Academic literature on the topic 'Nanoparticles, nanomedicine, protein conjugation, cellular targeting'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanoparticles, nanomedicine, protein conjugation, cellular targeting.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nanoparticles, nanomedicine, protein conjugation, cellular targeting"

1

Sha, Huizi, Hong Chen, and Baorui Liu. "Lipid-insertion to enable targeting functionalization of paclitaxel loaded erythrocyte membrane nanoparticle by tumor-penetrating bispecific recombinant protein." Journal of Clinical Oncology 35, no. 15_suppl (May 20, 2017): e14047-e14047. http://dx.doi.org/10.1200/jco.2017.35.15_suppl.e14047.

Full text
Abstract:
e14047 Background: There is a great interest in targeting and penetrating of cancer cells for research or therapeutic purposes. Red blood cells (RBCs) are readily available and fully biocompatible long-circulating intravascular carriers that are amenable to chemical modifications, drug loading and reinjection. The purpose of this study was to design a tumor-targeting biocompatible drug delivery system for delivery of antitumor drugs. Methods: DSPE-PEG-MAL, phospholipid derivatives was used to insert into erythrocyte membrane nanoparticles. To make nanoparticles active targeting to the tumor site, a tumor-penetrating bispecific recombinant protein named anti-EGFR-iRGD was used. The characterization, bio-distribution, tumor targeting ability and antitumor activity of paclitaxel loaded anti-EGFR-iRGD modified erythrocyte membrane nanoparticle were evaluated. Results: In this study, anti-EGFR-iRGD-RBC-PTX nanoparticles was successfully constructed with a size of around 100 nm. A lipid-insertion method is employed to functionalize these nanoparticles without the need for direct chemical conjugation. It showed signifcantly targeted skill and increased cytotoxic effect toward both nontargeted RBC-PTX and combination of anti-EGFR-iRGD and RBC-PTX. The tissue distribution and antitumor assays in mice bearing gastric cancer xenograft confrmed the superior penetration tumor effcacy and antitumor activity of anti-EGFR-iRGD-RBC-PTX. Conclusions: We designed and successfully prepared a novel anti-EGFR-iRGD decorated, erythrocyte membrane sourced nanoparticle for targeted drug delivery, with enhanced tumor targeting and anti-tumor effect. Anti-EGFR-iRGD-RBC-PTX represents a potential effective nanomedicine against gastric cancer.
APA, Harvard, Vancouver, ISO, and other styles
2

Luks, Valerie L., Hanna Mandl, Jenna DiRito, Christina Barone, Mollie R. Freedman-Weiss, Adele S. Ricciardi, Gregory G. Tietjen, Marie E. Egan, W. Mark Saltzman, and David H. Stitelman. "Surface conjugation of antibodies improves nanoparticle uptake in bronchial epithelial cells." PLOS ONE 17, no. 4 (April 6, 2022): e0266218. http://dx.doi.org/10.1371/journal.pone.0266218.

Full text
Abstract:
Background Advances in Molecular Therapy have made gene editing through systemic or topical administration of reagents a feasible strategy to treat genetic diseases in a rational manner. Encapsulation of therapeutic agents in nanoparticles can improve intracellular delivery of therapeutic agents, provided that the nanoparticles are efficiently taken up within the target cells. In prior work we had established proof-of-principle that nanoparticles carrying gene editing reagents can mediate site-specific gene editing in fetal and adult animals in vivo that results in functional disease improvement in rodent models of β-thalassemia and cystic fibrosis. Modification of the surface of nanoparticles to include targeting molecules (e.g. antibodies) holds the promise of improving cellular uptake and specific cellular binding. Methods and findings To improve particle uptake for diseases of the airway, like cystic fibrosis, our group tested the impact of nanoparticle surface modification with cell surface marker antibodies on uptake in human bronchial epithelial cells in vitro. Binding kinetics of antibodies (Podoplanin, Muc 1, Surfactant Protein C, and Intracellular Adhesion Molecule-1 (ICAM)) were determined to select appropriate antibodies for cellular targeting. The best target-specific antibody among those screened was ICAM antibody. Surface conjugation of nanoparticles with antibodies against ICAM improved cellular uptake in bronchial epithelial cells up to 24-fold. Conclusions This is a first demonstration of improved nanoparticle uptake in epithelial cells using conjugation of target specific antibodies. Improved binding, uptake or specificity of particles delivered systemically or to the luminal surface of the airway would potentially improve efficacy, reduce the necessary dose and thus safety of administered therapeutic agents. Incremental improvement in the efficacy and safety of particle-based therapeutic strategies may allow genetic diseases such as cystic fibrosis to be cured on a fundamental genetic level before birth or shortly after birth.
APA, Harvard, Vancouver, ISO, and other styles
3

Ban, Zhan, Peng Yuan, Fubo Yu, Ting Peng, Qixing Zhou, and Xiangang Hu. "Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles." Proceedings of the National Academy of Sciences 117, no. 19 (April 24, 2020): 10492–99. http://dx.doi.org/10.1073/pnas.1919755117.

Full text
Abstract:
Protein corona formation is critical for the design of ideal and safe nanoparticles (NPs) for nanomedicine, biosensing, organ targeting, and other applications, but methods to quantitatively predict the formation of the protein corona, especially for functional compositions, remain unavailable. The traditional linear regression model performs poorly for the protein corona, as measured by R2 (less than 0.40). Here, the performance with R2 over 0.75 in the prediction of the protein corona was achieved by integrating a machine learning model and meta-analysis. NPs without modification and surface modification were identified as the two most important factors determining protein corona formation. According to experimental verification, the functional protein compositions (e.g., immune proteins, complement proteins, and apolipoproteins) in complex coronas were precisely predicted with good R2 (most over 0.80). Moreover, the method successfully predicted the cellular recognition (e.g., cellular uptake by macrophages and cytokine release) mediated by functional corona proteins. This workflow provides a method to accurately and quantitatively predict the functional composition of the protein corona that determines cellular recognition and nanotoxicity to guide the synthesis and applications of a wide range of NPs by overcoming limitations and uncertainty.
APA, Harvard, Vancouver, ISO, and other styles
4

Akhter, Md Habban, Habibullah Khalilullah, Manish Gupta, Mohamed A. Alfaleh, Nabil A. Alhakamy, Yassine Riadi, and Shadab Md. "Impact of Protein Corona on the Biological Identity of Nanomedicine: Understanding the Fate of Nanomaterials in the Biological Milieu." Biomedicines 9, no. 10 (October 19, 2021): 1496. http://dx.doi.org/10.3390/biomedicines9101496.

Full text
Abstract:
Nanoparticles (NPs) in contact with a biological medium are rapidly comprehended by a number of protein molecules resulting in the formation of an NP–protein complex called protein corona (PC). The cell sees the protein-coated NPs as the synthetic identity is masked by protein surfacing. The PC formation ultimately has a substantial impact on various biological processes including drug release, drug targeting, cell recognition, biodistribution, cellular uptake, and therapeutic efficacy. Further, the composition of PC is largely influenced by the physico-chemical properties of NPs viz. the size, shape, surface charge, and surface chemistry in the biological milieu. However, the change in the biological responses of the new substrate depends on the quantity of protein access by the NPs. The PC-layered NPs act as new biological entities and are recognized as different targeting agents for the receptor-mediated ingress of therapeutics in the biological cells. The corona-enveloped NPs have both pros and cons in the biological system. The review provides a brief insight into the impact of biomolecules on nanomaterials carrying cargos and their ultimate fate in the biological milieu.
APA, Harvard, Vancouver, ISO, and other styles
5

Rodríguez, Diego A., and Pieter Vader. "Extracellular Vesicle-Based Hybrid Systems for Advanced Drug Delivery." Pharmaceutics 14, no. 2 (January 23, 2022): 267. http://dx.doi.org/10.3390/pharmaceutics14020267.

Full text
Abstract:
The continuous technological advancement of nanomedicine has enabled the development of novel vehicles for the effective delivery of therapeutic substances. Synthetic drug delivery systems are nano-sized carriers made from various materials that can be designed to deliver therapeutic cargoes to cells or tissues. However, rapid clearance by the immune system and the poor targeting profile of synthetic drug delivery systems are examples of the pressing obstacles faced in nanomedicine, which have directed the field toward the development of alternative strategies. Extracellular vesicles (EVs) are nanoscale particles enclosed by a protein-rich lipid bilayer; they are released by cells and are considered to be important mediators of intercellular communication. Owing to their natural composition, EVs have been suggested to exhibit good biocompatibility and to possess homing properties to specific cell types. Combining EVs with synthetic nanoparticles by defined hybridization steps gives rise to a novel potential drug delivery tool, i.e., EV-based hybrid systems. These novel therapeutic vehicles exhibit potential advantageous features as compared to synthetic drug delivery systems such as enhanced cellular uptake and cargo delivery, immuno-evasive properties, capability of crossing biological barriers, and tissue targeting profile. Here, we provide an overview of the various strategies practiced to produce EV-based hybrid systems and elucidate those advantageous features obtained by synthetic drug delivery systems upon hybridization with EVs.
APA, Harvard, Vancouver, ISO, and other styles
6

Zingale, Elide, Alessia Romeo, Salvatore Rizzo, Cinzia Cimino, Angela Bonaccorso, Claudia Carbone, Teresa Musumeci, and Rosario Pignatello. "Fluorescent Nanosystems for Drug Tracking and Theranostics: Recent Applications in the Ocular Field." Pharmaceutics 14, no. 5 (April 28, 2022): 955. http://dx.doi.org/10.3390/pharmaceutics14050955.

Full text
Abstract:
The greatest challenge associated with topical drug delivery for the treatment of diseases affecting the posterior segment of the eye is to overcome the poor bioavailability of the carried molecules. Nanomedicine offers the possibility to overcome obstacles related to physiological mechanisms and ocular barriers by exploiting different ocular routes. Functionalization of nanosystems by fluorescent probes could be a useful strategy to understand the pathway taken by nanocarriers into the ocular globe and to improve the desired targeting accuracy. The application of fluorescence to decorate nanocarrier surfaces or the encapsulation of fluorophore molecules makes the nanosystems a light probe useful in the landscape of diagnostics and theranostics. In this review, a state of the art on ocular routes of administration is reported, with a focus on pathways undertaken after topical application. Numerous studies are reported in the first section, confirming that the use of fluorescent within nanoparticles is already spread for tracking and biodistribution studies. The first section presents fluorescent molecules used for tracking nanosystems’ cellular internalization and permeation of ocular tissues; discussions on the classification of nanosystems according to their nature (lipid-based, polymer-based, metallic-based and protein-based) follows. The following sections are dedicated to diagnostic and theranostic uses, respectively, which represent an innovation in the ocular field obtained by combining dual goals in a single administration system. For its great potential, this application of fluorescent nanoparticles would experience a great development in the near future. Finally, a brief overview is dedicated to the use of fluorescent markers in clinical trials and the market in the ocular field.
APA, Harvard, Vancouver, ISO, and other styles
7

Gurunathan, Sangiliyandi, Muniyandi Jeyaraj, Hyeonwoo La, Hyunjin Yoo, Youngsok Choi, Jeong Tae Do, Chankyu Park, Jin-Hoi Kim, and Kwonho Hong. "Anisotropic Platinum Nanoparticle-Induced Cytotoxicity, Apoptosis, Inflammatory Response, and Transcriptomic and Molecular Pathways in Human Acute Monocytic Leukemia Cells." International Journal of Molecular Sciences 21, no. 2 (January 9, 2020): 440. http://dx.doi.org/10.3390/ijms21020440.

Full text
Abstract:
The thermoplasmonic properties of platinum nanoparticles (PtNPs) render them desirable for use in diagnosis, detection, therapy, and surgery. However, their toxicological effects and impact at the molecular level remain obscure. Nanotoxicology is mainly focused on the interactions of nanostructures with biological systems, particularly with an emphasis on elucidating the relationship between the physical and chemical properties such as size and shape. Therefore, we hypothesized whether these unique anisotropic nanoparticles could induce cytotoxicity similar to that of spherical nanoparticles and the mechanism involved. Thus, we synthesized unique and distinct anisotropic PtNPs using lycopene as a biological template and investigated their biological activities in model human acute monocytic leukemia (THP-1) macrophages. Exposure to PtNPs for 24 h dose-dependently decreased cell viability and proliferation. Levels of the cytotoxic markers lactate dehydrogenase and intracellular protease significantly and dose-dependently increased with PtNP concentration. Furthermore, cells incubated with PtNPs dose-dependently produced oxidative stress markers including reactive oxygen species (ROS), malondialdehyde, nitric oxide, and carbonylated protein. An imbalance in pro-oxidants and antioxidants was confirmed by significant decreases in reduced glutathione, thioredoxin, superoxide dismutase, and catalase levels against oxidative stress. The cell death mechanism was confirmed by mitochondrial dysfunction and decreased ATP levels, mitochondrial copy numbers, and PGC-1α expression. To further substantiate the mechanism of cell death mediated by endoplasmic reticulum stress (ERS), we determined the expression of the inositol-requiring enzyme (IRE1), (PKR-like ER kinase) PERK, activating transcription factor 6 (ATF6), and activating transcription factor 4 ATF4, the apoptotic markers p53, Bax, and caspase 3, and the anti-apoptotic marker Bcl-2. PtNPs could activate ERS and apoptosis mediated by mitochondria. A proinflammatory response to PtNPs was confirmed by significant upregulation of interleukin-1-beta (IL-1β), interferon γ (IFNγ), tumor necrosis factor alpha (TNFα), and interleukin (IL-6). Transcriptomic and molecular pathway analyses of THP-1 cells incubated with the half maximal inhibitory concentration (IC50) of PtNPs revealed the altered expression of genes involved in protein misfolding, mitochondrial function, protein synthesis, inflammatory responses, and transcription regulation. We applied transcriptomic analyses to investigate anisotropic PtNP-induced toxicity for further mechanistic studies. Isotropic nanoparticles are specifically used to inhibit non-specific cellular uptake, leading to enhanced in vivo bio-distribution and increased targeting capabilities due to the higher radius of curvature. These characteristics of anisotropic nanoparticles could enable the technology as an attractive platform for nanomedicine in biomedical applications.
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Peilin. "ID:4006 Advanced Nanotechnologies for Cancer Research." Biomedical Research and Therapy 4, S (September 5, 2017): 8. http://dx.doi.org/10.15419/bmrat.v4is.216.

Full text
Abstract:
In this lecture, I will discuss the recent developments in our group in the advanced optical imaging systems, nanocarriers and nanodevices for caner research. I will first discuss the development of various nanoparticles for sensing the pH value in cellular environment. By surface functionalization schemes, it is possible to control the location of nanoparticles in cells allowing us to track the local pH value around the nanoparticles inside cancer cells. As for in vivo study, we have utilized the multi-photon microscopy to investigate the disease models with the help of nanoparticles. I will discuss the enhanced permeability and retention (EPR) effect, which is a key feature of tumor blood vessels. In general, EPR-mediated passive targeting highly relies on the prolonged circulation time of nanocarriers. Particularly important two parameters, (1) nanocarrier size and (2) surface property are expected to play a key role on the pharmacokinetics and the biodistribution of the carrier material. Previously studies highlighted protein corona neutrality as an important design in the development of targeted nanomaterial delivery and demonstrated that a small difference in the surface heterogeneity could result in profoundly different interactions with cells and tissues. Therefore, the control and understanding of protein corona composition are critical for successful EPR-targeted nanomedicine. I will use mesoporous silica nanoparticles (MSN) nanoparticles as an example to illustrate the effect of size and the surface heterogeneity of MSN on their biological fate both in vitro and in vivo. I will also summarize our recent development of the circulating tumor cells (CTCs) isolation chips. CTCs are cancer cells that break away from a primary tumor or metastatic site, escape from immunosurveillance, and then circulate in the peripheral blood with the capability of forming distant metastases. The identification of CTCs in patient blood samples is technically challenging because of the extremely low concentration of CTCs among a large number of hematologic cells. To address this unmet need for rare cell isolation, we have developed substrates using the synergistic effect of nanomaterials and biological immobilization of CTC markers for enhancing CTC capture efficiency during a liquid biopsy procedure. In addition to the pursuit of high-cell-capture yield and specificity from human blood on chips, further vertical integration for the downstream characterization of CTCs is required for future CTC chips, such as liquid biopsy, for achieving a variety of clinical applications. In our approach, we have employed three-dimensional (3D) conducting polymer-based bioelectronic interfaces (BEIs) that can be integrated on electronic devices for rare circulating tumor cell (CTC) isolation, detection, and collection via an electrically triggered cell released from chips.
APA, Harvard, Vancouver, ISO, and other styles
9

Aliyandi, Aldy, Inge S. Zuhorn, and Anna Salvati. "Disentangling Biomolecular Corona Interactions With Cell Receptors and Implications for Targeting of Nanomedicines." Frontiers in Bioengineering and Biotechnology 8 (December 10, 2020). http://dx.doi.org/10.3389/fbioe.2020.599454.

Full text
Abstract:
Nanoparticles are promising tools for nanomedicine in a wide array of therapeutic and diagnostic applications. Yet, despite the advances in the biomedical applications of nanomaterials, relatively few nanomedicines made it to the clinics. The formation of the biomolecular corona on the surface of nanoparticles has been known as one of the challenges toward successful targeting of nanomedicines. This adsorbed protein layer can mask targeting moieties and creates a new biological identity that critically affects the subsequent biological interactions of nanomedicines with cells. Extensive studies have been directed toward understanding the characteristics of this layer of biomolecules and its implications for nanomedicine outcomes at cell and organism levels, yet several aspects are still poorly understood. One aspect that still requires further insights is how the biomolecular corona interacts with and is “read” by the cellular machinery. Within this context, this review is focused on the current understanding of the interactions of the biomolecular corona with cell receptors. First, we address the importance and the role of receptors in the uptake of nanoparticles. Second, we discuss the recent advances and techniques in characterizing and identifying biomolecular corona-receptor interactions. Additionally, we present how we can exploit the knowledge of corona-cell receptor interactions to discover novel receptors for targeting of nanocarriers. Finally, we conclude this review with an outlook on possible future perspectives in the field. A better understanding of the first interactions of nanomaterials with cells, and -in particular -the receptors interacting with the biomolecular corona and involved in nanoparticle uptake, will help for the successful design of nanomedicines for targeted delivery.
APA, Harvard, Vancouver, ISO, and other styles
10

Gabold, Bettina, Friederike Adams, Sophie Brameyer, Kirsten Jung, Christian L. Ried, Thomas Merdan, and Olivia M. Merkel. "Transferrin-modified chitosan nanoparticles for targeted nose-to-brain delivery of proteins." Drug Delivery and Translational Research, October 7, 2022. http://dx.doi.org/10.1007/s13346-022-01245-z.

Full text
Abstract:
AbstractNose-to-brain delivery presents a promising alternative route compared to classical blood–brain barrier passage, especially for the delivery of high molecular weight drugs. In general, macromolecules are rapidly degraded in physiological environment. Therefore, nanoparticulate systems can be used to protect biomolecules from premature degradation. Furthermore, targeting ligands on the surface of nanoparticles are able to improve bioavailability by enhancing cellular uptake due to specific binding and longer residence time. In this work, transferrin-decorated chitosan nanoparticles are used to evaluate the passage of a model protein through the nasal epithelial barrier in vitro. It was demonstrated that strain-promoted azide–alkyne cycloaddition reaction can be utilized to attach a functional group to both transferrin and chitosan enabling a rapid covalent surface-conjugation under mild reaction conditions after chitosan nanoparticle preparation. The intactness of transferrin and its binding efficiency were confirmed via SDS-PAGE and SPR measurements. Resulting transferrin-decorated nanoparticles exhibited a size of about 110–150 nm with a positive surface potential. Nanoparticles with the highest amount of surface bound targeting ligand also displayed the highest cellular uptake into a human nasal epithelial cell line (RPMI 2650). In an air–liquid interface co-culture model with glioblastoma cells (U87), transferrin-decorated nanoparticles showed a faster passage through the epithelial cell layer as well as increased cellular uptake into glioblastoma cells. These findings demonstrate the beneficial characteristics of a specific targeting ligand. With this chemical and technological formulation concept, a variety of targeting ligands can be attached to the surface after nanoparticle formation while maintaining cargo integrity. Graphical abstract
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Nanoparticles, nanomedicine, protein conjugation, cellular targeting"

1

GALBIATI, ELISABETTA. "Investigating the biological activity of proteins immobilized on colloidal nanoparticles." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/52342.

Full text
Abstract:
Currently, nanoparticles (NPs) play an increasing role in biomedical research and clinical applications, thanks to their peculiar optical, physical and chemical properties. A great challenge in nanodiagnostics is the development of new nano-sized devices aimed to optimize the detection of primary cancer cells and metastases. The design of ideal nanoconjugates, containing bioactive ligands specific for targeting cancer cell, requires optimization of fundamental parameters involved in conjugation reactions: both functional conformation and proper orientation must be preserved. This characteristic determines bioactivity, avidity and targeting efficiency of the functionalized NPs. In the context of this thesis, different conjugation strategies were analyzed, focusing on the improvement of the biological activity of the immobilized protein. First of all, trastuzumab-functionalized pegylated iron oxide nanoparticles were synthetized and protein conformation analyzed using FTIR spectroscopy. This technique provides direct evidence of the extent of native structure preservation of the immobilized protein, in dependence of the conjugation strategy. Moreover, the possibility to control the ligand/peptide orientation on the nanoparticle surface is a fundamental step to optimize receptor recognition. An elegant strategy involves the use of fusion proteins containing a small enzyme (defined “capture protein”) capable of irreversibly cross-coupling with a suicide inhibitor anchored to the solid surface. Three different approaches have been analyzed: SNAP (O6-alkylguanine-DNA-transferase), HALO (haloalkane dehalogenase) and cutinase enzymes fused with specific proteins or small peptides for the selective targeting of breast cancer cells. Although targeted therapy with monoclonal antibody, or small portion of these proteins, is a major treatment currently employed in many cancers, the use of short peptides as targeting moieties of tumor receptors have several advantages. The possibility to exploit gold nanoparticles (AuNPs) properties, to form a self-assembled monolayer on AuNPs surfaces, allows to increase ligand-receptor target affinity/recognition. The capability of all these bioconjugation methods to specifically and selectively target breast cancer cells, was confirmed by flow cytometry (FACS), confocal laser scanning microscopy and transmission electron microscopy (TEM).
APA, Harvard, Vancouver, ISO, and other styles
2

Boitard, Charlotte. "Polymères à empreintes de protéines couplés à des nanoparticules magnétiques : de la synthèse aux applications en nanomédecine." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS032.

Full text
Abstract:
Cette thèse porte sur le développement de nanoparticules magnétiques hybrides pour la nanomédecine. Un enjeu majeur est de proposer des solutions innovantes dans le traitement et/ou le diagnostic de certaines pathologies, comme les cancers. Les nanoparticules magnétiques possèdent des propriétés extrêmement intéressantes pour la nanomédecine. Elles peuvent servir à guider magnétiquement un vecteur vers une cible ou à chauffer localement cette cible lorsqu’elles sont soumises à un champ magnétique alternatif. Par ailleurs, l’utilisation de polymères à empreintes de protéines peut permettre de cibler des protéines d’intérêt. L’idée ici est donc de coupler des nanoparticules magnétiques et des polymères à empreintes de protéines (PEP) afin de cibler, détecter et traiter des cellules d’intérêt. Les nano-objets γ-Fe2O3@PEP sont synthétisés en polymérisant un polyacrylamide autour de protéines servant de gabarit, telles que la protéine fluorescente verte ou le complexe de différentiation 44. Les objets obtenus sont composés pour 10 à 30% de PEP, selon la méthode de synthèse. Un ciblage efficace de cellules exprimant ces protéines d’intérêt a été mis en œuvre. Sous champ magnétique alternatif, les protéines sont dénaturées mais les nano-objets γ-Fe2O3@PEP ne se détachent pas des cellules, et seront donc à terme internalisés. Une étude approfondie a montré une absence de toxicité aigüe des objets hybrides, et leur métabolisation dans les lysosomes. Les propriétés de ciblage et d’hyperthermie de γ-Fe2O3@PEP en font donc un bon candidat pour détecter et ralentir le développement de métastases cancéreuses
This thesis focuses on the development of hybrid magnetic nanoparticles for nanomedicine. A major challenge is to propose innovative solutions in the treatment and/or diagnosis of some pathologies, such as cancers. Magnetic nanoparticles are interesting for nanomedicine because they can be employed to magnetically direct a vector toward a target, or locally heat this target when submitted to an alternating magnetic field. Moreover, protein imprinted polymers can be used to selectively target proteins of interest. Thus, the idea of this project is to bind magnetic nanoparticles and protein imprinted polymers (PIP), to propose a new system to target, detect and treat cells of interest. γ-Fe2O3@PIP hybrid nano-objects were synthesized through polymerization of polyacrylamide around template proteins, such as green fluorescent proteins or the glycoproteins CD44. PIP represent less than 30 % of final hybrid nano-objects, which have hydrodynamic diameters smaller than 400 nm, according to the synthetic pathway. Effective targeting of cells displaying these proteins of interest occurred while using γ-Fe2O3@PIP nano-objects. Under an alternating magnetic field, proteins are denatured thanks to magnetic hyperthermia. γ-Fe2O3@PIP particles will not detach themselves from the cell, and will thus be internalized. A further study denoted the absence of an acute cytotoxicity for hybrid nano-objects, which will be metabolized inside lysosomes. Targeting and magnetic hyperthermia properties of γ-Fe2O3@PIP make them ideal candidates to detect cancer metastasis and slow down their development
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography