To see the other types of publications on this topic, follow the link: Nanoparticle Superlattices.

Journal articles on the topic 'Nanoparticle Superlattices'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Nanoparticle Superlattices.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ross, Michael B., Jessie C. Ku, Martin G. Blaber, Chad A. Mirkin, and George C. Schatz. "Defect tolerance and the effect of structural inhomogeneity in plasmonic DNA-nanoparticle superlattices." Proceedings of the National Academy of Sciences 112, no. 33 (August 3, 2015): 10292–97. http://dx.doi.org/10.1073/pnas.1513058112.

Full text
Abstract:
Bottom-up assemblies of plasmonic nanoparticles exhibit unique optical effects such as tunable reflection, optical cavity modes, and tunable photonic resonances. Here, we compare detailed simulations with experiment to explore the effect of structural inhomogeneity on the optical response in DNA-gold nanoparticle superlattices. In particular, we explore the effect of background environment, nanoparticle polydispersity (>10%), and variation in nanoparticle placement (∼5%). At volume fractions less than 20% Au, the optical response is insensitive to particle size, defects, and inhomogeneity in the superlattice. At elevated volume fractions (20% and 25%), structures incorporating different sized nanoparticles (10-, 20-, and 40-nm diameter) each exhibit distinct far-field extinction and near-field properties. These optical properties are most pronounced in lattices with larger particles, which at fixed volume fraction have greater plasmonic coupling than those with smaller particles. Moreover, the incorporation of experimentally informed inhomogeneity leads to variation in far-field extinction and inconsistent electric-field intensities throughout the lattice, demonstrating that volume fraction is not sufficient to describe the optical properties of such structures. These data have important implications for understanding the role of particle and lattice inhomogeneity in determining the properties of plasmonic nanoparticle lattices with deliberately designed optical properties.
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Jiaming, Rongjuan Liu, Zhijie Yang, and Jingjing Wei. "Folding of two-dimensional nanoparticle superlattices enabled by emulsion-confined supramolecular co-assembly." Chemical Communications 58, no. 23 (2022): 3819–22. http://dx.doi.org/10.1039/d2cc00330a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Prasad, B. L. V., C. M. Sorensen, and Kenneth J. Klabunde. "Gold nanoparticle superlattices." Chemical Society Reviews 37, no. 9 (2008): 1871. http://dx.doi.org/10.1039/b712175j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Radha, Boya, Andrew J. Senesi, Matthew N. O’Brien, Mary X. Wang, Evelyn Auyeung, Byeongdu Lee, and Chad A. Mirkin. "Reconstitutable Nanoparticle Superlattices." Nano Letters 14, no. 4 (March 18, 2014): 2162–67. http://dx.doi.org/10.1021/nl500473t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Park, Daniel J., Jessie C. Ku, Lin Sun, Clotilde M. Lethiec, Nathaniel P. Stern, George C. Schatz, and Chad A. Mirkin. "Directional emission from dye-functionalized plasmonic DNA superlattice microcavities." Proceedings of the National Academy of Sciences 114, no. 3 (January 4, 2017): 457–61. http://dx.doi.org/10.1073/pnas.1619802114.

Full text
Abstract:
Three-dimensional plasmonic superlattice microcavities, made from programmable atom equivalents comprising gold nanoparticles functionalized with DNA, are used as a testbed to study directional light emission. DNA-guided nanoparticle colloidal crystallization allows for the formation of micrometer-scale single-crystal body-centered cubic gold nanoparticle superlattices, with dye molecules coupled to the DNA strands that link the particles together, in the form of a rhombic dodecahedron. Encapsulation in silica allows one to create robust architectures with the plasmonically active particles and dye molecules fixed in space. At the micrometer scale, the anisotropic rhombic dodecahedron crystal habit couples with photonic modes to give directional light emission. At the nanoscale, the interaction between the dye dipoles and surface plasmons can be finely tuned by coupling the dye molecules to specific sites of the DNA particle-linker strands, thereby modulating dye–nanoparticle distance (three different positions are studied). The ability to control dye position with subnanometer precision allows one to systematically tune plasmon–excition interaction strength and decay lifetime, the results of which have been supported by electrodynamics calculations that span length scales from nanometers to micrometers. The unique ability to control surface plasmon/exciton interactions within such superlattice microcavities will catalyze studies involving quantum optics, plasmon laser physics, strong coupling, and nonlinear phenomena.
APA, Harvard, Vancouver, ISO, and other styles
6

Кособукин, В. А. "Спектроскопия плазмон-экситонов в наноструктурах полупроводник-металл." Физика твердого тела 60, no. 8 (2018): 1606. http://dx.doi.org/10.21883/ftt.2018.08.46256.18gr.

Full text
Abstract:
AbstractThe results of the theory considering mixed plasmon-excitonic modes and their spectroscopy are presented. The plasmon-excitons are formed owing to strong Coulomb coupling between quasi-two-dimensional excitons of a quantum well and dipole plasmons of nanoparticles. The effective polarizability associated with a nanoparticle is calculated in a self-consistent approximation taking into account the local field determined by in-layer dipole plasmons and their image charges due to the excitonic polarization of a near quantum well. The spectra of elastic scattering and specular reflection of light are investigated in cases of a single silver nanoparticle and a monolayer of such particles situated in close proximity to a quantum well GaAs/AlGaAs. The optical spectra show a two-peak structure with a deep and narrow dip in the resonant range of plasmon-excitons. Propagation of plasmon-excitonic polaritons is discussed for periodic superlattices whose unit cell consists of a quantum well and a layer of metal nanoparticles. The superradiance regime originating in the Bragg diffraction of plasmon-excitonic polaritons by the superlattice is investigated. It is shown that the broad spectrum of plasmonic reflection depending on the number of unit cells in a superlattice also has a narrow dip at the exciton frequency.
APA, Harvard, Vancouver, ISO, and other styles
7

Podsiadlo, Paul, Galyna V. Krylova, Arnaud Demortière, and Elena V. Shevchenko. "Multicomponent periodic nanoparticle superlattices." Journal of Nanoparticle Research 13, no. 1 (December 31, 2010): 15–32. http://dx.doi.org/10.1007/s11051-010-0174-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nishida, Naoki, Edakkattuparambil S. Shibu, Hiroshi Yao, Tsugao Oonishi, Keisaku Kimura, and Thalappil Pradeep. "Fluorescent Gold Nanoparticle Superlattices." Advanced Materials 20, no. 24 (December 16, 2008): 4719–23. http://dx.doi.org/10.1002/adma.200800632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shevchenko, E. V., J. Kortright, D. V. Talapin, S. Aloni, and A. P. Alivisatos. "Quasi-ternary Nanoparticle Superlattices Through Nanoparticle Design." Advanced Materials 19, no. 23 (December 3, 2007): 4183–88. http://dx.doi.org/10.1002/adma.200701470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ouyang, Tianhao, Arash Akbari-Sharbaf, Jaewoo Park, Reg Bauld, Michael G. Cottam, and Giovanni Fanchini. "Self-assembled metallic nanoparticle superlattices on large-area graphene thin films: growth and evanescent waveguiding properties." RSC Advances 5, no. 120 (2015): 98814–21. http://dx.doi.org/10.1039/c5ra22052a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Mehdizadeh Taheri, Sara, Steffen Fischer, and Stephan Förster. "Routes to Nanoparticle-Polymer Superlattices." Polymers 3, no. 2 (March 24, 2011): 662–73. http://dx.doi.org/10.3390/polym3020662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kostiainen, Mauri A. "Protein cage directed nanoparticle superlattices." Acta Crystallographica Section A Foundations and Advances 77, a2 (August 14, 2021): C339. http://dx.doi.org/10.1107/s0108767321093466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Macfarlane, R. J., M. R. Jones, B. Lee, E. Auyeung, and C. A. Mirkin. "Topotactic Interconversion of Nanoparticle Superlattices." Science 341, no. 6151 (August 22, 2013): 1222–25. http://dx.doi.org/10.1126/science.1241402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Liu, W., M. Tagawa, H. L. Xin, T. Wang, H. Emamy, H. Li, K. G. Yager, F. W. Starr, A. V. Tkachenko, and O. Gang. "Diamond family of nanoparticle superlattices." Science 351, no. 6273 (February 4, 2016): 582–86. http://dx.doi.org/10.1126/science.aad2080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zhang, Honghu, Wenjie Wang, Surya Mallapragada, Alex Travesset, and David Vaknin. "Macroscopic and tunable nanoparticle superlattices." Nanoscale 9, no. 1 (2017): 164–71. http://dx.doi.org/10.1039/c6nr07136h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Faisal, Rina Muhammad. "Langmuir‐Blodgett Assembly to order Nanoparticles and Colloidal Objects." British Journal of Multidisciplinary and Advanced Studies 3, no. 2 (November 4, 2022): 1–5. http://dx.doi.org/10.37745/bjmas.2022.0034.

Full text
Abstract:
Bottom-up assembly of nanoparticles and colloidal objects pose a formidable challenge when processing devices. Speed, compatibility with various materials, defect tolerance and cost effectiveness are among the desired properties of a suitable nanoscale assembly process. In this regard, the Langmuir‐Blodgett (LB) technique is a highly sought-after candidate which aids in arranging a large number of nanostructures on solid surfaces. This mini-review aims to provide a concise account on the LB technique and four distinct ways of how it allows to assemble systems made of nanoparticles and colloidal objects: namely, close-packed nanoparticle superlattices by compression, micrometer scale nanoparticle fingering patterns by dip coating, single nanoparticle lines by stick-slip deposition and one-step patterning of aligned nanowire arrays.
APA, Harvard, Vancouver, ISO, and other styles
17

Mao, Runfang, Evan Pretti, and Jeetain Mittal. "Temperature-Controlled Reconfigurable Nanoparticle Binary Superlattices." ACS Nano 15, no. 5 (May 3, 2021): 8466–73. http://dx.doi.org/10.1021/acsnano.0c10874.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Santos, Peter J., Paul A. Gabrys, Leonardo Z. Zornberg, Margaret S. Lee, and Robert J. Macfarlane. "Macroscopic materials assembled from nanoparticle superlattices." Nature 591, no. 7851 (March 24, 2021): 586–91. http://dx.doi.org/10.1038/s41586-021-03355-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Qi, Limin. "Nonclassical crystallization pathways of nanoparticle superlattices." Chinese Science Bulletin 65, no. 5 (February 1, 2020): 329–30. http://dx.doi.org/10.1360/tb-2019-0789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Carvajal, Joan J. "Quasicrystalline Order Revealed in Nanoparticle Superlattices." MRS Bulletin 34, no. 12 (December 2009): 892. http://dx.doi.org/10.1557/mrs2009.203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Shevchenko, Elena V., Dmitri V. Talapin, Nicholas A. Kotov, Stephen O'Brien, and Christopher B. Murray. "Structural diversity in binary nanoparticle superlattices." Nature 439, no. 7072 (January 2006): 55–59. http://dx.doi.org/10.1038/nature04414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Talapin, Dmitri V., Elena V. Shevchenko, Christopher B. Murray, Alexey V. Titov, and Petr Král. "Dipole−Dipole Interactions in Nanoparticle Superlattices." Nano Letters 7, no. 5 (May 2007): 1213–19. http://dx.doi.org/10.1021/nl070058c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Rigby, Pauline. "New building blocks for nanoparticle superlattices." Materials Today 11, no. 1-2 (January 2008): 13. http://dx.doi.org/10.1016/s1369-7021(07)70343-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Sealy, Cordelia. "Nanoparticle superlattices shape-up under pressure." Materials Today 11, no. 11 (November 2008): 15. http://dx.doi.org/10.1016/s1369-7021(08)70233-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Mazid, Romiza R., Kae Jye Si, and Wenlong Cheng. "DNA based strategy to nanoparticle superlattices." Methods 67, no. 2 (May 2014): 215–26. http://dx.doi.org/10.1016/j.ymeth.2014.01.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kahn, Jason S., Brian Minevich, and Oleg Gang. "Three-dimensional DNA-programmable nanoparticle superlattices." Current Opinion in Biotechnology 63 (June 2020): 142–50. http://dx.doi.org/10.1016/j.copbio.2019.12.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Olichwer, Natalia, Andreas Meyer, Mazlum Yesilmen, and Tobias Vossmeyer. "Gold nanoparticle superlattices: correlating chemiresistive responses with analyte sorption and swelling." Journal of Materials Chemistry C 4, no. 35 (2016): 8214–25. http://dx.doi.org/10.1039/c6tc02412b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Julin, Sofia, Antti Korpi, Nonappa Nonappa, Boxuan Shen, Ville Liljeström, Olli Ikkala, Adrian Keller, Veikko Linko, and Mauri A. Kostiainen. "DNA origami directed 3D nanoparticle superlattice via electrostatic assembly." Nanoscale 11, no. 10 (2019): 4546–51. http://dx.doi.org/10.1039/c8nr09844a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lin, Qing-Yuan, Jarad A. Mason, Zhongyang Li, Wenjie Zhou, Matthew N. O’Brien, Keith A. Brown, Matthew R. Jones, et al. "Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly." Science 359, no. 6376 (January 18, 2018): 669–72. http://dx.doi.org/10.1126/science.aaq0591.

Full text
Abstract:
DNA programmable assembly has been combined with top-down lithography to construct superlattices of discrete, reconfigurable nanoparticle architectures on a gold surface over large areas. Specifically, the assembly of individual colloidal plasmonic nanoparticles with different shapes and sizes is controlled by oligonucleotides containing “locked” nucleic acids and confined environments provided by polymer pores to yield oriented architectures that feature tunable arrangements and independently controllable distances at both nanometer- and micrometer-length scales. These structures, which would be difficult to construct by other common assembly methods, provide a platform to systematically study and control light-matter interactions in nanoparticle-based optical materials. The generality and potential of this approach are explored by identifying a broadband absorber with a solvent polarity response that allows dynamic tuning of visible light absorption.
APA, Harvard, Vancouver, ISO, and other styles
30

Olichwer, Natalia, Tönjes Koschine, Andreas Meyer, Werner Egger, Klaus Rätzke, and Tobias Vossmeyer. "Gold nanoparticle superlattices: structure and cavities studied by GISAXS and PALS." RSC Advances 6, no. 114 (2016): 113163–72. http://dx.doi.org/10.1039/c6ra24241c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Sun, Lin, Haixin Lin, Kevin L. Kohlstedt, George C. Schatz, and Chad A. Mirkin. "Design principles for photonic crystals based on plasmonic nanoparticle superlattices." Proceedings of the National Academy of Sciences 115, no. 28 (June 25, 2018): 7242–47. http://dx.doi.org/10.1073/pnas.1800106115.

Full text
Abstract:
Photonic crystals have been widely studied due to their broad technological applications in lasers, sensors, optical telecommunications, and display devices. Typically, photonic crystals are periodic structures of touching dielectric materials with alternating high and low refractive indices, and to date, the variables of interest have focused primarily on crystal symmetry and the refractive indices of the constituent materials, primarily polymers and semiconductors. In contrast, finite difference time domain (FDTD) simulations suggest that plasmonic nanoparticle superlattices with spacer groups offer an alternative route to photonic crystals due to the controllable spacing of the nanoparticles and the high refractive index of the lattices, even far away from the plasmon frequency where losses are low. Herein, the stopband features of 13 Bravais lattices are characterized and compared, resulting in paradigm-shifting design principles for photonic crystals. Based on these design rules, a simple cubic structure with an ∼130-nm lattice parameter is predicted to have a broad photonic stopband, a property confirmed by synthesizing the structure via DNA programmable assembly and characterizing it by reflectance measurements. We show through simulation that a maximum reflectance of more than 0.99 can be achieved in these plasmonic photonic crystals by optimizing the nanoparticle composition and structural parameters.
APA, Harvard, Vancouver, ISO, and other styles
32

Zhang, Fenghua, Jingjing Wei, and Zhijie Yang. "Nanoparticle superlattices enabled by soft epitaxial strategy." SCIENTIA SINICA Chimica 51, no. 6 (May 19, 2021): 751–60. http://dx.doi.org/10.1360/ssc-2021-0014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Cheng, Ho Fung, Max E. Distler, Byeongdu Lee, Wenjie Zhou, Steven Weigand, and Chad A. Mirkin. "Nanoparticle Superlattices through Template-Encoded DNA Dendrimers." Journal of the American Chemical Society 143, no. 41 (October 11, 2021): 17170–79. http://dx.doi.org/10.1021/jacs.1c07858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lewis, Diana J., Leonardo Z. Zornberg, David J. D. Carter, and Robert J. Macfarlane. "Single-crystal Winterbottom constructions of nanoparticle superlattices." Nature Materials 19, no. 7 (March 16, 2020): 719–24. http://dx.doi.org/10.1038/s41563-020-0643-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Li, Jun, Yiliguma Yiliguma, Yifei Wang, and Gengfeng Zheng. "Carbon-coated nanoparticle superlattices for energy applications." Nanoscale 8, no. 30 (2016): 14359–68. http://dx.doi.org/10.1039/c6nr03243e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Labastide, Joelle A., Mina Baghgar, Irene Dujovne, Yipeng Yang, Anthony D. Dinsmore, Bobby G. Sumpter, Dhandapani Venkataraman, and Michael D. Barnes. "Polymer Nanoparticle Superlattices for Organic Photovoltaic Applications." Journal of Physical Chemistry Letters 2, no. 24 (November 30, 2011): 3085–91. http://dx.doi.org/10.1021/jz2012275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Li, Wenbin, Hongyou Fan, and Ju Li. "Deviatoric Stress-Driven Fusion of Nanoparticle Superlattices." Nano Letters 14, no. 9 (August 7, 2014): 4951–58. http://dx.doi.org/10.1021/nl5011977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

wu, J., G. Liu, E. Auyeung, J. Cutler, R. Macfarlane, M. Jones, K. Zhang, K. Osberg, C. Mirkin, and V. Dravid. "Electron tomography of DNA-linked nanoparticle superlattices." Microscopy and Microanalysis 18, S2 (July 2012): 1646–47. http://dx.doi.org/10.1017/s1431927612010082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Travesset, A. "Topological structure prediction in binary nanoparticle superlattices." Soft Matter 13, no. 1 (2017): 147–57. http://dx.doi.org/10.1039/c6sm00713a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kurelchuk, U. N., P. V. Borisyuk, and O. S. Vasilyev. "Electron properties of 13-atom nanoparticle superlattices." Materials Letters 262 (March 2020): 127100. http://dx.doi.org/10.1016/j.matlet.2019.127100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Zornberg, Leonardo Z., Paul A. Gabrys, and Robert J. Macfarlane. "Optical Processing of DNA-Programmed Nanoparticle Superlattices." Nano Letters 19, no. 11 (October 11, 2019): 8074–81. http://dx.doi.org/10.1021/acs.nanolett.9b03258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Travesset, Alex. "Binary nanoparticle superlattices of soft-particle systems." Proceedings of the National Academy of Sciences 112, no. 31 (July 20, 2015): 9563–67. http://dx.doi.org/10.1073/pnas.1504677112.

Full text
Abstract:
The solid-phase diagram of binary systems consisting of particles of diameter σA=σ and σB=γσ (γ≤1) interacting with an inverse p = 12 power law is investigated as a paradigm of a soft potential. In addition to the diameter ratio γ that characterizes hard-sphere models, the phase diagram is a function of an additional parameter that controls the relative interaction strength between the different particle types. Phase diagrams are determined from extremes of thermodynamic functions by considering 15 candidate lattices. In general, it is shown that the phase diagram of a soft repulsive potential leads to the morphological diversity observed in experiments with binary nanoparticles, thus providing a general framework to understand their phase diagrams. Particular emphasis is given to the two most successful crystallization strategies so far: evaporation of solvent from nanoparticles with grafted hydrocarbon ligands and DNA programmable self-assembly.
APA, Harvard, Vancouver, ISO, and other styles
43

Senesi, Andrew J., Daniel J. Eichelsdoerfer, Robert J. Macfarlane, Matthew R. Jones, Evelyn Auyeung, Byeongdu Lee, and Chad A. Mirkin. "Stepwise Evolution of DNA-Programmable Nanoparticle Superlattices." Angewandte Chemie 125, no. 26 (May 16, 2013): 6756–60. http://dx.doi.org/10.1002/ange.201301936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Si, Kae Jye, Yi Chen, Qianqian Shi, and Wenlong Cheng. "Nanoparticle Superlattices: The Roles of Soft Ligands." Advanced Science 5, no. 1 (September 6, 2017): 1700179. http://dx.doi.org/10.1002/advs.201700179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Santiago, P., H. E. Troiani, C. Gutierrez-Wing, J. Ascencio, and M. J. Yacaman. "Structure and Properties of Au Nanoparticle Superlattices." physica status solidi (b) 230, no. 2 (April 2002): 363–70. http://dx.doi.org/10.1002/1521-3951(200204)230:2<363::aid-pssb363>3.0.co;2-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Senesi, Andrew J., Daniel J. Eichelsdoerfer, Robert J. Macfarlane, Matthew R. Jones, Evelyn Auyeung, Byeongdu Lee, and Chad A. Mirkin. "Stepwise Evolution of DNA-Programmable Nanoparticle Superlattices." Angewandte Chemie International Edition 52, no. 26 (May 16, 2013): 6624–28. http://dx.doi.org/10.1002/anie.201301936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Patra, Tarak K., Henry Chan, Paul Podsiadlo, Elena V. Shevchenko, Subramanian K. R. S. Sankaranarayanan, and Badri Narayanan. "Ligand dynamics control structure, elasticity, and high-pressure behavior of nanoparticle superlattices." Nanoscale 11, no. 22 (2019): 10655–66. http://dx.doi.org/10.1039/c8nr09699f.

Full text
Abstract:
Coarse-grained molecular dynamics simulations, and small angle X-ray scattering experiments illustrate that coverage density of capping ligands provides a route to engineer nanoparticle superlattices.
APA, Harvard, Vancouver, ISO, and other styles
48

Mayence, Arnaud, Dong Wang, German Salazar-Alvarez, Peter Oleynikov, and Lennart Bergström. "Probing planar defects in nanoparticle superlattices by 3D small-angle electron diffraction tomography and real space imaging." Nanoscale 6, no. 22 (2014): 13803–8. http://dx.doi.org/10.1039/c4nr04156a.

Full text
Abstract:
Planar defects in Pd nanoparticle superlattices were revealed by a combination of real and reciprocal space transmission electron microscopy techniques. 3D electron diffraction tomography was extended to characterize mesoscale imperfections.
APA, Harvard, Vancouver, ISO, and other styles
49

Li, Meng, Yuanzhi Chen, Na Ji, Deqian Zeng, and Dong-Liang Peng. "Preparation of monodisperse Ni nanoparticles and their assembly into 3D nanoparticle superlattices." Materials Chemistry and Physics 147, no. 3 (October 2014): 604–10. http://dx.doi.org/10.1016/j.matchemphys.2014.05.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ji, Na, Yuanzhi Chen, Pingyun Gong, Keyan Cao, and Dong-Liang Peng. "Investigation on the self-assembly of gold nanoparticles into bidisperse nanoparticle superlattices." Colloids and Surfaces A: Physicochemical and Engineering Aspects 480 (September 2015): 11–18. http://dx.doi.org/10.1016/j.colsurfa.2015.03.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography