Academic literature on the topic 'Nanoparticles removal'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanoparticles removal.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nanoparticles removal":

1

Foster, Shelby L., Katie Estoque, Michael Voecks, Nikki Rentz, and Lauren F. Greenlee. "Removal of Synthetic Azo Dye Using Bimetallic Nickel-Iron Nanoparticles." Journal of Nanomaterials 2019 (March 19, 2019): 1–12. http://dx.doi.org/10.1155/2019/9807605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Bimetallic nanoparticles comprised of iron (Fe) and nickel (Ni) were investigated for the removal of an azo dye contaminant in water. Morphology (core shell and alloy) and metal molar ratio (Ni2Fe10, Ni5Fe10, and Ni10Fe10) were tested as key nanoparticle properties. The shelf life of the nanoparticles was tested over a 3-week period, and the effect of initial nanoparticle concentration on dye removal was evaluated. The highest initial nanoparticle concentration (1000 mg/L) showed consistent Orange G removal and the greatest extent of dye removal, as compared to the other tested concentrations (i.e., 750 mg/L, 500 mg/L, and 250 mg/L) for the same nanoparticle morphology and metal molar ratio. The metal molar ratio significantly affected the performance of the core shell morphology, where overall dye removal was found to be 66%, 89%, and 98% with an increasing molar ratio (Ni2Fe10 → Ni5Fe10 → Ni10Fe10). In contrast, the overall removal of the dye for all molar ratios of the alloy nanoparticles only resulted in a variability of ±0.005%. When stored in water for 3 weeks, core shell nanoparticles lost reactivity with an average>17% loss in removal with each passing week. However, the alloy nanoparticles were able to continually remove Orange G from solution after 3 weeks of storage to ~97% when used at a starting nanoparticle concentration of 1000 mg/L. Overall, the Ni2Fe10, Ni5Fe10, and Ni10Fe10 alloy nanoparticles with a starting nanoparticle concentration of 1000 mg/L resulted in the greatest dye removal of 97%, 99%, and 98%, respectively. Kinetic rate models were used to analyze dye removal rate constants as a function of nanoparticle properties. Kinetic rate models were seen to differ from core shell (first-order kinetics) to alloy morphology (second-order kinetics). Alloy nanoparticles resulted in as high as X kinetic rate constant, and core shell nanoparticles resulted in as high as XX kinetic rate constant. Metal leaching from the nanoparticles was investigated; alloy nanoparticles resulted in leaching of 3% Fe and 5% Ni which is similar to core shell leaching of 3.2% Fe and 4.3% Ni from the Fe10Ni10 nanoparticles.
2

Gomes de Souza Junior, Fernando, Fabiola Silveira Maranhão, and João Paulo Bassin. "Magnetic Nanoparticles for Oil Removal from Water: A Short Review of Key Findings." Brazilian Journal of Experimental Design, Data Analysis and Inferential Statistics 1, no. 1 (December 29, 2023): 9–18. http://dx.doi.org/10.55747/bjedis.v1i1.57099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This mini review provides an overview of the potential use of magnetizable nanoparticles for de-oiling water, drawing on the findings of several studies in the field. Magnetic nanoparticles demonstrate significant promise for oil removal due to their magnetic properties, which enable them to be separated from contaminated water using a magnetic field. Additionally, the surface of these nanoparticles can be modified with oil-attracting agents to enhance their oil-removal efficiency. Our systematic search in Scopus revealed that "oil," "water," "magnetic," "nanoparticles," and "removal" were the most commonly used words in the literature corpus. Through our analysis of four case studies, we gained valuable insights into the practical applications of magnetic nanoparticles for oil removal from water and observed that their unique magnetic properties make them an ideal solution for this purpose. Furthermore, our summary of key findings from the four studies revealed that optimal conditions for oil removal include a nanoparticle size range of 2-10 nm, surface modification with cationic coatings or silica and ammonium, and a concentration range of 0.31 to 5 mg/cm3 to 30-50 mg/L. The recyclability of these nanoparticles was found to be efficient, with an oil removal efficiency of approximately 97% after ten cycles. However, further research is needed to determine the optimal conditions for oil removal from water using magnetic nanoparticles, as these conditions may vary based on specific applications. In conclusion, magnetic nanoparticles offer a promising avenue for effective water de-oiling and are an area of significant interest in oil removal from water research.
3

Meléndez Santana, Luis Alberto, Julia Teresa Guerra Hernández, and Claudio G. Olivera-Fuentes. "H2S removal at downhole conditions using iron oxide nanoparticles." Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología 17, no. 33 (January 22, 2024): 1e—13e. http://dx.doi.org/10.22201/ceiich.24485691e.2024.33.69810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The objective of the present work is the study of H2S removal from heavy oil, using iron oxide nanoparticles in a controlled environment that simulates the pressure and temperature conditions of a reservoir and the aqua-thermolysis process during enhanced oil recovery with steam injection. Since molecular diffusion of H2S plays an important role during the removal process, its measurement through experimental tests was also a major goal. The research divides into three stages: 1) preparation of nanoparticles; 2) diffusion tests, and, 3) H2S removal tests. The procedure for nanoparticle preparation from a microemulsion and a metal precursor salt was successful in yielding nanoparticle sizes less than 100 nm. The diffusion coefficient of H2S in heavy oil, measured in a stainless steel PVT cell, varied between 8.3 × 10–9 and 8.9 × 10–9 m2s–1 over the range of test temperatures. Finally, over 65% of the H2S was removed when 500 ppm of nanoparticles were used.
4

Talaiekhozani, Amirreza, Nilofar Torkan, Fahad Banisharif, Zeinab Eskandari, Shahabaldin Rezania, Junboum Park, Farham Aminsharei, and Ali Mohammad Amani. "Comparison of Reactive Blue 203 Dye Removal Using Ultraviolet Irradiation, Ferrate (VI) Oxidation Process and MgO Nanoparticles." Avicenna Journal of Environmental Health Engineering 5, no. 2 (December 29, 2018): 78–90. http://dx.doi.org/10.15171/ajehe.2018.11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This study investigated the effect of various parameters on the removal of Reactive Blue 203 dye from wastewater using ferrate(VI) oxidation process, ultraviolet radiation (UV) radiation and MgO nanoparticles under batch mode. Although several studies have been carried out on dye removal, there is no study on the removal of Reactive Blue 203 dye using ferrate(VI) oxidation process, UV radiation, and MgO nanoparticles. Therefore, the aim of this study is to investigate the effect of different factors including pH, temperature, contact time, the intensity of UV radiation and the concentration of MgO nanoparticles on Reactive Blue 203 dye removal using the above-mentioned methods. The results showed that the best pH values for dye removal using UV radiation, ferrate(VI), and MgO nanoparticles were 13, 1 and 13, respectively. The best temperature for Reactive Blue 203 dye removal using ferrate(VI) was 50°C. Hence, temperature variation had no significant effect on Reactive Blue 203 dye removal using UV irradiation and absorption by MgO nanoparticles. Based on the results, the best contact time was 15 minutes using UV radiation. The removal of Reactive Blue 203 dye using ferrate(VI) oxidation process was a quick reaction, and in a fraction of a second, the reactions were completed. The results showed that dye removal using MgO nanoparticles could be described by the Temkin isotherm. Therefore, the contact time was not considered as an effective parameter. In addition, the maximum dye removals were 95, 85 and 94% using UV irradiation, ferrate(VI) and MgO nanoparticles.
5

Murgueitio, Erika, Luis Cumbal, Mayra Abril, Andrés Izquierdo, Alexis Debut, and Oscar Tinoco. "Green Synthesis of Iron Nanoparticles: Application on the Removal of Petroleum Oil from Contaminated Water and Soils." Journal of Nanotechnology 2018 (September 2, 2018): 1–8. http://dx.doi.org/10.1155/2018/4184769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Iron nanoparticles were produced using the extract of mortiño berry (Vaccinium floribundum) (vZVI) as reducing and stabilizer agent. Fresh nanoparticles were characterized using TEM, XRD, and FTIR techniques, while laboratory experiments were conducted to assess the removal of total petroleum hydrocarbons (TPHs) from water and soil after treatment with synthesized nanoscale iron particles. Nanoparticles as produced were spherical in the range of 5–10 nm. After treatment with vZVI nanoparticles, water contaminated with two concentrations of TPHs (9.32 mg/L and 94.20 mg/L) showed removals of 85.94% and 88.34%, respectively, whereas a contaminated soil with a TPHs concentration of 5000 mg/kg treated during 32 h with nanoparticles reached a removal of 81.90%. Results indicate that the addition of vZVI nanoparticles produced strong reducing conditions, which accelerate removal of TPHs and suggest that these nanoparticles might be a promising technology to clean up TPHs contaminated water and soils.
6

Theurer, Jared, Oluwatobi Ajagbe, Jhouly Osorio, Rida Elgaddafi, Ramadan Ahmed, Keisha Walters, and Brandon Abbott. "Removal of Residual Oil from Produced Water Using Magnetic Nanoparticles." SPE Journal 25, no. 05 (August 17, 2020): 2482–95. http://dx.doi.org/10.2118/199466-pa.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Summary Recent studies have shown encouraging results using amine-coated magnetite (Fe3O4) nanoparticles to remove residual oil from produced water using a magnetic field. However, the manufacturing of magnetite nanoparticles requires an expensive coating operation, which limits the application of this technology in large-scale treatment operations. The goal of this study is to develop a simple, efficient, and economically feasible method for removing oil from produced water using nanoparticles. Iron oxide nanoparticles are biocompatible and even safely used in medical applications. This study focuses on the removal of residual oil from produced water using uncoated, recyclable, and less expensive maghemite (γ-Fe2O3) nanoparticles. These particles have shown the potential for removing oil layers from the surface of water. However, they have not been tested for their capability of removing emulsified and dissolved oil from produced water. In this study, commercial and synthesized maghemite nanoparticles were used. The maghemite nanoparticles were synthesized using the coprecipitation process. Laboratory-synthesized produced water samples with high oil concentration (1,000 ppm) were prepared by mixing medium oil with brine [1,180 ppm sodium chloride (NaCl) solution]. The nanoparticles were dispersed in 3% NaCl brine (w/w) at varying concentrations (0.31 to 5 mg/cm3) to form different nanosuspensions. Subsequently, the nanosuspensions were mixed with synthesized produced water for 10 minutes. When a magnetic field was applied to the mixture, a clear separation of the nanoparticles was observed within seconds. Residual oil in the samples was measured using nondispersive infrared spectroscopy. Oil content analysis confirmed the successful (99.9%) removal of oil from laboratory-synthesized water samples. For the real produced water samples, results showed a reduction of oil content to an undetectable level (i.e., less than 0.1 ppm). The ease of nanoparticle collection and washing after subsequent water treatments further demonstrates the feasibility of magnetic nanoparticle (MNP)-based separations for large-scale use in produced water treatment operations. The unique finding of this study is the elimination of one additional step of synthesizing (amine coating) MNPs. Direct use of uncoated maghemite nanoparticles with high oil removal efficiency can reduce produced water treatment costs and promote this technology as an economically feasible option within the industry.
7

Ali, Imran, Alaa Elmi, Rafat Afifi Khattab, Omar M. L. Alharbi, and Gunel Imanova. "Preparation and Characterization of Iron Oxide Nano-adsorbent by Enteromorpha Flexuosa Algae obtained from Yanbu Red Sea, Saudi Arabia." Sultan Qaboos University Journal for Science [SQUJS] 28, no. 2 (November 21, 2023): 28–43. http://dx.doi.org/10.53539/squjs.vol28iss2pp28-43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Water contamination caused by toxic cadmium metal ions is a worldwide problem. There is a need to explore new methods of cadmium removal from water. The green algae Enteromorpha flexuosa, obtained from the Red Sea in Yanbu, Saudi Arabia, was used to prepare iron nanoparticles. TEM, FT-IR, XRD, and SEM techniques were used to characterize the prepared nanoparticles. The prepared nanoparticle's surface was rough, with nanoparticle sizes ranging from 10 to 50 nm. The developed nanoparticles were used to adsorb cadmium ions from water in batch mode. With a 25.0 µg/L concentration, a temperature of 25˚C, 7.0 pH, 60 minutes contact time and 0.5 g/L dose, the maximum removal of cadmium was 48.2 µg/g. The sorption efficiency was measured using the Dubinin-Radushkevich, Temkin, Langmuir and Freundlich models. The amounts of ΔG° were -8.0, -9.93 and -12.24 kJ/mol while the values of ΔS° and ΔH° were -30.96 x 10-3 kJ/mol and 37.79 x 10-2 kJ/mol. These data confirmed the endothermic nature of cadmium metal ions removal. Along with the liquid film diffusion process, the adsorption adopted the kinetics of pseudo-second-order type. The recorded adsorption method is fast, cost-effective, and environmentally friendly and can be applied for testing the elimination of cadmium metal ions in natural waters.
8

Kuru, Cansu İlke, Fulden Ulucan-Karnak, and Sinan Akgol. "Metal-Chelated Polymeric Nanomaterials for the Removal of Penicillin G Contamination." Polymers 15, no. 13 (June 27, 2023): 2832. http://dx.doi.org/10.3390/polym15132832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We developed selective and relatively low-cost metal-chelated nanoparticle systems for the removal of the penicillin G (Pen G) antibiotic, presented for the first time in the literature. In the nanosystem, poly(glycidyl methacrylate) nanoparticles were synthesized by a surfactant-free emulsion polymerization method and covalently bound with a tridentate-chelating ligand, iminodiacetic acid, based on the immobilized metal chelate affinity technique. It was modified with Cu2+, a chelating metal, to make Pen G specific. Metal-chelated nanoparticles were characterized by Fourier-transform infrared spectroscopy, energy dispersive spectrometry, zeta dimensional analysis, and scanning electron microscopy technology. Optimization studies of the Pen G removal were conducted. As a result of this study, Pen G removal with the p(GMA)-IDA-Cu2+ nanoparticle reached its maximum adsorption capacity of 633.92 mg/g in the short time of 15 min. The Pen G adsorption of p(GMA)-IDA-Cu2+ was three times more than that of the p(GMA) nanoparticles and two times more than that of the ampicillin adsorption. In addition, there was no significant decrease in the adsorption capacity of Pen G resulting from the repeated adsorption–desorption process of metal-chelated nanoparticles over five cycles. The metal-chelated nanoparticle had an 84.5% ability to regain its ability to regenerate the product with its regeneration capability, making the widespread use of the system very convenient in terms of reducing cost, an important factor in removal processes.
9

Pandey, Prem C., Hari Prakash Yadav, Shubhangi Shukla, and Roger J. Narayan. "Electrochemical Sensing and Removal of Cesium from Water Using Prussian Blue Nanoparticle-Modified Screen-Printed Electrodes." Chemosensors 9, no. 9 (September 7, 2021): 253. http://dx.doi.org/10.3390/chemosensors9090253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Selective screening followed by the sensing of cesium radionuclides from contaminated water is a challenging technical issue. In this study, the adsorption functionality of Prussian blue (PB) nanoparticles was utilized for the detection and efficient removal of cesium cations. An efficient PB nanoparticle-modified screen-printed electrode (SPE) in the three-electrode configuration was developed for the electrochemical sensing and removal of Cs+. PB nanoparticles inks were obtained using a facile two-step process that was previously described as suitable for dispensing over freshly prepared screen-printed electrodes. The PB nanoparticle-modified SPE induced a cesium adsorption-dependent chronoamperometric signal based on ion exchange as a function of cesium concentration. This ion exchange, which is reversible and rapid, is associated with electron transfer in the PB nanoparticle-modified SPE. Using this electrochemical adsorption system (EAS) based on chronoamperometry, the maximum adsorption capacity (Qmax) of Cs+ ions in the PB nanoparticle-modified SPE reached up to 325 ± 1 mg·g−1 in a 50 ± 0.5 μM Cs+ solution, with a distribution coefficient (Kd) of 580 ± 5 L·g−1 for Cs+ removal. The cesium concentration-dependent adsorption of PB nanoparticles was also demonstrated by fluorescence spectroscopy based on fluorescence quenching of PB nanoparticles as a function of cesium concentration using a standard fluorophore like fluorescein in a manner analogous to that previously reported for As(III).
10

Song, Xiaozong, and Gui Gao. "Removal Mechanism Investigation of Ultraviolet Induced Nanoparticle Colloid Jet Machining." Molecules 26, no. 1 (December 25, 2020): 68. http://dx.doi.org/10.3390/molecules26010068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Ultraviolet induced nanoparticle colloid jet machining is a new ultra-precision machining technology utilizing the reaction between nanoparticles and the surface of the workpiece to achieve sub-nanometer ultra-smooth surface manufacturing without damage. First-principles calculations based on the density functional theory (DFT) were carried out to study the atomic material removal mechanism of nanoparticle colloid jet machining and a series of impacting and polishing experiments were conducted to verify the mechanism. New chemical bonds of Ti-O-Si were generated through the chemical adsorption between the surface adsorbed hydroxyl groups of the TiO2 cluster and the Si surface with the adsorption energy of at least −4.360 eV. The two Si-Si back bonds were broken preferentially and the Si atom was removed in the separation process of TiO2 cluster from the Si surface realizing the atomic material removal. A layer of adsorbed TiO2 nanoparticles was detected on the Si surface after 3 min of fixed-point injection of an ultraviolet induced nanoparticle colloid jet. X-ray photoelectron spectroscopy results indicated that Ti-O-Si bonds were formed between TiO2 nanoparticles and Si surface corresponding to the calculation result. An ultra-smooth Si workpiece with a roughness of Rq 0.791 nm was obtained by ultraviolet induced nanoparticle colloid jet machining.

Dissertations / Theses on the topic "Nanoparticles removal":

1

MANTOVANI, MARCO. "Nanoparticles for the removal of contaminants from wastewaters." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/305614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Il presente lavoro di tesi si inserisce all’interno del progetto PerFORM WATER 2030 (Platform for Integrated Operation Research and Management of Public Water towards 2030), un progetto finanziato da regione Lombardia e dal Fondo Europeo di Sviluppo Regionale. L’elaborato ha l’obiettivo di produrre a scala di laboratorio delle nanoparticelle di ferro zero valente incapsulate in una matrice carboniosa (ME-nFe), un materiale con proprietà riducente ed elevato potere adsorbente da applicare nella depurazione delle acque. La sintesi delle nanoparticelle è avvenuta attraverso la carbonizzazione idrotermica (HTC) a partire da biomassa microalgale coltivata nell’impianto pilota situato presso il depuratore di Bresso-Niguarda (MI). Nello specifico, le prime fasi di lavoro si sono focalizzate sulla raccolta della biomassa direttamente in impianto e sulla sua caratterizzazione in termini di composizione elementare e contenuto di polifenoli. Successivamente si è passati allo studio delle condizioni che potessero influenzare la sintesi di CE-nZVI. Sono stati testati due tipi di sale da utilizzare quale fonte di ferro (solfato di ferro ammonico e nitrato di ferro), 4 rapporti Fe/C da inserire nel reattore (0.02, 0.05, 0.1, 0.2) e 3 temperature del processo di sintesi (180°C, 200°C e 225°C). Attraverso la caratterizzazione delle nanoparticelle ottenute in termini di contenuto di ferro zero-valente e ferro totale, di area superficiale specifica e di struttura morfologica a livello nanometrico, sono stati selezionati i prototipi dalle caratteristiche migliori. Le ME-nFE sono state testate nella rimozione di cinque metalli pesanti (Zn, Cu, Ni, Cd, Cr), prima in condizioni ideali e poi in condizioni più aderenti alla realtà. I migliori risultati sono stati ottenuti con una concentrazione di 3 gL-1 di adsorbente a partire da una concentrazione iniziale di ciascun metallo pari a 1 mgL-1. In queste condizioni si sono ottenute rimozioni per Zn, Cu, Ni e Cd superiori al 96%. Il Cr non è mai stato adeguatamente rimosso nei vari esprimenti. È stata inoltre valutata, a fine trattamento, la possibilità di recupero delle CE-nZVI e di un loro riutilizzo per più cicli di rimozione. In seguito, ci si è occupati della valutazione della tossicità del sottoprodotto liquido del processo HTC, sia nei confronti di Vibrio fisherii un batterio luminescente utilizzato come indicatore in ecotossicologia sia nei confronti delle stesse microalghe. Il test Microtox è stato effettuato sul refluo tal quale, individuando una forte tossicità anche su campioni assai diluiti (EC50= 1.8% dopo 15 minuti). Il test è stato ripetuto dopo strategie di pretrattamento (precipitazione del ferro attraverso modifica del pH) ma la tossicità era comunque elevata (EC50= 6.8%). Si è quindi valutato l’adsorbimento tramite carbone attivo (testando due concentrazioni 2 e 3gL-1). Entrambe le concentrazioni sono state in grado di ridurre sensibilmente la tossicità, con il risultato migliore portato dalla dose maggiore (EC50= 60% after 15 min). Infine, è stata valutata la possibilità di coltivazione delle microalghe su una diluizione del refluo HTC, al fine di studiare eventuali loro capacità di decontaminazione e al tempo stesso capire se fosse possibile chiudere il ciclo, valorizzando il sottoprodotto e ottenendo nuova biomassa per altre sintesi di CE-nZVI. Le microalghe sono state coltivate con successo su una miscela al 20% di centrato e sottoprodotto liquido, sia in batch che in continuo, aprendo scenari interessanti per rendere il processo di produzione della nanoparticelle più sostenibile.
This thesis is part of PerFORM WATER 2030 (Platform for Integrated Operation Research and Management of Public Water towards 2030), a project financed by the Lombardy region and the European Regional Development Fund. The objective is to produce laboratory-scale zero valent iron nanoparticles encapsulated in a carbonaceous matrix (ME-nFe), a material with reducing properties and high adsorption capacity that can be used in wastewater treatment. The synthesis of the nanoparticles is achieved through hydrothermal carbonization (HTC) starting from microalgal biomass grown in the pilot plant located at the Bresso-Niguarda (MI) treatment plant. Specifically, the first phases of work focused on collecting biomass directly from the plant and on its characterization in terms of elemental composition and polyphenol content. Subsequently, the conditions that could influence the synthesis of ME-nFe were studied: two types of salt were tested as an iron source (ammonium iron sulphate and iron nitrate), four Fe/C ratios to be put in the reactor (0.02, 0.05, 0.1, 0.2) and three different temperatures of the synthesis process (180°C, 200°C and 225°C). The characterization of the produced nanoparticles in terms of zero-valent and total iron content, specific surface area and nanoscale morphological structure, allowed the selection of the prototypes with the best properties. Once the best operating conditions were identified, the ME-nFe were tested in the removal of five heavy metals (Zn, Cu, Ni, Cd, Cr), first under ideal conditions and then in more realistic ones. At the end of the treatment, the possibility of recovering the CE-nZVI and reusing it them for multiple removal cycles was also assessed. The best results were achieve using a sorbent concentration of 3 gL-1 on a starting solution of the five heavy metals with a starting concentration of 1 mg L-1. The removal for Zn, Cu, Ni e Cd were higher than 96%. However, Cr was never affected during the tests. Hereafter, the toxicity of the liquid by-product of the HTC process was studied, both towards Aliivibrio fischeri, a luminescent bacterium used as an indicator in ecotoxicology, and towards the microalgae themselves. Microtox Basic tests were performed on the raw liquid by-product, showing a very strong effect even on very diluted samples (EC50= 1.8% after 15 min). The test was than repeated after a pretreatment step (precipitation of dissolved iron after pH adjustment) but the final toxicity was still very high, proving that the problem was not the dissolved iron but probably the presence of some toxic organic compounds (EC50= 6.8% after 15 min). Adsorption with activated carbons (using two different adsorbent doses of 2 and 3gL-1) was then performed as an alternative pretreatment. Both concentrations were able to sensibly reduce the wastewater toxicity, with the best result achieved using the 3gL-1 dose (EC50= 60% after 15 min). Finally, the possibility of cultivating microalgae on a dilution of the HTC wastewater was assessed, in order to study their decontamination capacity and simultaneously evaluating the possibility of closing the cycle, enhancing the by-product and obtaining new biomass for other syntheses of CE-nZVI. Microalgae were grown on a 20% dilution of the liquid by-product using the centrate as the diluent, both in batch and continuous mode, making the process to produce the microalgal base nanoparticles more sustainable.
2

Ng, Dedy. "Nanoparticles removal in post-CMP (Chemical-Mechanical Polishing) cleaning." Thesis, Texas A&M University, 2005. http://hdl.handle.net/1969.1/4159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Research was performed to study the particle adhesion on the wafer surface after the chemical-mechanical polishing (CMP) process. The embedded particles can be abrasive particles from the slurry, debris from pad material, and particles of film being polished. Different methods of particle removal mechanism were investigated in order to find out the most effective technique. In post-CMP cleaning, surfactant was added in the solution. Results were compared with cleaning without surfactant and showed that cleaning was more effective with the combined interaction of the mechanical effort from the brush sweeping and the chemistry of the surfactant in the solution (i.e., tribochemical interaction). Numerical analysis was also performed to predict the particle removal rate with the addition of surfactants. The van der Waals forces present in the wafer-particle interface were calculated in order to find the energy required to remove the particle. Finally, the adhesion process was studied by modeling the van der Waals force as a function of separation distance between the particle and the surface. The successful adaptation of elasticity theory to nanoparticle-surface interaction brought insight into CMP cleaning mechanisms. The model tells us that it is not always the case that as the separation distance is decreased, the attraction force will be increased. The force value estimated can be used for slurry design and CMP process estimation.
3

Zhai, Chunhao. "Polyimide Aerogels and Their Applications in Removal of Airborne Nanoparticles." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1464284202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Walrod, John Hamilton II. "ARSENIC REMOVAL WITH A DITHIOL LIGAND SUPPORTED ON MAGNETIC NANOPARTICLES." UKnowledge, 2017. http://uknowledge.uky.edu/chemistry_etds/83.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Exposure to arsenic (As) in water, the ubiquitous toxin that poses adverse health risks to tens of millions, is the result of both anthropogenic and geochemical mobilization. Despite recent publicity and an increased public awareness, the dangers associated with arsenic exposure rank among the top priorities of public health agencies globally. Existing sequestration applications mainly include reductions and adsorption with zero-valent metals and their oxides. The performance of adsorption media is known to preferentially favor aqueous As(V) over As(III) due to the charge of the dissolved oxyanion. Magnetic nanoparticles (MNP) have been the focus of multidisciplinary research efforts for the removal of aqueous toxic metals and metalloids since they can be magnetically separated from the treated water. This improves isolation and allows for regeneration of the MNP, reducing cost and resource consumption. This research is focused on As(III & V) sequestration through the use of synthetic ligands N,N’bis(2-mercaptoethyl)isophthalamide (abbreviated BDTH2) and 2,2’- (isophthaloybis(azanaediyl))bis-3-mercaptopropanoic acid (abbreviated ABDTH2). Additionally, As(III) sequestration with ABDTH2 functionalized on silica core-shell MNP (ABDTH2 MNP), magnetite MNP (ABDTH2@MNP), and commercial silica beads (ABDTH2 Si60) is demonstrated. Both BDTH2 and ABDTH2are effective precipitation agents for the removal of As(III) through the formation of S-As covalent bonds. ABDTH2MNP reduced a 200 ppb As(III) batch solution to below 10 ppb at pH 5,7, and 9. Additionally, complete removal was achieved in the presence of anions at concentrations of 200, 500, and 1000 ppb. This system was evaluated for the removal of total arsenic from industrial solutions accumulated during the production of renewable biogas in landfills. Direct precipitation with BDTH2 and ABDTH2 was inhibited by the complex matrix. However, batch removal with ABDTH2@MNP was effective in removing 82% of the inorganic arsenic. Sequestration of arsenic and speciation from these industrial solutions remains a challenge.
5

Almeelbi, Talal Bakheet. "Phosphate Removal and Recovery Using Iron Nanoparticles and Iron Cross-Linked Biopolymer." Diss., North Dakota State University, 2012. https://hdl.handle.net/10365/26517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Nanoscale zero-valent iron (NZVI) particles and iron cross-linked alginate (FCA) beads were successfully used for the first time for phosphate removal and recovery. NZVI was successfully used for phosphate removal and recovery. Batch studies indicated a removal of ~96 to 100% phosphate in 30 min (1, 5, and 10 mg PO43--P/L with 400 mg NZVI/L). Phosphate removal efficiency by NZVI was 13.9 times higher compared to Microscale ZVI (MZVI) particles. The successful rapid removal of phosphate by NZVI from aqueous solution is expected to have great ramification for cleaning up nutrient rich waters. The presence of sulfate, nitrate, and humic substances and the change in ionic strength in the water marginally affected phosphate removal by NZVI. A maximum phosphate recovery of ~78% was achieved in 30 min at pH 12. Novel iron cross-linked alginate (FCA) beads were synthesized, characterized and used for phosphate removal. The beads removed up to 37-100% phosphate from aqueous solution in 24 h. Freundlich isotherm was found to most closely fit with experimental data and the maximum adsorption capacity was found to be 14.77 mg/g of dry beads. The presence of chloride, bicarbonate, sulfate, nitrate, and natural organic matters in aqueous solution did not interfere in phosphate removal by FCA beads. The phosphate removal efficacy FCA beads was not affected due to change in pH (4-9). Nanosacle zero-valent iron (NZVI) and iron cross-linked alginate beads were also tested for phosphate removal using actual wastewater treatment plant effluent and animal feedlot runoff. The FCA beads could remove ~63% and ~77% phosphate from wastewater and feedlot runoff in 15 min, respectively. Bioavailability of phosphate was examined using algae and higher plants. Phosphate and iron bioavailability of the NZVI sorbed phosphate was examined by supplying spent particles (NZVI with sorbed phosphate) to Tyee Spinach (Spinacia oleracea) and algae (Selenastrum capricornutum). Results revealed that the phosphate was bioavailable for both the algae and spinach. Also, presence of the nanoparticles enhanced the algae growth and plant growth and increases in biomass and plant length were observed. Iron (from spent NZVI) was found to be bioavailable for spinach.
6

Seyedi, Seyed Mojtaba. "Engineered iron oxide nanoparticle-polymer composites for the removal of dissolved arsenic and antimony." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2017. https://ro.ecu.edu.au/theses/2038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Dissolved metalloids, such as arsenic (As), antimony (Sb) and boron (B), are often found in contaminated surface waters or groundwater. Their removal is essential for protecting the water environment. This MEngSci research project investigated the use of magnetite (Fe3O4) nanoparticle – polymethylmethacrylate (PMMA) composites, as a reusable adsorbent toremove dissolved As andSb. Comparative experiments were carried out to examine the effectiveness ofcommercial magnetite nanoparticles, lab synthesized nanoparticles, and the composites of synthesed Fe3O4nanoparticle-PMMA, for adsorbing As (III) and Sb (III) ions. The effects of major environmental and operating parameters (e.g. pH and adsorbent dosage) were investigated.Four cycles of adsorption-desorption experiment were conducted; the results demonstrating significant capability of the composites of removing the dissolved metalloids. In addition, the competitive adsorption of As and Sb to the composites was studied in batch experiments. It was found that the affinity of antimony to the adsorbents was generally greater than arsenic ions. A variety of analytical methods, such as X-Ray Diffraction (XRD), microwave plasma atomic emission spectrometry (MP-AES) and Malvern Zetasizer, were used to characterise the properties of the composites and analyze dissolved As and Sb concentrations. Details of the experimentalprocedures and results have been presented in this MEngSci thesis. Overall, this research validated: (a) a process to synthesize Fe3O4 nanoparticle-PMMA composites; and (b) the efficiency of using the composites to remove dissolved metalloids from contaminated water.
7

Hu, Jing. "Fundamental investigation on removal and recovery of heavy metals from synthetic wastewater using magnetic nanoparticles /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?EVNG%202005%20HU.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Farkas, Kata. "Mimicking virus removal and transport in aquifer media using surface-modified silica nanoparticles." Thesis, University of Canterbury. School of Biological Sciences, 2014. http://hdl.handle.net/10092/9349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Contamination of drinking water sources, such as groundwater, by pathogens (protozoa, bacteria and viruses) is of major concern globally. Due to their small size, mobility and high infectivity, enteric viruses have been a focus of groundwater research. However, the behaviour of enteric viruses in aquifer media is still poorly understood, which is partially attributable to the lack of reliable surrogates for these viruses. In the study reported in this thesis, a new type of surrogate was characterised and validated for its use in studying virus fate and transport in groundwater. The surrogates developed were composed of 70 nm carboxylated silica nanoparticles, labelled with dsDNA tags for sensitive detection, and coated with selected proteins to mimic the physico-chemical characteristics (size, charge, density) of two enteric viruses, human rotavirus and adenovirus, frequently found in faecal-contaminated groundwater. The selected enteric viruses and a commonly used virus surrogate, the MS2 bacteriophage, were purified and characterised in terms of size, surface charge, hydrophobicity and aggregation. For validation, the characteristics, the adsorption, degradation and transport of the surface-modified nanoparticles and the viruses were investigated in laboratory studies and compared. The characterisation of the viruses and particles revealed that the modified silica nanoparticles resemble the size and negative surface charge of the rotavirus and adenovirus. In general, the nanoparticles were found to be less hydrophobic than the enteric viruses, thus presumably less interactive with hydrophobic media. In contrast, the MS2 bacteriophage was smaller in size than the enteric viruses studied and considerably more hydrophobic implying stronger interactions with hydrophobic media. The surface-modified nanoparticles were found to be more stable and remained more monodispersed over time than the purified enteric viruses. In laboratory studies using simulated groundwater, the DNA-labelled nanoparticles were more stable over time than the rotavirus, the adenovirus or a plasmid DNA on its own. Interestingly, the study revealed that rotavirus was more persistent than the adenovirus over time in terms of degradation and aggregation, however, day light considerably enhanced rotavirus degradation. The adsorption studies revealed strong interactions between the enteric viruses and natural aquifer media (gravel and sand), whereas most of the surface-modified nanoparticles adsorbed weakly to these media. Only the casein-coated nanoparticles adsorbed strongly to the sand. The MS2 adsorbed to the gravel strongly, but weakly to the sand implying different interactions. The studies on virus and nanoparticle adsorption to hydrophobic-coated and non-modified Ottawa sand supported the results of characterisation. Column studies investigating the transport of the viruses and the nanoparticles in gravel and sand showed that even though gravel had high adsorption capacity in the adsorption tests, all viruses and nanoparticles travelled though the gravel columns with little retention, probably due to insufficient interaction time. This highlights the vulnerability of gravel aquifers to virus contamination. Experiments using sand columns showed great differences in the transport of the particles. Results suggested that the recovery of the DNA-labelled nanoparticles was similar to the recovery of the adenovirus, however, their transport pattern was different. The glycoprotein-, the protein A- and the AMBP-coated nanoparticles mimicked the transport pattern and low recovery of the rotavirus. In contrast, the streptavidin- and casein-coated nanoparticles were not recovered, emphasising the great importance of surface structure in particle transport. The results of this study demonstrated the usefulness of protein-coated silica nanoparticles as virus surrogates in groundwater studies. Surface-modified nanoparticles are able to mimic the surface characteristics of viruses. The glycoprotein-, protein A- and AMBP-coated particles were found to be suitable surrogates for rotavirus, whereas the DNA-labelled nanoparticles resembled adenovirus behaviour in hydrophilic media. Using particles with different material, size and protein-coating other pathogens can be modelled as well. Furthermore, these particles are expected to besafe to humans and the environment, thus can be used in a great variety of experiments in environmental research.
9

Verdugo, Gonzalez Brenda. "Regenerable Adsorbents for Removal of Arsenic from Contaminated Waters and Synthesis and Characterization of Multifunctional Magnetic Nanoparticles for Environmental and Biomedical Applications." Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/202532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The present work is divided into two sections. The first section deals with the synthesis of regenerable adsorbents for the removal of arsenic from contaminated waters. An adsorbent based on carboxymethylated polyethylenimine grafted agarose gels was synthesized and characterized as a regenerable synthetic ferric oxide adsorbent with high capacity for arsenate ions at pH 3.0. Similarly, four metal ion chelating adsorbents based on dipicolylamine were synthesized and characterized with respect to their Cu(II), Fe(III) and As(V) adsorption capacities. The most efficient adsorbents were Nov-PEI-DPA and Nov-TREN-DPA. Additionally, a commercial ion exchange resin was modified with permanganate to oxidize arsenite into arsenate. A complete oxidation-adsorption system was proposed in which a column packed with the oxidation resin was connected in series with an adsorbent column composed of the polyethylenimine grafted agarose gels.The second section involved work with magnetic nanoparticles. First, composite adsorbents consisting of magnetic particles encapsulated within agarose beads with and without grafted iminodiacetic acid (IDA) chelating groups were synthesized. The adsorption capacity of the adsorbents for Cu(II), Fe(III) and As(V) at different concentrations was investigated. Batch experiments were carried out to determine the Fe(III) and As(V) adsorption isotherms for the magnetic Novarose-IDA. Regenerability of the adsorbent was achieved with a pH change of the inlet solution, without affecting its magnetic or adsorption properties.Magnetic composite particles were synthesized for biomedical applications. First, magnetic nanoparticles were coated with silica and then used for gold nanoshell production. These nanoshells were functionalized with a Brij S10 derivative, containing carboxylic groups, using dodecanethiol as a bridging agent to incorporate a fluorescent biomolecule.Finally, magnetic and gold particles were encapsulated in PLGA nanoparticles. Docetaxel was loaded on these multifunctional nanoparticles and released studies were performed at 37°C. The presence of magnetite, colloidal gold and gold nanoshells in the PLGA nanoparticles was revealed by the coloration acquired by the polymeric nanoparticles. The release of drug from the polymeric nanoparticles showed a biphasic behavior with an initial burst followed by a prolonged slow release. There was no effect of the presence of magnetic or metallic particles on docetaxel release.
10

Clarke, Emma Victoria Faye. "An investigation into silver nanoparticles removal from water during sand filtration and activated carbon adsorption." Thesis, University of Exeter, 2016. http://hdl.handle.net/10871/29959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Wastewater treatment plants (WwTP) act as the principle buffer between anthropogenic sources of Silver Nanoparticles (AgNPs) and environmental targets. AgNPs, given their effective anti-microbial properties, have the potential to negatively impact WwTP processes and organisms within the natural environment. A clear understanding of the fate and transport of AgNPs as they pass through WwTPs is crucial in evaluating AgNPs impacts for WwTP process, the natural environment and in the development of a comprehensive environmental risk assessment for AgNPs. The main aim of this thesis was to carry out an analysis on the fate, transport and transformation of AgNPs through WwTP relevant filtration medias in order to understand more about the toxicological implications for both WwTP processes and receiving environments. AgNPs were synthesised in-house, via an in-situ reduction method, which produced a homogeneous dispersion of nanoparticles of average particle diameter 9.98nm, with a standard deviation of 3.11nm. Column studies and adsorption isotherm experiments were conducted to investigate the fate and transport of silver nitrate, AgNPs and bulk silver across media beds of quartz sand and granulated activated carbon (GAC), both chosen for their relevance in wastewater treatment protocols. TEM imaging and EDS analysis was employed to characterise the AgNPs physically and elementally within the column influents and effluents. An original contribution made to the existing knowledge on AgNPs is that in contrast to bulk silver and silver nitrate, uncoated AgNPs were observed to be highly mobile through the quartz sand media. This high mobility was in contrast with the prior expectation that van der Waals forces of attraction between the positively charged AgNPs and the negative charge of the silica surfaces within the sand bed would lead to some measure of retention within the column matrix. The resulting high mobility of the AgNPs was attributed to particle surface contamination of boride ions originating from the reduction agent used during the synthesis process. This highlights (and reinforces) the importance of better understanding on the implications of the various methods of synthesis and use of capping agents for AgNPs characteristics and the impact this has on fate and transport. AgNPs were also noted to have been significantly altered after their passage through the quartz sand media, with up to 83% of the sample increasing in size, from 9.98nm to an average of 18.26nm and a maximum of 144nm. Particle size measurements were made using the measuring tool available in the GNU Image Manipulation Program (GIMP). This size increase was attributed to the formation of nano-alloy clusters with residual gold and iron compounds, naturally present within the sand bed. In the case of silver-gold alloy clusters, this is expected to exhibit positive implications for future environmental fates of the resulting AgNPs, where the presence of gold in alloy clusters has been observed to significantly deactivate AgNPs silver ion release. In contrast to the sand, it was observed that the GAC was an effective absorber of AgNPs. However, this was observed to be a size dependant relationship, where the GAC was not observed to be effective for adsorption of bulk silver at particle sizes of 300 – 800nm. In this thesis, in addition to the experimental work, a novel, low complexity technique was developed for the detection and quantification of AgNPs in laboratory aqueous solutions. This protocol utilises a laboratory bench top photometer and gave AgNPs concentration results that reliably and accurately reflected that of ICP-MS and ICP-OES results within a detection range of 0.01 and 20mg/L; where the correlation coefficient between the instrument absorbance response and ICP-MS/OES concentration (at 450nm) was R2 0.994.

Books on the topic "Nanoparticles removal":

1

Shen, Yu, ed. Functional Nanoparticles for Environmental Contaminants Removal and Agricultural Application. MDPI, 2023. http://dx.doi.org/10.3390/books978-3-0365-8974-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Nanoparticles removal":

1

Sarojini, Gopalakrishnan, P. Kannan, Natarajan Rajamohan, and Manivasagan Rajasimman. "Nanoparticles and Nanocomposites for Heavy Metals Removal." In Advances in Sustainability Science and Technology, 139–61. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6924-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jain, Ayushi, Shweta Wadhawan, and S. K. Mehta. "Nanoparticles-Based Adsorbents for Water Pollutants Removal." In Rapid Refrigeration and Water Protection, 237–65. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93845-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Simeonidis, Konstantinos, Carlos Martinez-Boubeta, Paula Zamora-Perez, Pilar Rivera-Gil, Efthimia Kaprara, Evgenios Kokkinos, and Manassis Mitrakas. "Nanoparticles for Heavy Metal Removal from Drinking Water." In Environmental Nanotechnology, 75–124. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76090-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pillai, Parwathi, and Swapnil Dharaskar. "Arsenic Removal Using Nanoparticles from Groundwater: A Review." In Handbook of Solid Waste Management, 1911–25. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-4230-2_95.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pillai, Parwathi, and Swapnil Dharaskar. "Arsenic Removal Using Nanoparticles from Groundwater: A Review." In Handbook of Solid Waste Management, 1–15. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7525-9_95-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bukhari, Sayed Muhammad Ata Ullah Shah, Liloma Shah, Sana Raza, Robina Khan, and Muhsin Jamal. "Nanoparticles for the Removal of Heavy Metals from Wastewater." In Membrane Technologies for Heavy Metal Removal from Water, 280–99. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003326281-17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Khaydarov, R., R. Khaydarov, and O. Gapurova. "Application of Carbon Nanoparticles for Water Treatment." In Water Treatment Technologies for the Removal of High-Toxity Pollutants, 253–58. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3497-7_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kushwaha, Archana, Zeenat Arif, and Bineeta Singh. "Adsorptive Removal of Fluoride from Water Using Iron Oxide-Hydrogen Nanoparticles." In Advanced Treatment Technologies for Fluoride Removal in Water, 139–57. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-38845-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

García-Rosales, G., L. C. Longoria-Gándara, P. Avila-Pérez, D. O. Flores-Cruz, and C. López-Reyes. "Biogenic Material With Iron Nanoparticles for As(V) Removal." In Plant Nanobionics, 55–75. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16379-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Prasse, Carsten, and Thomas Ternes. "Removal of Organic and Inorganic Pollutants and Pathogens from Wastewater and Drinking Water Using Nanoparticles – A Review." In Nanoparticles in the Water Cycle, 55–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10318-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nanoparticles removal":

1

Varghese, Ivin, M. D. Murthy Peri, Dong Zhou, A. T. John Kadaksham, Thomas J. Dunbar, and Cetin Cetinkaya. "Nanoparticle Removal Using Laser Induced Plasma Shockwaves." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Nano-scale substrate cleanliness is an essential requirement in variety of nanotechnology applications. Currently, the detachment and removal of sub-100nm particles is of a particular interest and challenge in semiconductor manufacture, lithography, and nanotechnology. The proposed particle removal technique based on pressure shock waves generated by a laser induced plasma (LIP) core is of interest in various nano/micro fabrication applications in which the minimum feature size has been reducing rapidly. Any removal technique adopted in a fabrication process must be on the same shrinking feature reduction curve since, for device reliability, the minimum tolerable foreign particle size on a substrate depends on the minimum feature size on a nano/micro-system or device. In recent years, we have demonstrated that nanoparticles can be detached and removed from substrates using LIP shock wavefronts. While we have experimentally established the effectiveness of the LIP technique for removing nanoparticles in the sub-100nm range, the removal mechanisms were not well-understood. In the current work, we introduce a set of novel removal mechanisms based on moment resistance of the particle-substrate bond and discuss their effectiveness and applicability in laser-induced plasma shock nanoparticle removal. To gain better understanding for the detachment mechanisms, the resultant force and rolling moment induced on the nanoparticle by the LIP shockwave front need to be determined. Since, for sub-100nm nanoparticles, the Knudsen number Kn exceeds 0.1, the applicability of the Navier-Stokes equations for the gas motion becomes questionable as the continuum assumption for the medium breaks down due to the invalidity of the transport terms in these equations. Detachment and detachment mechanisms of nanoparticles from flat surfaces subjected to shockwaves are investigated by employing molecular gas dynamic simulations using the direct simulation Monte Carlo method and experimental transient pressure data. Two new mechanisms for nanoparticle detachment based on rolling moment resistance of the adhesion bond and the elastic restitution effect are introduced. As a result of present simulations, it is computationally demonstrated that the pulsed laser-induced shockwaves can generate sufficient rolling moments to detach sub-100nm particles and initiate removal. The transient moment exerted on a 60nm polystyrene latex (PSL) particle on a silicon substrate are presented and discussed.
2

Devaraj, N. K., A. S. M. Mukter-Uz-Zaman, and Wong Hin Yong. "Arsenate Removal Performance of Magnetite Nanoparticles." In 2020 IEEE 8th R10 Humanitarian Technology Conference (R10-HTC). IEEE, 2020. http://dx.doi.org/10.1109/r10-htc49770.2020.9356978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vu, Trinh, Highqueen Sarpomah, Michael Kamen, Tolessa Deksissa, and Jiajun Xu. "Nanoparticles Infused Mesoporous Material for Water Treatment Processes." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In current study, a hybrid mesoporous material infused with metallic oxide nanoparticles, MCM-48 with TiO2 nanoparticles, has been developed for potential application in water treatment. Using this unique hybrid structure, it can combine the advantages of the effective pollutants removal capability of metallic oxide nanoparticles, and the strong yet high permeable structure of mesoporous material. A modified hydrothermal method has been developed to synthesize three hybrid samples with TiO2 nanoparticles of three assorted sizes (15, 50 and 300nm), and their structure have also been characterized. The synthesized samples are tested for its capability of removing organic dye and trace metals using ICP-MS. The results have shown that while all three hybrid materials have shown over 80% adsorption rate for organic dye, the sample synthesized using 300nm TiO2 nanoparticle has shown the highest adsorption rate. Similarly, the highest adsorption rate for most trace metals test here also occurs in the sample made with 300nm TiO2 nanoparticle. Coincidentally, the sample prepared with 300nm TiO2 nanoparticle has a much larger internal surface area and smaller average pore size compared to the two other samples, which may lead to the higher adsorption rate of trace metals and organic dye tested here. This study has presented a hybrid mesoporous material that can be potentially used for pollutants removal of water treatment. Future studies are still needed to fully explore this hybrid material and its capability in water treatment.
4

Zhang, Haini, Suman Mondal, Dorota Grabowska, Matt Mixdorf, Gail P. Sudlow, Christine M. O'Brien, Julie Prior, Kexian Liang, Rui Tang, and Samuel Achilefu. "Dual fluorescence guidance improves extent of brain tumor removal surgery." In Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications XIII, edited by Samuel Achilefu and Ramesh Raghavachari. SPIE, 2021. http://dx.doi.org/10.1117/12.2577287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wanna, Yongyuth, Anon Chindaduang, Gamolwan Tumcharern, Ratchaneewan Puingam, Supanit Porntheerapat, Jiti Nukeaw, Alke Petri-Fink, and Sirapat Pratontep. "Surface Modified Hybrid Magnetic Nanoparticles for Heavy Metal Removal." In 5th Asian Particle Technology Symposium. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-2518-1_278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhou, Nianqing, Nianqing Zhou, Wen Liang, Wen Liang, Chaomeng Dai, Chaomeng Dai, Yanping Duan, and Yanping Duan. "Application of Zero-Valent Iron Nanoparticles for Diclofenac Removal." In International Workshop on Environment and Geoscience. SCITEPRESS - Science and Technology Publications, 2018. http://dx.doi.org/10.5220/0007426200870091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schauer, F., V. Nadazdy, S. Lanyi, J. Rohovec, I. Kuritka, J. Touskova, and J. Tousek. "CdS Nanoparticles Surfactant Removal Transport Study by Transient Charge Measurements." In World Renewable Energy Congress – Sweden, 8–13 May, 2011, Linköping, Sweden. Linköping University Electronic Press, 2011. http://dx.doi.org/10.3384/ecp110572823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Quamme, Michael, Talal Almeelbi, and Achintya Bezbaruah. "Selenium Removal from Surface Waters: Exploratory Research with Iron Nanoparticles." In World Environmental And Water Resources Congress 2012. Reston, VA: American Society of Civil Engineers, 2012. http://dx.doi.org/10.1061/9780784412312.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

AJALA, Mary Adejoke, Ambali Saka ABDULKAREEM, Abdulsalami Sanni KOVO, Jimoh Oladejo TIJANI, and Ayomide Samuel ADEYEMI. "ADSORPTION STUDIES OF ZINC, COPPER, AND LEAD IONS FROM PHARMACEUTICAL WASTEWATER ONTO SILVER MODIFIED CLAY ADSORBENT." In SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY 2021 INTERNATIONAL VIRTUAL CONFERENCE. DR. D. SCIENTIFIC CONSULTING, 2022. http://dx.doi.org/10.48141/sbjchem.21scon.10_abstract_ajala.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Clay-supported silver nanoparticles were green synthesized using the aqueous leaf extract of Parkia biglobosa. The phytochemical analysis and FTIR results of the Parkia biglobosa showed that the leaf contains phenol, tanning, and flavonoids, which act as reducing, capping, and stabilizing agents required for the synthesis of the silver nanoparticles. The prepared adsorbent has good morphology, is rich in silica, and contains functional groups suitable for heavy metal binding. The adsorptions of Zn, Cu, and Pb from pharmaceutical wastewater onto the silver-modified clay were studied as an adsorbent dosage and contact time. From the percentage removal results obtained, the adsorbent had up to 99.96%, 99.5%, and 99.44% removal efficiency for Zn, Pb, and Cu, respectively. The present work shows that the synthesized silver nanoparticles supported on local clay can be used as a potentially low-cost adsorbent to remove heavy metal ions from industrial wastewater.
10

Fujimoto, Nozomu, and Takefumi Kanda. "Notice of Removal: Nanoparticles generation system using an ultrasonic torsional transducer." In 2017 IEEE International Ultrasonics Symposium (IUS). IEEE, 2017. http://dx.doi.org/10.1109/ultsym.2017.8092016.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Nanoparticles removal":

1

Gentscheva, Galia, Paunka Vassileva, Nikolay Marinkov, Christina Tzvetkova, and Daniela Kovacheva. Investigation of the Possibility for Removal of Hexavalent Chromium Using Manganese Ferrite Nanoparticles. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, September 2020. http://dx.doi.org/10.7546/crabs.2020.09.06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Minbum, Satish Nune, Jierui Yu, Jian Liu, and Praveen Thallapally. Extending Magnetic Core Shell Nanoparticle Extraction Technology to Cesium and Antimony Removal from Geothermal Brines in New Zealand. Office of Scientific and Technical Information (OSTI), June 2023. http://dx.doi.org/10.2172/2326085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

McGrail, Bernard. Extending Magnetic Core Shell Nanoparticle Extraction Technology to Cesium and Antimony Removal from Geothermal Brines in New Zealand - CRADA 440. Office of Scientific and Technical Information (OSTI), February 2021. http://dx.doi.org/10.2172/1827737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lin, Xiao-Min, and Subramanian Sankaranarayanan. Ultrathin Nanoparticle Membranes to Remove Emerging Hydrophobic Trace Organic Compounds in Water with Low Applied Pressure and Energy Consumption. Office of Scientific and Technical Information (OSTI), February 2019. http://dx.doi.org/10.2172/1502835.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography