles and porous media yield a wide range of adsorption capacities (from 10–5 to 101 mg/g for nanoparticles and rock, respectively) and also a wide range of proportions of reversible and irreversible adsorption. Reversible- and irreversible-adsorption sites are distinct and interact with nanoparticles independently. The adsorption capacities are typically much smaller than monolayer coverage. Their values depend not only on the type of nanoparticle and porous media, but also on the operating conditions, such as injection concentration and flow rate.
APA, Harvard, Vancouver, ISO, and other styles
38

Devi, Geetha, Joefel Jessica C. Dumaran, and Dinesh Keloth Kaithari. "Nanoparticle Mediated Treatment of Dairy Wastewater." E3S Web of Conferences 463 (2023): 03015. http://dx.doi.org/10.1051/e3sconf/202346303015.

Full text
Abstract:
Nanotechnology is one of the emerging areas of scientific interest with numerous applications. In this research, surface modified silicon dioxide nanoparticules have been developed from low molecular weight chitosan by dip-coating technique for the batch treatment of dairy wastewater. The processing parameters of wastewater pH, mixing duration, agitation speed and quantity of nanoparticles are varied, and the treatment efficiency was established by measuring the total dissolved solids (TDS), turbidity, chemical oxygen demand (COD), total suspended solids (TSS), and dissolved oxygen (DO). Dynamic light scattering (DLS), scanning electron microscopy (SEM), energy dispersive X-Ray analysis (EDX), and fourier transform infrared spectrocopy (FTIR) are employed as characterization techniques. The DLS analysis showed the average diameter of the nanoparticles as 320 nm and the EDX analysis confirmed the elemental composition of the silicon dioxide nanoparticles. The functional groups are identified by FTIR. The optimum values for the best treatment conditions are established as pH 3.0, 60 minutes contact time, 100 rpm agitation speed and a nanoparticle dosage of 0.6 g. The batch expérimental study démontrâtes that the surface modified silicon dioxide nanoparticles could efficiently remove the polluants from the dairy wastewater in an environmentally friendly and cost effective method.
APA, Harvard, Vancouver, ISO, and other styles
39

Yuan, Qunying, Manjula Bomma, and Zhigang Xiao. "Enhanced Extracellular Synthesis of Gold Nanoparticles by Soluble Extracts from Escherichia coli Transformed with Rhizobium tropici Phytochelatin Synthase Gene." Metals 11, no. 3 (March 12, 2021): 472. http://dx.doi.org/10.3390/met11030472.

Full text
Abstract:
Phytochelatins, the enzymatic products of phytochelatin synthase, play a principal role in protecting the plants from heavy metal and metalloid toxicity due to their ability to scavenge metal ions. In the present study, we investigated the capacity of soluble intracellular extracts from E. coli cells expressing R. tropici phytochelatin synthase to synthesize gold nanoparticle. We discovered that the reaction mediated by soluble extracts from the recombinant E. coli cells had a higher yield of gold nanoparticles, compared to that from the control cells. The compositional and morphological properties of the gold nanoparticles synthesized by the intracellular extracts from recombinant cells and control cells were similar. In addition, this extracellular nanoparticle synthesis method produced purer gold nanoparticles, avoiding the isolation of nanoparticles from cellular debris when whole cells are used to synthesize nanoparticles. Our results suggested that phytochelatins can improve the efficiency of gold nanoparticle synthesis mediated by bacterial soluble intracellular extracts, and the potential of extracellular nanoparticle synthesis platform for the production of nanoparticles in large quantity and pure form is worth further investigation.
APA, Harvard, Vancouver, ISO, and other styles
40

Shaikh, Mubeena. "Effect of the Strength of Attraction Between Nanoparticles on Wormlike Micelle- Nanoparticle System." Condensed Matter 3, no. 4 (October 13, 2018): 31. http://dx.doi.org/10.3390/condmat3040031.

Full text
Abstract:
The nanoparticle-Equilibrium polymer (or Wormlike micellar) system shows morphological changes from percolating network-like structures to non-percolating clusters with a change in the minimum approaching distance (EVP-excluded volume parameter) between nanoparticles and the matrix of equilibrium polymers. The shape anisotropy of nanoparticle clusters can be controlled by changing the polymer density. In this paper, the synergistic self-assembly of nanoparticles inside equilibrium polymeric matrix (or Wormlike micellar matrix) is investigated with respect to the change in the strength of attractive interaction between nanoparticles. A shift in the point of morphological transformation of the system to lower values of EVP as a result of a decrease in the strength of the attractive nanoparticle interaction is reported. We show that the absence of the attractive interaction between nanoparticles leads to the low packing of nanoparticle structures, but does not change the morphological behavior of the system. We also report the formation of the system spanning sheet-like arrangement of nanoparticles which are arranged in alternate layers of matrix polymers and nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
41

Majerič, Peter, and Rebeka Rudolf. "Advances in Ultrasonic Spray Pyrolysis Processing of Noble Metal Nanoparticles—Review." Materials 13, no. 16 (August 7, 2020): 3485. http://dx.doi.org/10.3390/ma13163485.

Full text
Abstract:
In the field of synthesis and processing of noble metal nanoparticles, the study of the bottom-up method, called Ultrasonic Spray Pyrolysis (USP), is becoming increasingly important. This review analyses briefly the features of USP, to underline the physical, chemical and technological characteristics for producing nanoparticles and nanoparticle composites with Au and Ag. The main aim is to understand USP parameters, which are responsible for nanoparticle formation. There are two nanoparticle formation mechanisms in USP: Droplet-To-Particle (DTP) and Gas-To-Particle (GTP). This review shows how the USP process is able to produce Au, Ag/TiO2, Au/TiO2, Au/Fe2O3 and Ag/(Y0.95 Eu0.05)2O3 nanoparticles, and presents the mechanisms of formation for a particular type of nanoparticle. Namely, the presented Au and Ag nanoparticles are intended for use in nanomedicine, sensing applications, electrochemical devices and catalysis, in order to benefit from their properties, which cannot be achieved with identical bulk materials. The development of new noble metal nanoparticles with USP is a constant goal in Nanotechnology, with the objective to obtain increasingly predictable final properties of nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
42

Ruíz-Baltazar, Álvaro de Jesús, Simón Yobanny Reyes-López, Néstor Méndez-Lozano, and Karla Juárez-Moreno. "Evaluation of Superparamagnetic Fe3O4-Ag Decorated Nanoparticles: Cytotoxicity Studies in Human Fibroblasts (HFF-1) and Breast Cancer Cells (MCF-7)." Applied Sciences 14, no. 15 (August 2, 2024): 6750. http://dx.doi.org/10.3390/app14156750.

Full text
Abstract:
This study investigates the cytotoxicity profile of superparamagnetic Fe3O4-Ag decorated nanoparticles against human fibroblasts (HFF-1) and breast cancer cells (MCF-7). The nanoparticles underwent comprehensive characterization employing scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), and magnetic assays including hysteresis curves and zero-field-cooled (ZFC) plots. The nanoparticles exhibited superparamagnetic behavior as evidenced by magnetic studies. Cytotoxicity assays demonstrated that both HFF-1 and MCF-7 cells maintained nearly 100% viability upon nanoparticle exposure, underscoring the outstanding biocompatibility of Fe3O4/Ag decorated nanoparticles and suggesting their potential utility in biomedical applications such as drug delivery and magnetic targeting. Furthermore, the study analyzed the cytotoxic effects of Fe3O4 and Fe3O4-Ag decorated nanoparticles to evaluate their biocompatibility for further therapeutic efficacy. Results showed that neither type of nanoparticle significantly reduced cell viability in HFF-1 fibroblasts, indicating non-cytotoxicity at the tested concentrations. Similarly, MCF-7 breast cancer cells did not exhibit a significant change in viability when exposed to different nanoparticle concentrations, highlighting the compatibility of these nanoparticles with both healthy and cancerous cells. Additionally, the production of reactive oxygen species (ROS) by cells exposed to the nanoparticles was examined to guarantee their biosafety for further therapeutic potential. Higher concentrations (50–100 μg/mL) of Fe3O4-Ag nanoparticles decreased ROS production in both HFF-1 and MCF-7 cells, while Fe3O4 nanoparticles were more effective in generating ROS. This differential response suggests that Fe3O4-Ag nanoparticles might modulate oxidative stress more effectively, thus beneficial for future anticancer strategies due to cancer cells’ susceptibility to ROS-induced damage. These findings contribute to understanding nanoparticle interactions with cellular oxidative mechanisms, which are crucial for developing safe and effective nanoparticle-based therapies. This investigation advances our understanding of nanostructured materials in biological settings and highlights their promising prospects in biomedicine.
APA, Harvard, Vancouver, ISO, and other styles
43

Shobana, Sampath, Sunderam Veena, S. S. M. Sameer, K. Swarnalakshmi, and L. A. Vishal. "Green Synthesis of Silver Nanoparticles Using Artocarpus hirsutus Seed Extract and its Antibacterial Activity." Current Pharmaceutical Biotechnology 21, no. 10 (September 7, 2020): 980–89. http://dx.doi.org/10.2174/1389201021666200107115849.

Full text
Abstract:
Aims: To evaluate the antibacterial activity of Artocarpus hirsutus mediated seed extract for nanoparticle synthesis. Background: Gastrointestinal bacteria are known for causing deadly infections in humans. They also possess multi-drug resistance and interfere with clinical treatments. Applied nanotechnology has been known to combat such infectious agents with little interference from their special attributes. Here we synthesize silver nanoparticles from Artocarpus hirsutus seed extract against two gastro-intestinal bacterial species: Enterobacter aerogenes and Listeria monocytogenes. Objective: To collect, dry, and process seeds of Artocarpus hirsutus for nanoparticle synthesis. To evaluate the morphological interaction of silver nanoparticles with bacteria. Methods: Artocarpus hirsutus seeds were collected and processed and further silver nanoparticles were synthesized by the co-precipitation method. The synthesized nanoparticles were characterized using XRD, UV, FTIR, and SEM. These nanoparticles were employed to study the antibacterial activity of nanoparticles against Enterobacter aerogenes and Listeria monocytogenes using well diffusion method. Further, morphological interaction of silver nanoparticles on bacteria was studied using SEM. Result: Silver nanoparticles were synthesized using Artocarpus hirsutus seed extract and characterization studies confirmed that silver nanoparticles were spherical in shape with 25-40 nm size. Antibacterial study exhibited better activity against Enterobacter aerogenes with a maximum zone of inhibition than on Listeria monocytogenes. SEM micrographs indicated that Enterobacter aerogenes bacteria were more susceptible to silver nanoparticles due to the absence of cell wall. Also, the size and charge of silver nanoparticles enable easy penetration of the bacterial cell wall. Conclusion: In this study, silver nanoparticles were synthesized using the seed extract of Artocarpus hirsutus for the first time exploiting the fact that Moraceae species have high phytonutrient content which aided in nanoparticle synthesis. This nanoparticle can be employed for large scale synthesis which when coupled with the pharmaceutical industry can be used to overcome the problems associated with conventional antibiotics to treat gastrointestinal bacteria.
APA, Harvard, Vancouver, ISO, and other styles
44

Almehmady, Alshaimaa M., Khalid M. El-Say, Manal A. Mubarak, Haneen A. Alghamdi, Njood A. Somali, Alaa Sirwi, Rahmah Algarni, and Tarek A. Ahmed. "Enhancing the Antifungal Activity and Ophthalmic Transport of Fluconazole from PEGylated Polycaprolactone Loaded Nanoparticles." Polymers 15, no. 1 (December 31, 2022): 209. http://dx.doi.org/10.3390/polym15010209.

Full text
Abstract:
Fungal eye infections are caused mainly by an eye injury and can result in serious eye damage. Fluconazole (FLZ), a broad-spectrum antifungal agent, is a poorly soluble drug with a risk of hepatotoxicity. This work aimed to investigate the antifungal activity, ocular irritation, and transport of FLZ-loaded poly (ε-caprolactone) nanoparticles using a rabbit eye model. Three formulation factors affecting the nanoparticle’s size, zeta potential, and entrapment efficiency were optimized utilizing the Box-Behnken design. Morphological characteristics and antifungal activity of the optimized nanoparticles were studied. The optimized nanoparticles were loaded into thermosensitive in situ hydrogel and hydroxypropylmethylcellulose (HPMC) hydrogel ophthalmic formulations. The rheological behavior, in vitro release and in vivo corneal transport were investigated. Results revealed that the percentage of poly (ε-caprolactone) in the nanoparticle matrix, polymer addition rate, and mixing speed significantly affected the particle size, zeta potential, and entrapment efficiency. The optimized nanoparticles were spherical in shape and show an average size of 145 nm, a zeta potential of −28.23 mV, and a FLZ entrapment efficiency of 98.2%. The antifungal activity of FLZ-loaded nanoparticles was significantly higher than the pure drug. The developed ophthalmic formulations exhibited a pseudoplastic flow, prolonged the drug release and were found to be non-irritating to the cornea. The prepared FLZ pegylated nanoparticles were able to reach the posterior eye segment without eye irritation. As a result, the developed thermosensitive in situ hydrogel formulation loaded with FLZ polymeric nanoparticles is a promising drug delivery strategy for treating deep fungal eye infections.
APA, Harvard, Vancouver, ISO, and other styles
45

Johnstone, Sharon, Steven Ansell, Sherwin Xie, Lawrence Mayer, and Paul Tardi. "The Use of Radioactive Marker as a Tool to Evaluate the Drug Release in Plasma and Particle Biodistribution of Block Copolymer Nanoparticles." Journal of Drug Delivery 2011 (July 7, 2011): 1–9. http://dx.doi.org/10.1155/2011/349206.

Full text
Abstract:
Diblock copolymer nanoparticles encapsulating a paclitaxel prodrug, Propac 7, have been used to demonstrate the usefulness of a nonmetabolizable radioactive marker, cholesteryl hexadecyl ether (CHE), to evaluate nanoparticle formulation variables. Since CHE did not exchange out of the nanoparticles, the rate of clearance of the CHE could be used as an indicator of nanoparticle stability in vivo. We simultaneously monitored prodrug circulation and carrier circulation in the plasma and the retention of CHE relative to the retention of prodrug in the plasma was used to distinguish prodrug release from nanoparticle plasma clearance. Nanoparticles labelled with CHE were also used to evaluate accumulation of nanoparticles in the tumour. This marker has provided relevant data which we have applied to optimise our nanoparticle formulations.
APA, Harvard, Vancouver, ISO, and other styles
46

Pieper, Sebastian, Hannah Onafuye, Dennis Mulac, Jindrich Cinatl, Mark N. Wass, Martin Michaelis, and Klaus Langer. "Incorporation of doxorubicin in different polymer nanoparticles and their anticancer activity." Beilstein Journal of Nanotechnology 10 (October 29, 2019): 2062–72. http://dx.doi.org/10.3762/bjnano.10.201.

Full text
Abstract:
Background: Nanoparticles are under investigation as carrier systems for anticancer drugs. The expression of efflux transporters such as the ATP-binding cassette (ABC) transporter ABCB1 is an important resistance mechanism in therapy-refractory cancer cells. Drug encapsulation into nanoparticles has been shown to bypass efflux-mediated drug resistance, but there are also conflicting results. To investigate whether easy-to-prepare nanoparticles made of well-tolerated polymers may circumvent transporter-mediated drug efflux, we prepared poly(lactic-co-glycolic acid) (PLGA), polylactic acid (PLA), and PEGylated PLGA (PLGA-PEG) nanoparticles loaded with the ABCB1 substrate doxorubicin by solvent displacement and emulsion diffusion approaches and assessed their anticancer efficiency in neuroblastoma cells, including ABCB1-expressing cell lines, in comparison to doxorubicin solution. Results: The resulting nanoparticles covered a size range between 73 and 246 nm. PLGA-PEG nanoparticle preparation by solvent displacement led to the smallest nanoparticles. In PLGA nanoparticles, the drug load could be optimised using solvent displacement at pH 7 reaching 53 µg doxorubicin/mg nanoparticle. These PLGA nanoparticles displayed sustained doxorubicin release kinetics compared to the more burst-like kinetics of the other preparations. In neuroblastoma cells, doxorubicin-loaded PLGA-PEG nanoparticles (presumably due to their small size) and PLGA nanoparticles prepared by solvent displacement at pH 7 (presumably due to their high drug load and superior drug release kinetics) exerted the strongest anticancer effects. However, nanoparticle-encapsulated doxorubicin did not display increased efficacy in ABCB1-expressing cells relative to doxorubicin solution. Conclusion: Doxorubicin-loaded nanoparticles made by different methods from different materials displayed substantial discrepancies in their anticancer activity at the cellular level. Optimised preparation methods resulted in PLGA nanoparticles characterised by increased drug load, controlled drug release, and high anticancer efficacy. The design of drug-loaded nanoparticles with optimised anticancer activity at the cellular level is an important step in the development of improved nanoparticle preparations for anticancer therapy. Further research is required to understand under which circumstances nanoparticles can be used to overcome efflux-mediated resistance in cancer cells.
APA, Harvard, Vancouver, ISO, and other styles
47

Barbosa, Ana, Sofia Costa Lima, and Salette Reis. "Application of pH-Responsive Fucoidan/Chitosan Nanoparticles to Improve Oral Quercetin Delivery." Molecules 24, no. 2 (January 18, 2019): 346. http://dx.doi.org/10.3390/molecules24020346.

Full text
Abstract:
Polymeric nanoparticles based on fucoidan and chitosan were developed to deliver quercetin as a novel functional food. Through the polyelectrolyte self-assembly method, fucoidan/chitosan (F/C) nanoparticles were obtained with three different weight ratios (1/1, 3/1, and 5/1). The content of quercetin in the fucoidan/chitosan nanoparticles was in the range 110 ± 3 to 335 ± 4 mg·mL−1, with the increase of weight ratio of fucoidan to chitosan in the nanoparticle. Physicochemically stable nanoparticles were obtained with a particle size within the 300–400 nm range and surface potential higher than +30 mV for the 1F/1C ratio nanoparticle and around −30 mV for the 3F/1C and 5F/1C ratios nanoparticles. The 1F/1C ratio nanoparticle became larger and more unstable as the pH increased from 2.5 to 7.4, while the 3F/1C and 5F/1C nanoparticles retained their initial characteristics. This result indicates that the latter nanoparticles were stable along the gastrointestinal tract. The quercetin-loaded fucoidan/chitosan nanoparticles showed strong antioxidant activity and controlled release under simulated gastrointestinal environments (in particular for the 3F/1C and 5F/1C ratios), preventing quercetin degradation and increasing its oral bioavailability.
APA, Harvard, Vancouver, ISO, and other styles
48

SHI, HAO-WEI, HONG-ZHEN XIE, JIN-KU LIU, and YAN WANG. "PREPARATION AND CHARACTERIZATION OF ELECTRIC ZAO NANOPARTICLES." Nano 05, no. 04 (August 2010): 215–20. http://dx.doi.org/10.1142/s1793292010002128.

Full text
Abstract:
The white good dispersion zinc aluminium oxide (ZAO) nanoparticles were efficiently prepared by solid phase synthesis method. The morphologies, structures, photoelectricity of the ZAO nanoparticles and the thermochemistry behavior of the precursor were analyzed by TEM, XRD, UV-vis and TG, etc. The phytotoxicity properties of the ZAO nanoparticles were researched for the first time. The results show that the ZAO nanoparticles have a strong inhibition of seed germination and root growth. The biological toxicity of ZAO nanoparticle reduces along with the enlargement of nanoparticle size.
APA, Harvard, Vancouver, ISO, and other styles
49

Shrivastava, A., RK Singh, PK Tyagi, and D. Gore. "Synthesis of Zinc Oxide, Titanium Dioxide and Magnesium Dioxide Nanoparticles and Their Prospective in Pharmaceutical and Biotechnological Applications." Journal of Biomedical Research & Environmental Sciences 2, no. 1 (January 11, 2021): 011–20. http://dx.doi.org/10.37871/jbres1180.

Full text
Abstract:
The use of nanoparticles for the therapeutic purpose is gaining pronounced importance. In the last two decades, a number of nanomedicines received regulatory approval and several showed promises through clinical trials. In this content, it is important to synthesize nanoparticles from various sources and to check its efficiency, especially its antibacterial activity. In today’s scenario number nanomedicines are proving useful to control multidrug resistance and since the mechanism of action of nanoparticles is totally different from the small molecules like antibiotics it obviates the chances of drug resistance. In this review, we discussed three metal-based nanoparticles prepared from various reducing sources namely Zinc Oxide Nanoparticle (ZnO NPs), Titanium Dioxide Nanoparticle (TiO2 NPs) and Magnesium Dioxide Nanoparticle (MnO2 NPs). The focus also made towards the safety assessment of the several nanoparticles. In addition, the exact interaction of the nanoparticles with the bacterial cell surface and the resultant changes also been highlighted. The review put forward the sources, method, and antibacterial success of these nanoparticles so that future nanomedicines could be put forward.
APA, Harvard, Vancouver, ISO, and other styles
50

Khaled, Usama, and Abderrahmane Beroual. "AC Dielectric Strength of Mineral Oil-Based Fe3O4 and Al2O3 Nanofluids." Energies 11, no. 12 (December 15, 2018): 3505. http://dx.doi.org/10.3390/en11123505.

Full text
Abstract:
This paper deals with an experimental study of the influence of conductive (Fe3O4) and insulating (Al2O3) nanoparticles at various concentrations on the dielectric strength of transformer mineral oil. The method of preparation and characterization of these nanofluids (NFs) through the measurements of zeta potential, the real and imaginary parts of dielectric permittivity as well as the concentration and size of nanoparticles using scanning electron microscope images of nanoparticles powders and energy dispersive x-ray spectroscopy analysis are presented. Experimental findings reveal that these two types of nanoparticles materials significantly improve AC breakdown voltage and the magnitude of this enhancement depends on the nanoparticle concentration, and the size and nature (material) of nanoparticles. For a given type of nanoparticle, the effect is more marked with the smallest nanoparticles. The conductive nanoparticles offer higher enhancement of dielectric strength compared with insulating nanoparticle based nanofluids. With Fe3O4, the breakdown voltage (BDV) can exceed twice that of mineral oil and it increases by more than 76% with Al2O3. The physicochemical mechanisms implicated in this improvement are discussed.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography