Academic literature on the topic 'Nanoparticles, Breast Cancer, BOS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanoparticles, Breast Cancer, BOS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nanoparticles, Breast Cancer, BOS"
Carney, Christine P., Nikhil Pandey, Anshika Kapur, Graeme F. Woodworth, Jeffrey A. Winkles, and Anthony J. Kim. "Harnessing nanomedicine for enhanced immunotherapy for breast cancer brain metastases." Drug Delivery and Translational Research 11, no. 6 (October 30, 2021): 2344–70. http://dx.doi.org/10.1007/s13346-021-01039-9.
Full textIdhayadhulla, Akbar, Aseer Manilal, Anis Ahamed, Saud Alarifi, and Gurusamy Raman. "Potato Peels Mediated Synthesis of Cu(II)-nanoparticles from Tyrosinase Reacted with bis-(N-aminoethylethanolamine) (Tyr-Cu(II)-AEEA NPs) and Their Cytotoxicity against Michigan Cancer Foundation-7 Breast Cancer Cell Line." Molecules 26, no. 21 (November 3, 2021): 6665. http://dx.doi.org/10.3390/molecules26216665.
Full textPadayachee, Jananee, and Moganavelli Singh. "Therapeutic applications of CRISPR/Cas9 in breast cancer and delivery potential of gold nanomaterials." Nanobiomedicine 7 (January 1, 2020): 184954352098319. http://dx.doi.org/10.1177/1849543520983196.
Full textOdeyemi, Samuel Wale, and Anthony Jide Afolayan. "Characterization and Cytotoxicity Evaluation of Biologically Synthesized Silver Nanoparticles from Albuca setosa Aqueous Bulb Extract." International Journal of Nanoscience 18, no. 02 (January 30, 2019): 1850023. http://dx.doi.org/10.1142/s0219581x18500230.
Full textBondon, Nicolas, Denis Durand, Kamel Hadj-Kaddour, Lamiaa M. A. Ali, Rabah Boukherroub, Nadir Bettache, Magali Gary-Bobo, et al. "Photosensitivity of Different Nanodiamond–PMO Nanoparticles in Two-Photon-Excited Photodynamic Therapy." Life 12, no. 12 (December 7, 2022): 2044. http://dx.doi.org/10.3390/life12122044.
Full textKarakatsanis, A., K. Daskalakis, P. Stålberg, H. Olofsson, Y. Andersson, S. Eriksson, L. Bergkvist, and F. Wärnberg. "Superparamagnetic iron oxide nanoparticles as the sole method for sentinel node biopsy detection in patients with breast cancer." British Journal of Surgery 104, no. 12 (September 6, 2017): 1675–85. http://dx.doi.org/10.1002/bjs.10606.
Full textKutwin, Marta, Ewa Sawosz, Sławomir Jaworski, Mateusz Wierzbicki, Barbara Strojny, Marta Grodzik, Malwina Ewa Sosnowska, Maciej Trzaskowski, and André Chwalibog. "Nanocomplexes of Graphene Oxide and Platinum Nanoparticles against Colorectal Cancer Colo205, HT-29, HTC-116, SW480, Liver Cancer HepG2, Human Breast Cancer MCF-7, and Adenocarcinoma LNCaP and Human Cervical Hela B Cell Lines." Materials 12, no. 6 (March 19, 2019): 909. http://dx.doi.org/10.3390/ma12060909.
Full textRiley, Rachel, Rachel O’Sullivan, Andrea Potocny, Joel Rosenthal, and Emily Day. "Evaluating Nanoshells and a Potent Biladiene Photosensitizer for Dual Photothermal and Photodynamic Therapy of Triple Negative Breast Cancer Cells." Nanomaterials 8, no. 9 (August 25, 2018): 658. http://dx.doi.org/10.3390/nano8090658.
Full textChiu, Hock Ing, Che Nurul Azieyan Che Mood, Nur Nadhirah Mohamad Zain, Muggundha Raoov Ramachandran, Noorfatimah Yahaya, Nik Nur Syazni Nik Mohamed Kamal, Wai Hau Tung, Yoke Keong Yong, Chee Keong Lee, and Vuanghao Lim. "Biogenic Silver Nanoparticles of Clinacanthus nutans as Antioxidant with Antimicrobial and Cytotoxic Effects." Bioinorganic Chemistry and Applications 2021 (May 13, 2021): 1–11. http://dx.doi.org/10.1155/2021/9920890.
Full textKoppiker, Chaitanyanand B., Santosh Dixit, Aijaz Ul Noor, Laleh Busheri, Gail Lebovic, Gautam Sharan, Upendra Dhar, and Smeeta Nare. "Breast Oncoplasty Surgery in Low- and Middle-Income Countries: Lessons From India." Journal of Global Oncology 4, Supplement 3 (October 2018): 22s. http://dx.doi.org/10.1200/jgo.18.10250.
Full textDissertations / Theses on the topic "Nanoparticles, Breast Cancer, BOS"
PANDOLFI, LAURA. "Investigating the effects of drug-loaded nanoparticles on the cellular behavior of proliferative diseases." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/101974.
Full textHe, Felicia Jane. "Targeting Metastatic Breast Cancer Using Dual-Ligand Nanoparticles." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1499699087340348.
Full textCOLOMBO, MIRIAM. "Synthesis and biofunctionalization of nanoparticles for breast cancer diagnosis and treatment." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2012. http://hdl.handle.net/10281/28928.
Full textSebak, Safaa. "Novel nanoparticles for breast cancer targeted delivery: preparation and in vitro characterization." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86928.
Full textSuivant le cancer des poumons, le cancer du sein est le deuxième type de cancer le plus répandu et commun à travers le monde. C'est la cinquième cause de décès du à un cancer. Certes, il est le cancer le plus commun parmi les femmes, ayant un double taux d'incidence à ceux du cancer du colon et cancer du col de l'utérus, et triple à celui des poumons. Dans cette dissertation, une drogue carrière qui combine les anticorps trastuzumab et la drogue noscapine, a été conçue et évaluée pour être utilisée dans le traitement du cancer du sein. Des études « in vitro » ont étés conduites pour comparer différents crosslinkers dans la méthode de préparation des nanoparticules chargées de cette drogue. De plus, l'efficacité de nanoparticules chargées de drogues a été évaluée au niveau des cellules du cancer de sein. L'objectif de cette étude est le développement d'une procédure coacervation pour la préparation et la caractérisation in vitro des nanoparticules HSA sous un aspect d'une taille contrôlée, en combinaison d'une distribution mono dispersée. Leur propriétés sont donc étudiés pour la délivrance optimale, prudente et efficace de drogues anti-cancer. Les résultats prouvent que les nanoparticules chargées de noscapine qui contiennent l'anticorps trastuzumab peuvent être une méthode alternative pour le traitement du cancer du sein ainsi que d'autres applications biomédicales. Des études "in-vivo" plus profondes sont recommanés pour évaluer leur potentiel maximum. Ce travail mets en valeur le potentiel des trastuzumab-modifié nanoparticules charges de noscapine reliés avec du genipin ou du glutaraldehyde comme un system de drogue conçu pour la thérapie du cancer du sein. fr
Johnson, Laura. "Magnetic nanoparticles for sentinel lymph node imaging and biopsy in breast cancer." Thesis, King's College London (University of London), 2012. https://kclpure.kcl.ac.uk/portal/en/theses/magnetic-nanoparticles-for-sentinel-lymph-node-imaging-and-biopsy-in-breast-cancer(978692de-a495-4df1-ac0f-303227bed0dd).html.
Full textRAINONE, PAOLO. "99MTC-RADIOLABELED NANOPARTICLES FOR TARGETED DETECTION AND TREATMENT OF HER2-POSITIVE BREAST CANCER." Doctoral thesis, Università degli Studi di Milano, 2020. http://hdl.handle.net/2434/701981.
Full textAllard, Garvin Richard Johan. "Synthesis and characterization of zinc-doped magnetic nanoparticles for diagnostic studies." University of the Western Cape, 2015. http://hdl.handle.net/11394/4815.
Full textIn the present study we report the synthesis and characterization of iron oxide magnetic nanoparticles doped with zinc in an attempt to enhance the magnetic properties. The nanoparticles were prepared via the co-precipitation route and capped with 3-phosphonopropionic acid (3-PPA). The amount of zinc dopant was varied to yield nanoparticles with the general formula ZnxFe3-xO4 (x=0, 0.1, 0.2, 0.3, 0.4). Characterization was carried out using high resolution transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and superconducting quantum interference device (SQUID) analysis. Results from HRTEM, XRD and SQUID confirm that doping took place and x=0.2 was found to be the doping limit for these nanoparticles with a maximum size of 10.73 nm and saturation magnetization of 73.37 emu/g. The EDS further confirmed successful doping with zinc, while FTIR and TGA confirmed successful capping with 3-PPA. Despite agglomeration at all doping levels, these nanoparticles show great potential for application in breast cancer diagnostic studies.
BELLINI, MICHELA. "Development of apoferritin nanoparticles for chemotherapeutic delivery and drug resistance overcoming in breast cancer models." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2017. http://hdl.handle.net/10281/158296.
Full textCancer is a leading cause of disease worldwide and breast cancer, which exists in four major molecular subtypes, is the second most common cause of cancer mortality. Although there are many therapeutic options, chemotherapy is still subject to failures, due to (1) the low selectivity of drugs, which requires high doses with side effects and the risk of recurrence and (2) the development of resistance by different mechanisms that cells put in place to defend themselves from the action of drugs. In my PhD project I exploited the unique features of a nanoparticle based on recombinant heavy-chain ferritin cages (HFn) for the targeted delivery of various active molecules to improve the treatment efficacy in breast cancer. My work is divided into three main subprojects, all sharing the use of HFn. Initially, I exploited HFn nanocages for the encapsulation of a chemotherapeutic drug, doxorubicin (DOX). HFn-DOX acts as a “Trojan Horse”: nanoparticles are internalized in cancer cells faster and more efficiently compared to free DOX, then promptly translocated into the nucleus with a self-triggered mechanism, thus promoting a fast and massive delivery of the drug inside the nuclear compartment, strongly affecting viability and circumventing MDR mechanisms. Then, I tested HFn-DOX on an aggressive breast cancer model, in vitro and in vivo, under a Low Dose Nanometronomic regimen (LDNM). Metronomic HFn-DOX strongly improved the antitumor potential of DOX chemotherapy arresting the tumor progression. Such effect is attributable to multiple nanodrug actions, including inhibition of tumor angiogenesis and avoidance of chemoresistance. Moreover, metronomic HFn-DOX drastically reduced cardiotoxicity. In the second project, curcumin was encapsulated in HFn (CFn) and used to treat triple negative breast cancer (TNBC) cell lines. Curcumin is a natural anti tumor compound, but is rapidly degraded and scantily bioavailable. CFn had instead good stability and solubility and was able to enhance the sensitization of TNBC cells to DOX treatment. Finally, HFn was used as a vehicle to transport anti-microRNAs, since miR21 plays a role in the development of resistance against Trastuzumab (TZ), the treatment of choice for HER2 positive breast cancer. The major limiting factor in gene therapy is the ability to specifically deliver nucleotide sequences: however, anti-miR21 cross-linked to HFn, was released into the cytoplasm. Based on our results, ferritin is an effective system for the delivery of anti-tumor molecules, promoting their chemotherapic action and/or overcoming the problem of resistance that limits the effectiveness of many therapies.
Weng-Jiang, Xian. "Aqueous in-flow synthesis of T1 enhancing iron oxide nanoparticles for breast cancer theranostics." Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/10040653/.
Full textKennell, Carly M. "Synthesis and Characterization of Hybrid Co-Delivery Nanoparticles for Triple Negative Breast Cancer Treatment." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1470741290.
Full textBook chapters on the topic "Nanoparticles, Breast Cancer, BOS"
Riaz, Ramish, and Abdullah Ahmad. "Nanoparticles: Emerging Diagnostic and Therapeutic Agents for Breast Cancer Treatment." In Breast Cancer: From Bench to Personalized Medicine, 453–76. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0197-3_19.
Full textSun, Bing Feng, and Si Shen Feng. "Trastuzumab Decorated Nanoparticles for Targeted Chemotherapy of Breast Cancer." In Advances in Science and Technology, 160–65. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908158-14-1.160.
Full textSilva, J. G., J. Maldonado, J. S. Tapia, N. E. Herrera, S. M. Polo, S. G. Martínez, and C. A. González. "Selective Targeting of Breast Cancer Cells MCF-7 by Ferromagnetic Nanoparticles." In V Latin American Congress on Biomedical Engineering CLAIB 2011 May 16-21, 2011, Habana, Cuba, 983–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-21198-0_250.
Full textRammelkamp, Derek, Weiyi Li, and Yizhi Meng. "Intracellular Delivery of Fluorescently Labeled Polysaccharide Nanoparticles to Cultured Breast Cancer Cells." In Methods in Molecular Biology, 289–302. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3444-7_24.
Full textDe Silva, Leanne, Bey-Hing Goh, Learn-Han Lee, and Lay-Hong Chuah. "Curcumin-Loaded Nanoparticles and Their Potential as Anticancer Agents in Breast Cancer." In Natural Bio-active Compounds, 147–78. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7205-6_7.
Full textHarini, Lakshminarasimhan, Karthikeyan Bose, T. Mohan Viswanathan, Nachimuthu Senthil Kumar, Krishnan Sundar, and Thandavarayan Kathiresan. "Mesoporous Silica Nanoparticles Are Nanocarrier for Drug Loading and Induces Cell Death in Breast Cancer." In Environmental Chemistry for a Sustainable World, 225–45. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77795-1_8.
Full textAhmad, Rozaina, Noor Haida Mohd Kaus, and Shahrul Hamid. "Synthesis and Characterization of PLGA-PEG Thymoquinone Nanoparticles and Its Cytotoxicity Effects in Tamoxifen-Resistant Breast Cancer Cells." In Advances in Experimental Medicine and Biology, 65–82. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/5584_2018_302.
Full textFinas, Dominique, Kristin Baumann, Katja Heinrich, Britta Ruhland, Lotta Sydow, Ksenija Gräfe, Timo Sattel, Kerstin Lüdtke-Buzug, and Thorsten Buzug. "Distribution of Superparamagnetic Nanoparticles in Lymphatic Tissue for Sentinel Lymph Node Detection in Breast Cancer by Magnetic Particle Imaging." In Springer Proceedings in Physics, 187–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24133-8_30.
Full textSowmiya, R., Tanakorn Osotchan, and Dakrong Pissuwan. "The Impact of Gold Nanoparticles with Low Energy Irradiation Treatment on Temperature Induction and Cell Viability of Breast Cancer Cell." In Proceedings of the International Conference on Nanomedicine (ICON-2019), 86–93. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25135-2_9.
Full textKhosroshahi, M. E., M. Tajabadi, Sh Bonakdar, and V. Asgari. "Synthesis and Characterization of SPION Functionalized third Generation dendrimers Conjugated by Gold Nanoparticles and Folic acid for Targeted Breast Cancer Laser Hyperthermia: An Invitro-assay." In IFMBE Proceedings, 823–26. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19387-8_201.
Full textConference papers on the topic "Nanoparticles, Breast Cancer, BOS"
Natarajan, Arutselvan, Senthil K. Venugopal, Sally J. DeNardo, and Mark A. Zern. "Breast cancer targeting novel microRNA-nanoparticles for imaging." In SPIE BiOS: Biomedical Optics, edited by Fred S. Azar and Xavier Intes. SPIE, 2009. http://dx.doi.org/10.1117/12.812186.
Full textXu, Guoqiang, Qiaoya Lin, Lichao Lian, Yuan Qian, Lisen Lu, and Zhihong Zhang. "CT/FMT dual-model imaging of breast cancer based on peptide-lipid nanoparticles." In SPIE BiOS, edited by Wei R. Chen. SPIE, 2016. http://dx.doi.org/10.1117/12.2214270.
Full textVivero-Escoto, Juan L., Laura Moore Jeffords, Didier Dréau, Merlis Alvarez-Berrios, and Pinku Mukherjee. "Mucin1 antibody-conjugated dye-doped mesoporous silica nanoparticles for breast cancer detection in vivo." In SPIE BiOS, edited by Marek Osiński, Wolfgang J. Parak, and Xing-Jie Liang. SPIE, 2017. http://dx.doi.org/10.1117/12.2252369.
Full textTate, Jennifer A., Mark D. Savellano, and P. Jack Hoopes. "Biodistribution and imaging of fluorescently-tagged iron oxide nanoparticles in a breast cancer mouse model." In SPIE BiOS, edited by Thomas P. Ryan. SPIE, 2013. http://dx.doi.org/10.1117/12.2007607.
Full textTate, Jennifer A., Warren Kett, Christian NDong, Karl E. Griswold, and P. Jack Hoopes. "Biodistribution of antibody-targeted and non-targeted iron oxide nanoparticles in a breast cancer mouse model." In SPIE BiOS, edited by Thomas P. Ryan. SPIE, 2013. http://dx.doi.org/10.1117/12.2008814.
Full textXie, X., W. Deng, M. Yang, J. Tang, X. Wang, W. Wei, Z. Xie, et al. "“VISA” Nanoparticles to Breast Cancer." In Abstracts: Thirty-Second Annual CTRC‐AACR San Antonio Breast Cancer Symposium‐‐ Dec 10‐13, 2009; San Antonio, TX. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/0008-5472.sabcs-09-5159.
Full textde Souza Braga, Marina, Gabriela Correa Carvalho, Kamal Dua, Gaurav Gupta, Adriano Oliveira, Natalia Cerize, and Terezinha J. A. Pinto. "Idarubicin Loaded Nanoparticles for Breast Cancer." In The 3rd World Congress on Recent Advances in Nanotechnology. Avestia Publishing, 2018. http://dx.doi.org/10.11159/nddte18.119.
Full textGhiciuc, Cristina Mihaela, Loredana Beatrice Ungureanu, Raluca Stefania Stanescu, and Raoul Vasile Lupusoru. "Nanoparticles in the Therapy of Breast Cancer." In 2019 E-Health and Bioengineering Conference (EHB). IEEE, 2019. http://dx.doi.org/10.1109/ehb47216.2019.8970021.
Full textUrdaneta, Maryory, and Parveen Wahid. "Enhancing hyperthermia treatment for breast cancer using nanoparticles." In 2013 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2013. http://dx.doi.org/10.1109/aps.2013.6711680.
Full textRonchi, Silvia, Miriam Colombo, Paolo Verderio, Serena Mazzucchelli, Fabio Corsi, Clara De Palma, Raffaele Allevi, Emilio Clementi, Davide Prosperi, and Elisabetta Borsella. "Magnetofluorescent nanoparticles for bimodal detection of breast cancer cells." In BONSAI PROJECT SYMPOSIUM: BREAKTHROUGHS IN NANOPARTICLES FOR BIO-IMAGING. AIP, 2010. http://dx.doi.org/10.1063/1.3505055.
Full textReports on the topic "Nanoparticles, Breast Cancer, BOS"
Yang, Shanmin. Targeting of Breast Cancer with Triptolide Nanoparticles. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada441278.
Full textVishwanatha, Jamboor. Breast Cancer Therapy With Annexin 11 Nanoparticles. Fort Belvoir, VA: Defense Technical Information Center, May 2006. http://dx.doi.org/10.21236/ada457045.
Full textSuh, Junghae. Targeted Virus Nanoparticles for Localized Chemotherapy of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, October 2010. http://dx.doi.org/10.21236/ada538233.
Full textPanchapakesan, Balaji. Applications of Nanoparticles/Nanowires and Carbon Nanotubes for Breast Cancer Research. Fort Belvoir, VA: Defense Technical Information Center, September 2004. http://dx.doi.org/10.21236/ada431597.
Full textJo, Seongbong, Han-Joung Cho, Jung-Eun Base, and Vivek K. Garripelli. Hypoxia-sensitive, Multifunctional Nanoparticles for Targeted Drug Delivery to Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada567915.
Full textAdams, Gregory P. Radiopaque, Tumor-Targeted Nanoparticles for Improved Mammographic Detection of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, August 2007. http://dx.doi.org/10.21236/ada474676.
Full textHalas, Naomi J. Seamless Integration of Detection and Therapy for Breast Cancer Using Targeted Engineered Nanoparticles. Fort Belvoir, VA: Defense Technical Information Center, June 2005. http://dx.doi.org/10.21236/ada446343.
Full textBand, Hamid, Srikumar Raja, and Tatiana Bronich. Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, February 2013. http://dx.doi.org/10.21236/ada577110.
Full textBronich, Tatiana, Hamid Band, and Srikumar Raja. Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, February 2013. http://dx.doi.org/10.21236/ada580965.
Full textBand, Hamid, and Tatiana Bronich. Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, February 2014. http://dx.doi.org/10.21236/ada599969.
Full text